An Introduction to Spatial Autoregressive Modeling

Data Expeditions

January 18th, 2020

Jonathan Holt

Reza Momenifar

Introduction

Outline

Spatial autocorrelation

Case Study

Introduction

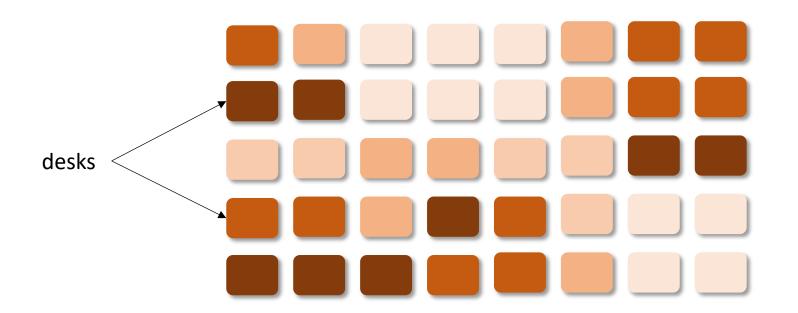
Task: Predict student test scores using a linear regression model

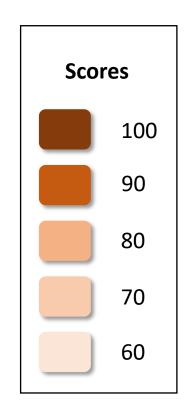
Task: Predict student test scores using a linear regression model

You are responsible for developing a linear regression model that predicts student test scores.

Activity: For 3 minutes, discuss with your neighbor the the most important predictor variables for your model.

Now, let's look at the actual data





Front of classroom

Now, can you think of a better model to predict student test scores?

 Activity: For 3 minutes, discuss with your neighbor any changes that you would make to your original model.

How about:

$$score \sim \beta_0 + (\beta_1 * IQ) + (\beta_2 * hours studied) + (\beta_3 * score of neighbor) + \varepsilon$$

Notice that the response variable (score) is on **both** sides of the equation.

Task: Predict height of children using a linear regression model

Task: Predict height of children using a linear regression model

You are responsible for developing a regression model that predicts the height of a child.

Question: Name 3 predictors that you should include in your model.

How about:

$$height \sim \beta_0 + (\beta_1 * age) + (\beta_2 * gender) + (\beta_3 * height of child last year) + \varepsilon$$

Notice that the response variable (height) is on **both** sides of the equation.

"Autoregressive"

What do these two models have in common?

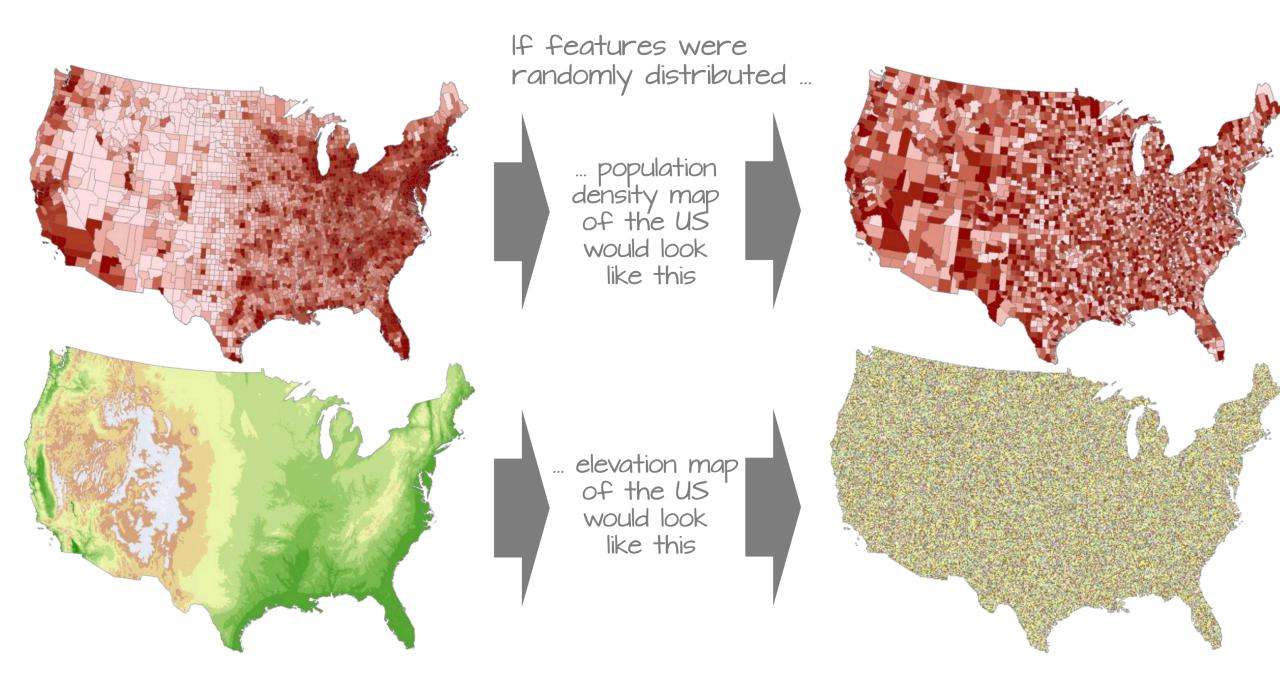
$$score \sim \beta_0 + (\beta_1 * IQ) + (\beta_2 * hours studied) + (\beta_3 * score of neighbor) + \varepsilon$$

