Logistic regression Inference & Model selection Prof. Maria Tackett

04.01.20

Click for PDF of slides

Risk of coronary heart disease

This dataset is from an ongoing cardiovascular study on residents of the town of Framingham, Massachusetts. We want to predict if a patient has a high risk of getting coronary heart disease in the next 10 years.

Response:

TenYearCHD:

- 0 = Patient is not high risk of having coronary heart disease in the next 10 years
- 1 = Patient is high risk of having coronary heart disease in the next
 10 years

Predictors:

• **age**: Age at exam time.

- currentSmoker: 0 = nonsmoker; 1 = smoker
- totChol: total cholesterol (mg/dL)

Modeling risk of coronary heart disease

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-2.111	0.077	-27.519	0.000	-2.264	-1.963
ageCent	0.081	0.006	13.477	0.000	0.070	0.093
currentSmoker1	0.447	0.099	4.537	0.000	0.255	0.641
totCholCent	0.003	0.001	2.339	0.019	0.000	0.005

Hypothesis test for β_j

$$\log\left(\frac{\hat{\pi}}{1-\hat{\pi}}\right) = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p$$

The test of significance for the coefficient β_j is

Hypotheses:
$$H_0$$
: $\beta_j = 0$ vs H_a : $\beta_j \neq 0$

Test Statistic:

$$z = \frac{\hat{\beta}_j - 0}{SE(\hat{\beta}_j)}$$

P-value: P(|Z| > |z|),

where $Z \sim N(0, 1)$, the Standard Normal distribution

Confidence interval for β_j

We can calculate the C\% confidence interval for β_j using the following:

$$\hat{\beta}_j \pm z^* SE(\hat{\beta}_j)$$

where z^* is calculated from the N(0, 1) distribution

We are C% confident that for every one unit change in x_j , the odds multiply by a factor of $\exp\{\hat{\beta}_j - z^*SE(\hat{\beta}_j)\}$ to $\exp\{\hat{\beta}_j + z^*SE(\hat{\beta}_j)\}$, holding all else constant.

Modeling risk of coronary heart disease

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-2.11059	0.07670	-27.51865	0.00000	-2.26360	-1.96285
ageCent	0.08150	0.00605	13.47651	0.00000	0.06973	0.09344
currentSmoker1	0.44743	0.09862	4.53705	0.00001	0.25461	0.64134
totCholCent	0.00254	0.00108	2.33919	0.01933	0.00040	0.00465

1. How is the test statistic for currentSmoker1 calculated?

- 2. Is totCholCent a statistically significant predictor of the odds a person is high risk for coronary heart disease?
 - Justify your answer using the test statistic and p-value.
 - Justify your answer using the confidence interval.

Model Selection

Comparing Nested Models

- Suppose there are two models:
 - Reduced Model includes predictors x_1, \ldots, x_q
 - Full Model includes predictors $x_1, \ldots, x_q, x_{q+1}, \ldots, x_p$
- We want to test the hypotheses

$$H_0: \beta_{q+1} = \dots = \beta_p = 0$$

$$H_a: \text{ at least } 1 \beta_i \text{ is not} 0$$

 To do so, we will use the Drop-in-Deviance test (also known as the Nested Likelihood test)

Deviance residual

- The deviance residual is the a measure of how much the observed data differs from what is measured using the likelihood ratio
- The deviance residual for the i^{th} observation is

$$d_i = \operatorname{sign}(y_i - \hat{\pi}_i) \sqrt{2\left[y_i \log\left(\frac{y_i}{\hat{\pi}_i}\right) + (1 - y_i) \log\left(\frac{1 - y_i}{1 - \hat{\pi}_i}\right)\right]}$$

where $sign(y_i - \hat{\pi}_i)$ is positive when $y_i = 1$ and negative when $y_i = 0$.

Drop-in-Deviance Test

• The deviance statistic for Model *k* is $G_k^2 = \sum_{i=1}^n d_i^2$

To test the hypotheses

$$H_0: \beta_{q+1} = \dots = \beta_p = 0$$

 $H_a:$ at least one β_i is not0

the **drop-in-deviance statistic** is $G^2_{reduced} - G^2_{full}$

The p-value for the test is calculated using a Chi-square distribution (χ^2) with degrees of freedm equal to the difference in the number of parameters in the full and reduced models

Chi-square Distribution

Calculate p-value for the drop-in-deviance test as $P(\chi^2 > \text{test statistic})$

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-2.617	0.277	-9.448	0.000	-3.161	-2.074
ageCent	0.078	0.006	12.701	0.000	0.066	0.091
currentSmoker1	0.449	0.099	4.540	0.000	0.255	0.643
totChol	0.003	0.001	2.503	0.012	0.001	0.005
education2	-0.266	0.119	-2.233	0.026	-0.502	-0.034
education3	-0.319	0.144	-2.215	0.027	-0.607	-0.041
education4	-0.116	0.160	-0.725	0.468	-0.436	0.192

Deviances
(dev_red <- glance(model_red)\$deviance)</pre>

[1] 2894.989

(dev_full <- glance(model_full)\$deviance)</pre>

[1] 2887.206

Drop-in-deviance test statistic
(test_stat <- dev_red - dev_full)</pre>

[1] 7.783615

p-value

1 - pchisq(test_stat, 3) #3 = number of new model terms in model2

[1] 0.05070196

What is your conclusion for the test?

Drop-in-Deviance test in R

- We can use the **anova** function to conduct this test
 - Add test = "Chisq" to conduct the drop-in-deviance test

```
anova(model_red, model_full, test = "Chisq")
## Analysis of Deviance Table
##
## Model 1: TenYearCHD ~ ageCent + currentSmoker + totChol
## Model 2: TenYearCHD ~ ageCent + currentSmoker + totChol + education
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 3654 2895.0
## 2 3651 2887.2 3 7.7836 0.0507 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Model selection

Use AIC or BIC for model selection

$$AIC = -2 * L - n \log(n) + 2(p + 1)$$

$$BIC = -2 * L - n \log(n) + \log(n) \times (p + 1)$$

where $L = \sum_{i=1}^{n} [y_i \log(\hat{\pi}_i) + (1 - y_i) \log(1 - \hat{\pi}_i)]$

AIC from glance function

Let's look at the AIC for the model that includes ageCent, currentSmoker, and totCholCent

glance(model_red)\$AIC

[1] 2902.989

Calculating AIC

(L <- glance(model_red)\$logLik)</pre>

[1] -1447.495

-2 * L + 2 * (3 + 1)

[1] 2902.989

Recall:

- Reduced Model includes AgeCent, currentSmoker, totCholCent
- Full Model includes AgeCent, currentSmoker, totCholCent, education (categorical)

glance(model_red)\$AIC

[1] 2902.989

glance(model_full)\$AIC

[1] 2901.206

Based on the AIC, which model would you choose?

What remaining questions do you have about logistic regression?

