Multinomial Logistic Regression

The Basics

Prof. Maria Tackett

04.06.20

Click for PDF of slides

Generalized Linear Models (GLM)

- In practice, there are many different types of response variables including:
 - Binary: Win or Lose
 - Nominal: Democrat, Republican or Third Party candidate
 - Ordered: Movie rating (1 5 stars)
 - and others...
- These are all examples of generalized linear models, a broader class of models that generalize the multiple linear regression model
- See <u>Generalized Linear Models: A Unifying Theory</u> for more details about GLMs

Binary Response (Logistic)

• Given $P(y_i = 1 | x_i) = \hat{\pi}_i$ and $P(y_i = 0 | x_i) = 1 - \hat{\pi}_i$

$$\log\left(\frac{\hat{\pi}_i}{1-\hat{\pi}_i}\right) = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

• We can calculate $\hat{\pi}_i$ by solving the logit equation:

$$\hat{\pi}_{i} = \frac{\exp\{\hat{\beta}_{0} + \hat{\beta}_{1}x_{i}\}}{1 + \exp\{\hat{\beta}_{0} + \hat{\beta}_{1}x_{i}\}}$$

Binary Response (Logistic)

• Suppose we consider y = 0 the **baseline category** such that

 $P(y_i = 1 | x_i) = \pi_{i1}$ and $P(y_i = 0 | x_i) = \pi_{i0}$

• Then the logistic regression model is

$$\log\left(\frac{\hat{\pi}_{i1}}{1-\hat{\pi}_{i1}}\right) = \log\left(\frac{\hat{\pi}_{i1}}{\hat{\pi}_{i0}}\right) = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

- Slope, $\hat{\beta}_1$: When x increases by one unit, the predicted odds of y = 1 versus the baseline y = 0 are multiply by a factor of $\exp{\{\hat{\beta}_1\}}$
- Intercept, $\hat{\beta}_0$: When x = 0, the predicted odds of y = 1 versus the baseline y = 0 are $\exp{\{\hat{\beta}_0\}}$

Multinomial response variable

- Suppose the response variable y is categorical and can take values 1, 2, ..., K such that (K > 2)
- Multinomial Distribution:

$$P(y = 1) = \pi_1, P(y = 2) = \pi_2, \dots, P(y = K) = \pi_K$$
 such that $\sum_{k=1}^K \pi_k = 1$

Multinomial Logistic Regression

- If we have an explanatory variable x, then we want to fit a model such that $P(y = k) = \pi_k$ is a function of x
- Choose a baseline category. Let's choose y = 1. Then,

$$\log\left(\frac{\pi_{ik}}{\pi_{i1}}\right) = \beta_{0k} + \beta_{1k} x_i$$

- In the multinomial logistic model, we have a separate equation for each category of the response relative to the baseline category
 - If the response has K possible categories, there will be K-1 equations as part of the multinomial logistic model

Multinomial Logistic Regression

- Suppose we have a response variable y that can take three possible outcomes that are coded as "A", "B", "C"
- Let "A" be the baseline category. Then

$$\log\left(\frac{\pi_{iB}}{\pi_{iA}}\right) = \beta_{0B} + \beta_{1B}x_i$$
$$\log\left(\frac{\pi_{iC}}{\pi_{iA}}\right) = \beta_{0C} + \beta_{1C}x_i$$

NHANES Data

- <u>National Health and Nutrition Examination Survey</u> is conducted by the National Center for Health Statistics (NCHS)
- The goal is to "assess the health and nutritional status of adults and children in the United States"
- This survey includes an interview and a physical examination

NHANES Data

- We will use the data from the **NHANES** R package
- Contains 75 variables for the 2009 2010 and 2011 2012 sample years
- The data in this package is modified for educational purposes and should **not** be used for research
- Original data can be obtained from the <u>NCHS website</u> for research purposes
- Type **?NHANES** in console to see list of variables and definitions

NHANES: Health Rating vs. Age & Physical Activity

- Question: Can we use a person's age and whether they do regular physical activity to predict their self-reported health rating?
- We will analyze the following variables:
 - HealthGen: Self-reported rating of participant's health in general. Excellent, Vgood, Good, Fair, or Poor.
 - Age: Age at time of screening (in years). Participants 80 or older were recorded as 80.
 - PhysActive: Participant does moderate to vigorous-intensity sports, fitness or recreational activities

