6:14 - Class Starts

Logistic Regression

Prof. Maria Tackett

03.25.20

Click for PDF of slides

Part I: Categorical Response Variables

Quantitative vs. Categorical Response Variables

Quantitative response variable:

- Sales price of a house in Levittown, NY
- Model: variation in the mean sales price given values of the predictor variables (bedrooms, lot_size, year_built, etc.)

Categorical response variable:

- Patient at risk of coronary heart disease (Yes/No)
- Model: variation in the probability a patient is at risk of coronary heart disease given values of the predictor variables (age, currentSmoker, totChol, etc.)

Models for categorical response variables

Logistic Regression Multinomial Logistic Regression

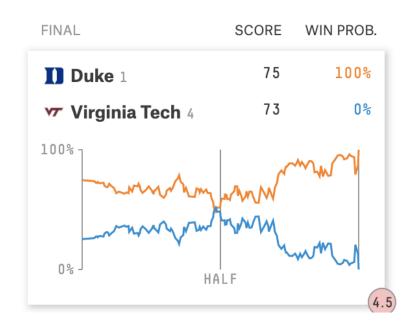
2 Outcomes 3+ Outcomes

Agree/Disagree Strongly Agree, Agree, Disagree,

Strongly Disagree

Let's focus on logistic regression models for now.

FiveThirtyEight Live Win Probabilities

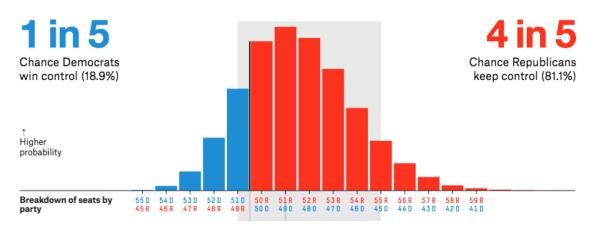


FiveThirtyEight: 2019 March
MadnessLive Win Probabilities

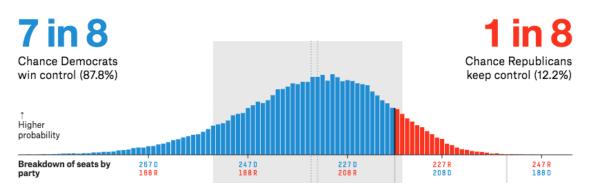
"These probabilities are derived using **logistic regression analysis**, which lets us plug the current state of a game into a model to produce the probability that either team will win the game.

- "How Our March Madness Predictions Work"

2018 Election Forecasts



FiveThirtyEight.com Senate forecast



FiveThirtyEight.com House forecast

Our models are probabilistic in nature; we do a lot of thinking about these probabilities, and the goal is to develop **probabilistic estimates** that hold up well under real-world conditions.

-"How FiveThirtyEight's House, Senate, and Governor Models Work"

Response Variable, Y

- lacktriangleq Y is a binary response variable
 - 1: yes (success)
 - 0: no (failure)
- Mean $(Y) = \pi$
 - $lacktriangleq \pi$ is the proportion of "yes" responses in the population
 - $\hat{\pi}$ is the proportion of "yes" responses in the sample
- Variance(Y) = $\pi(1 \pi)$
 - Sample variance: $\hat{\pi}(1 \hat{\pi})$
- Odds(Y=1) = $\frac{\pi}{1-\pi}$
 - Sample odds: $\frac{\hat{\pi}}{1-\hat{\pi}}$

Odds

• Given π , the population proportion of "yes" responses (i.e. "success"), the corresponding odds of a "yes" response is

$$\omega = \frac{\pi}{1 - \pi}$$

- The sample odds are $\hat{\omega} = \frac{\hat{\pi}}{1-\hat{\pi}}$
- Ex: Suppose the sample proportion $\hat{\pi}=0.3$. Then, the sample odds are

$$\hat{\omega} = \frac{0.3}{1 - 0.03} = 0.4286 \approx 2 \text{ in } 5$$

Properties of the odds

- odds ≥ 0
- If $\pi = 0.5$, then odds = 1
- If odds of "yes" = ω , then the odds of "no" = $\frac{1}{\omega}$
- If odds of "yes" = ω , then $\pi = \frac{\omega}{(1+\omega)}$

Risk of coronary heart disease

This dataset is from an ongoing cardiovascular study on residents of the town of Framingham, Massachusetts. We want to predict if a patient has a high risk of getting coronary heart disease in the next 10 years.