$$height \sim \beta_0 + (\beta_1 * age) + (\beta_2 * gender) + (\beta_3 * height of child last year) + \varepsilon$$

"Autoregressive"

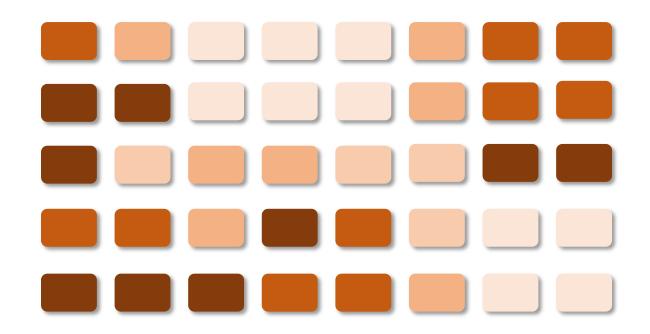
Spatial Autocorrelation

"The first law of geography: Everything is related to everything else, but near things are more related than distant things." Waldo R. Tobler (Tobler 1970)



Spatial autoregressive modeling

 Spatial autoregressive models are models that account for spatial autocorrelation among observations (i.e., the response variable is not randomly distributed in space).



Vocabulary:

Correlation is between two **different** variables.

Autocorrelation is between the **same** variable at different spaces or times.

Examples of data with spatial autocorrelation

Political elections

Contaminant transfer

Disease spread

Housing market

Weather

Recall the similarities between spatial and temporal autocorrelation

How would you model the height of a growing child?

height ~
$$\beta_0$$
 + (β_1 * age) + (β_2 * sex) + (β_3 * height previous year) + ε

Similar to

score ~
$$\beta_0 + (\beta_1 * IQ) + (\beta_2 * hours studied) + (\beta_3 * score of neighbor) + \varepsilon$$

In fact, many types of data are **spatially** and **temporally** autocorrelated

- Political elections
- Contaminant transfer
- Disease spread
- Housing market
- Weather

Rain in Durham at $2pm \sim \beta_0 + (\beta_1 * rain at 1pm) + (\beta_2 * rain in Hillsborough) + \cdots$

How do I know if my data are spatially autocorrelated?

 Moran's I test measures the spatial autocorrelation for continuous data

•
$$I = \frac{N}{W} \frac{\sum_{i} \sum_{j} w_{ij} (x_i - \bar{x}) (x_j - \bar{x})}{\sum_{i} (x_i - \bar{x})^2}$$

- N is the number of spatial units indexed by i and j
- x is the variable of interest; \bar{x} is the mean of x
- w is a matrix of spatial weights
- W is the sum of all w_{ii}

Practice with the classroom test-score data

For simplicity, consider these 9 students

Spatial weights matrix w

1 = adjacent

0 = not adjacent

Henry					
Xu					
Lisa					
Tang					
Bella					
Kim					
Reza					
Max					
Zion					

Bella

Tang

Kim

Reza

Max

Zion

Henry Xu

Lisa

Spatial weights matrix w

1 = adjacent

0 = not adjacent

	Henry	Xu	Lisa	Tang	Bella	Kim	Reza	Max	Zion
Henry	0	1	0	1	1	0	0	0	0
Xu	1	0	1	1	1	1	0	0	0
Lisa	0	1	0	0	1	1	0	0	0
Tang	1	1	0	0	1	0	1	1	0
Bella	1	1	1	1	0	1	1	1	1
Kim	0	1	1	0	1	0	0	1	1
Reza	0	0	0	1	1	0	0	1	0
Max	0	0	0	1	1	1	1	0	1
Zion	0	0	0	0	1	1	0	1	0

Putting it all together

Lisa Henry Xu 80 90 60 Bella Kim Tang 100 60 100 Max Zion Reza 70 80 100

$$I = \frac{N}{W} \frac{\sum_{i} \sum_{j} w_{ij} (x_{i} - \bar{x})(x_{j} - \bar{x})}{\sum_{i} (x_{i} - \bar{x})^{2}}$$