The data

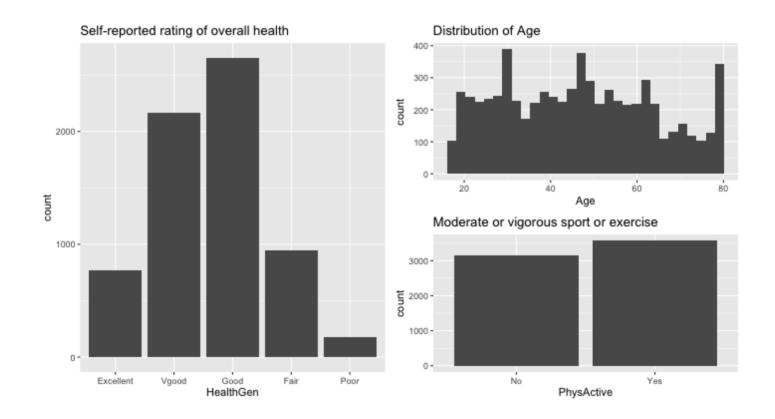
```
library(NHANES)
```

```
nhanes_adult <- NHANES %>%
filter(Age >= 18) %>%
select(HealthGen, Age, PhysActive) %>%
drop_na() %>%
mutate(obs_num = 1:n())
```

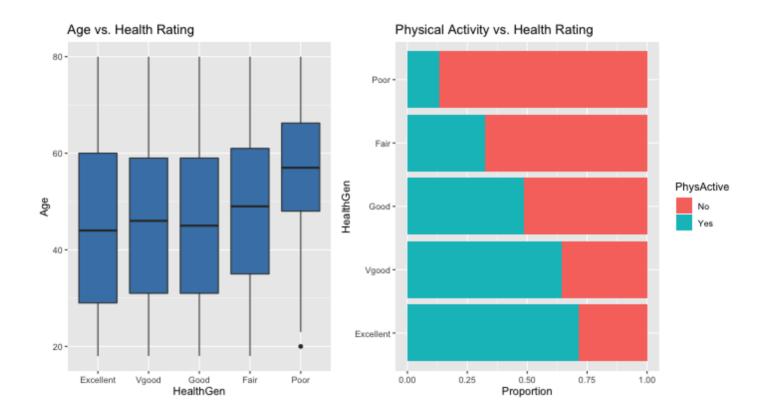
glimpse(nhanes_adult)

```
## Observations: 6,710
## Variables: 4
## $ HealthGen <fct> Good, Good, Good, Good, Vgood, Vgood, Vgood, Vgood, V
## $ Age <int> 34, 34, 34, 49, 45, 45, 45, 66, 58, 54, 50, 33, 60, 5
## $ PhysActive <fct> No, No, No, No, Yes, Yes, Yes, Yes, Yes, Yes, Yes, No
## $ obs_num <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
```


Exploratory data analysis



Exploratory data analysis



Model in R

Use the multinom() function in the nnet package

Put results = "hide" in the code chunk header to suppress convergence output

HealthGen vs. Age and PhysActive

tidy(health_m, conf.int = TRUE, exponentiate = FALSE) %>%
kable(digits = 3, format = "markdown")

y.level	term	estimate	std.error	statistic	p.value	conf.low	conf.high
Vgood	(Intercept)	1.205	0.145	8.325	0.000	0.922	1.489
Vgood	Age	0.001	0.002	0.369	0.712	-0.004	0.006
Vgood	PhysActiveYes	-0.321	0.093	-3.454	0.001	-0.503	-0.139
Good	(Intercept)	1.948	0.141	13.844	0.000	1.672	2.223
Good	Age	-0.002	0.002	-0.977	0.329	-0.007	0.002
Good	PhysActiveYes	-1.001	0.090	-11.120	0.000	-1.178	-0.825
Fair	(Intercept)	0.915	0.164	5.566	0.000	0.592	1.237
Fair	Age	0.003	0.003	1.058	0.290	-0.003	0.009
Fair	PhysActiveYes	-1.645	0.107	-15.319	0.000	-1.856	-1.435
Poor	(Intercept)	-1.521	0.290	-5.238	0.000	-2.090	-0.952
Poor	Age	0.022	0.005	4.522	0.000	0.013	0.032
Poor	PhysActiveYes	-2.656	0.236	-11.275	0.000	-3.117	-2.194

Interpreting coefficients

- 1. What is the baseline category for the model?
- 2. Write the model for the odds that a person rates themselves as having "Fair" health versus the baseline category.
- 3. Interpret the coefficient of Age in terms of the odds that a person rates themselves as having "Poor" health versus baseline category.
- 4. Interpret the coefficient of PhysActiveYes in terms of the odds that a person rates themselves as having "Very Good" health versus baseline category.