Response:

TenYearCHD:

- 0 = Patient is not high risk of having coronary heart disease in the next 10 years
- 1 = Patient is high risk of having coronary heart disease in the next
 10 years

Predictors:

- **age**: Age at exam time.
- currentSmoker: 0 = nonsmoker; 1 = smoker
- totChol: total cholesterol (mg/dL)

P (democrats wm) = 0.189

odds =
$$\frac{0.189}{1-0.189} = 0.233$$

referring to slide 7.

Response Variable, TenYearCHD

```
## # A tibble: 2 x 3
## TenYearCHD n proportion
## <fct> <int> <dbl>
## 1 0 3101 0.848
## 2 1 557 0.152
```

- $\hat{\pi} = 0.152$
- Sample variance = 0.152 * (1- 0.152) = 0.128896
- \bullet Odds(Y = 1) = 0.152/(1 0.152) = 0.1792453
- \bullet Odds(Y = 0) = 1 / 0.1792453 = 5.5789474

Let's incorporate more variables

- We want to use information about a patient's age, cholesterol, and whether or they are a smoker to understand the probability they're high risk of having coronary heart disease.
- To do this, we need to fit a model!

Consider possible models

- y: Whether a patient in the sample is high risk of having coronary heart disease.
- $\pi_i = P(y_i = 1 | age_i, currentSmoker_i, totChol_i)$: probability a patient i is high risk for coronary heart disease given their age, smoking status, and total cholesterol

Let's consider fitting a multiple linear regression model. Below are 3 possible response variables. For each response variable, briefly explain why a multiple linear regression model is <u>not</u> appropriate.

Model 1:
$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1$$
age + $\hat{\beta}_2$ currentSmoker + $\hat{\beta}_3$ totChol

Model 2:
$$\hat{\pi}_i = \hat{\beta}_0 + \hat{\beta}_1$$
age $+ \hat{\beta}_2$ currentSmoker $+ \hat{\beta}_3$ totChol

Model 3:
$$\widehat{\log(\pi)}_i = \hat{\beta}_0 + \hat{\beta}_1 \operatorname{age} + \hat{\beta}_2 \operatorname{currentSmoker} + \hat{\beta}_3 \operatorname{totChol}$$

Model 1: y is a categorical variable

that only takes values 0 or 1.

In multiple linear regression, we assume y is

Normally distributed

Model 2: 0 = TT = 1 but a linear model could produce predictions outside of this range

Model 3: -00 2 log lti) = 0 but a linear model could produce predictions outside this range.

Part 2: Basics of logistic regression

Logistic Regression Model

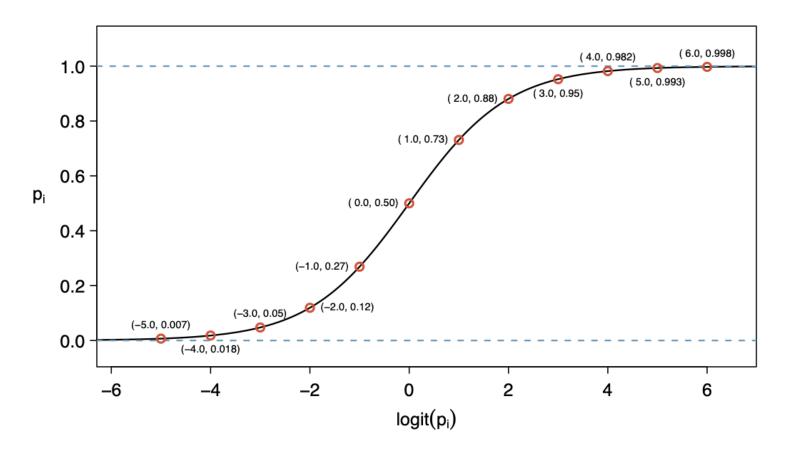
- Suppose $P(y_i = 1 | x_i) = \pi_i$ and $P(y_i = 0 | x_i) = 1 \pi_i$
- The logistic regression model is

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + \beta_1 x_i$$

■ $\log\left(\frac{\pi_i}{1-\pi_i}\right)$ is called the **logit** function

Logit function

$$0 \le \pi \le 1 \quad \Rightarrow \quad -\infty < \log\left(\frac{\pi}{1-\pi}\right) < \infty$$



OpenIntro Statistics, 4th ed (pg. 373)

Estimating the coefficients

- Estimate coefficients using maximum likelihood estimation
- Basic Idea:
 - \blacksquare Find values of $\hat{\beta}_0$ and $\hat{\beta}_1$ that give observed data the maximum probability of occuring
 - More details pg. 156 157 of the textbook
- We will fit logistic regression models using R

Y = Bernoulli
$$P(Y=y) = \pi^{y} (1-\pi)^{1-y}$$

 $P(Y=1) = \pi^{y} (1-\pi)^{1-1}$
 π
 $P(Y=1) = \pi^{y} (1-\pi)^{1-y}$
 $P(Y=1) =$

Interpreting the intercept: β_0

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + \beta_1 x_i$$

- When x = 0, log-odds of y are β_0
 - Won't use this interpretation in practice
- When x = 0, odds of y are $\exp\{\beta_0\}$

Interpreting slope coefficient β_1

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \beta_0 + \beta_1 x_i$$

If x is a quantitative predictor

- As x_i increases by 1 unit, we expect the log-odds of y to increase by β_1
- As x_i increases by 1 unit, the odds of y multiply by a factor of $\exp\{\beta_1\}$

If x is a <u>categorical</u> predictor. Suppose $x_i = k$

• The difference in the log-odds between group k and the baseline is β_1

■ The odds of y for group k are $\exp\{\beta_1\}$ times the odds of y for the baseline group.

Inference for coefficients

- \blacksquare The standard error is the estimated standard deviation of the sampling distribution of $\hat{\beta}_1$
- We can calculate the *C* confidence interval based on the large-sample Normal approximations
- Cl for β_1 :

$$\hat{\beta}_1 \pm z^* SE(\hat{\beta}_1)$$

CI for $\exp\{\beta_1\}$:

$$\exp\{\hat{\beta}_1 \pm z^* SE(\hat{\beta}_1)\}\$$

Modeling risk of coronary heart disease

Let's use the mean-centered variables for age and totChol.

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-2.111	0.077	-27.519	0.000	-2.264	-1.963
ageCent	0.081	0.006	13.477	0.000	0.070	0.093
currentSmoker1	0.447	0.099	4.537	0.000	0.255	0.641
totCholCent	0.003	0.001	2.339	0.019	0.000	0.005

$$\log\left(\frac{\hat{\pi}}{1-\hat{\pi}}\right) = -2.111 + 0.081 \text{ageCent} + 0.447 \text{currentSmoker} + 0.003 \text{totChol}$$

Modeling risk of coronary heart disease

$$\log\left(\frac{\hat{\pi}}{1-\hat{\pi}}\right) = -2.111 + 0.081 \text{ageCent} + 0.447 \text{currentSmoker} + 0.003 \text{totChol}$$

Use the model to interpret the following. Write all interpretations in terms of the odds of a patient being high risk for coronary heart disease.

- 1. Interpret the intercept.
- 2. Interpret ageCent and its 95% confidence interval.
- 3. Interpret currentSmoker1 and its 95% confidence interval.

1:05:00

Intercept: The odds that a patient who is average age, does not currently smoke, and who has average cholesterol is high risk of coronary heart disease are exp(-2.111).

ageCent: Holding all else constant, the odds that a patient is high risk for coronary heart disease multiply by a factor of exp(0.081) for each year increase in age.

totCholCent: Holding all else constant, the odds that a patient is high risk for coronary heart disease multiply by a factor of exp(0.003) for each additional mg/dL in total cholesterol.

currentSmoker: Holding all else constant, the odds a patient who currently smokes is high risk for coronary heart disease are exp(0.447) times the odds a patient who doesn't smoke is high risk of coronary heart disease.