Hypothesis test for β_{jk}

Let y = 1 be the baseline category for the model.

$$\log\left(\frac{\hat{\pi}_{ik}}{\hat{\pi}_{i1}}\right) = \hat{\beta}_{0k} + \hat{\beta}_{1k}x_{i1} + \dots + \hat{\beta}_{pk}x_{ip}$$

The test of significance for the coefficient β_{jk} is

Hypotheses:
$$H_0$$
: $\beta_{jk} = 0$ vs H_a : $\beta_{jk} \neq 0$

Test Statistic:

$$z = \frac{\hat{\beta}_{jk} - 0}{SE(\hat{\beta}_{jk})}$$

P-value: P(|Z| > |z|),

where $Z \sim N(0, 1)$, the Standard Normal distribution

Confidence interval for β_{jk}

We can calculate the C\% confidence interval for β_{jk} using the following:

$$\hat{\beta}_{jk} \pm z^* SE(\hat{\beta}_{jk})$$

where z^* is calculated from the N(0, 1) distribution

We are C% confident that for every one unit change in x_j , the predicted odds of y = k versus the baseline y = 1 multiply by a factor of $\exp\{\hat{\beta}_{jk} - z^*SE(\hat{\beta}_{jk})\}$ to $\exp\{\hat{\beta}_{jk} + z^*SE(\hat{\beta}_{jk})\}$, holding all else constant.

Inference for coefficients

Refer to the model for the NHANES data:

- 1. Interpret the 95% confidence interval for the coefficient of Age in terms of the odds that a person rates themselves as having "Poor" health versus baseline category.
- 2. Interpret the 95% confidence interval for the coefficient of PhysActiveYes in terms of the odds that a person rates themselves as having "Very Good" health versus baseline category.

Predictions

Calculating probabilities

• For categories k = 2, ..., K, the probability that the i^{th} observation is in the j^{th} category is

$$\hat{\pi}_{ij} = \frac{\exp\{\hat{\beta}_{0j} + \hat{\beta}_{1j}x_{i1} + \dots + \hat{\beta}_{pj}x_{ip}\}}{1 + \sum_{k=2}^{K}\exp\{\hat{\beta}_{0k} + \hat{\beta}_{1k}x_{i1} + \dots + \hat{\beta}_{pk}x_{ip}\}}$$

• For the baseline category, k = 1, we calculate the probability $\hat{\pi}_{i1}$ as

$$\hat{\pi}_{i1} = 1 - \sum_{k=2}^{K} \hat{\pi}_{ik}$$

NHANES: Predicted probabilities

pred_probs %>%
 slice(101:105)

##	#	A tibble:	5 x 6				
##		Excellent	Vgood	Good	Fair	Poor	obs_num
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
##	1	0.0705	0.244	0.451	0.198	0.0366	101
##	2	0.0702	0.244	0.441	0.202	0.0426	102
##	3	0.0696	0.244	0.427	0.206	0.0527	103
##	4	0.0696	0.244	0.427	0.206	0.0527	104
##	5	0.155	0.393	0.359	0.0861	0.00662	105

Add predictions to original data

health_m_aug %>%
 glimpse()

```
## Observations: 6,710
## Variables: 9
## $ obs_num <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
## $ HealthGen <fct> Good, Good, Good, Good, Vgood, Vgood, Vgood, Vgood, V
## $ Age <int> 34, 34, 34, 49, 45, 45, 45, 66, 58, 54, 50, 33, 60, 5
## $ PhysActive <fct> No, No, No, No, Yes, Yes, Yes, Yes, Yes, Yes, Yes, No
## $ Excellent <dbl> 0.07069715, 0.07069715, 0.07069715, 0.07003173, 0.155
## $ Vgood <dbl> 0.2433979, 0.2433979, 0.2433979, 0.2444214, 0.3922335
## $ Good <dbl> 0.4573727, 0.4573727, 0.4573727, 0.4372533, 0.3599639
## $ Fair <dbl> 0.19568909, 0.19568909, 0.19568909, 0.20291032, 0.085
## $ Poor <dbl> 0.032843150, 0.032843150, 0.032843150, 0.045383322, 0
```


Actual vs. Predicted Health Rating

- We can use our model to predict a person's perceived health rating given their age and whether they exercise
- For each observation, the predicted perceived health rating is the category with the highest predicted probability

```
health_m_aug <- health_m_aug %>%
    mutate(pred_health = predict(health_m, type = "class"))
```


Actual vs. Predicted Health Rating

health_m_aug %>%
 count(HealthGen, pred_health, .drop = FALSE) %>%
 pivot_wider(names_from = pred_health, values_from = n)

##	#	A tibble:	5 x 6				
##		HealthGen	Excellent	Vgood	Good	Fair	Poor
##		<fct></fct>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>
##	1	Excellent	Θ	550	223	Θ	Θ
##	2	Vgood	Θ	1376	785	Θ	Θ
##	3	Good	Θ	1255	1399	Θ	Θ
##	4	Fair	Θ	300	642	Θ	Θ
##	5	Poor	Θ	24	156	Θ	Θ

#rows = actual, columns = predicted

Why do you think no observations were predicted to have a rating of "Excellent", "Fair", or "Poor"?