	Henry	Xu	Lisa	Tang	Bella	Kim	Reza	Max	Zion
Henry	0	1	0	1	1	0	0	0	0
Xu	1	0	1	1	1	1	0	0	0
Lisa	0	1	0	0	1	1	0	0	0
Tang	1	1	0	0	1	0	1	1	0
Bella	1	1	1	1	0	1	1	1	1
Kim	0	1	1	0	1	0	0	1	1
Reza	0	0	0	1	1	0	0	1	0
Max	0	0	0	1	1	1	1	0	1
Zion	0	0	0	0	1	1	0	1	0

$$E(I) = \frac{-1}{N-1}$$
 Expected value for the null hypothesis

$$z = \frac{I - E(I)}{var(I)}$$
 Z-score to test whether to reject null hypothesis

Interpreting Moran's I

- In general,
 - ~ 1 means strong positive autocorrelation
 - ~ -1 means strong negative autocorrelation
 - ~ 0 means no autocorrelation
- We can do a hypothesis test to be sure... but we'll use software for that.
 - Null hypothesis: I is (approximately) zero
 - Alternative hypothesis: I is greater or less than zero

Putting it all together

Henry	Xu	Lisa
90	80	60
Tang	Bella	Kim
100	100	60
Reza	Max	Zion
100	70	80

	Henry	Xu	Lisa	Tang	Bella	Kim	Reza	Max	Zion
Henry	0	1	0	1	1	0	0	0	0
Xu	1	0	1	1	1	1	0	0	0
Lisa	0	1	0	0	1	1	0	0	0
Tang	1	1	0	0	1	0	1	1	0
Bella	1	1	1	1	0	1	1	1	1
Kim	0	1	1	0	1	0	0	1	1
Reza	0	0	0	1	1	0	0	1	0
Max	0	0	0	1	1	1	1	0	1
Zion	0	0	0	0	1	1	0	1	0

$$I = \frac{N}{W} \frac{\sum_{i} \sum_{j} w_{ij} (x_{i} - \bar{x})(x_{j} - \bar{x})}{\sum_{i} (x_{i} - \bar{x})^{2}}$$

$$E(I) = \frac{-1}{N-1}$$

I = 0.12E(I) = -0.125

Alternative hypothesis = True P-value = 0.03

Conclusion

- Our data is spatially autocorrelated.
- We still don't know what to do about it...

Case Study: economic impact of green spaces in Zillow neighborhoods

Zillow median neighborhood home price

Dataset

Socio-demographics and home characteristics from the American Community Survey Median household income Number of rooms

Etc.

Environmental attributes

Land surface temperature Tree cover Etc. The full study includes many variables

Variable definition, Unit	Min	Max	Mean	Std. dev.
ZHVI; median price per ft² (dollars)	12.1	1957.9	232.8	217.9
structural variables				
median number of rooms	2.1	9.0	6.3	1.0
median age of home (yrs)	5.0	78.0	50.1	19.0
demographic variables				
median age of residents (yrs)	16.3	77.1	38.7	7.1
population density (people/m²)	0.0002	0.01	0.001	0.001
proportion of white residents (%)	0	1.0	0.7	0.2
proportion obtained bachelor's degree (%)	0	0.62	0.24	0.11
proportion obtained master's degree (%)	0	0.49	0.11	0.07
median household income (dollars)	10,940	250,000	73,000	34,500
community features				
categorical: majority road type	secondary road = 4149, tertiary road = 2110			
		10.2	2.6	1.0
slope (degrees)	1.2	18.2	3.6	1.9
proportion impervious surfaces (%)	0	0.94	0.42	0.16
binary: 1 = college or university present			0.17	
binary: 1 = k-12 school present			0.78	
binary: 1 = highway present			0.51	
categorical: mode aspect	NE = 4690, NW = 265, SW = 1292			
categorical: mode development intensity	medium = 2346, high = 412, low = 3501			
categorical: U.S. state				
environmental attributes				
			0.06	
binary: 1 = golf course present			0.06	
binary: 1 = cemetery present			0.20	
binary: 1 = park present		0.55	0.74	0.05
proportion park area (%)	0	0.55	0.03	0.05
binary: 1 = lake/pond present			0.22	
binary: 1 = stream/river present			0.10	
binary: 1 = swamp/marsh present			0.03	
land surface temperature, Celsius	0.20	44.7	27.4	6.7
tree canopy cover (%)	0	0.58	0.12	0.09
NDVI (-1 – 1)	0	0.47	0.25	0.08
proportion open space (%)	0	0.50	0.15	0.12

Task

Model the median neighborhood home price as a function of socio-demographics, home characteristics, and environmental attributes.

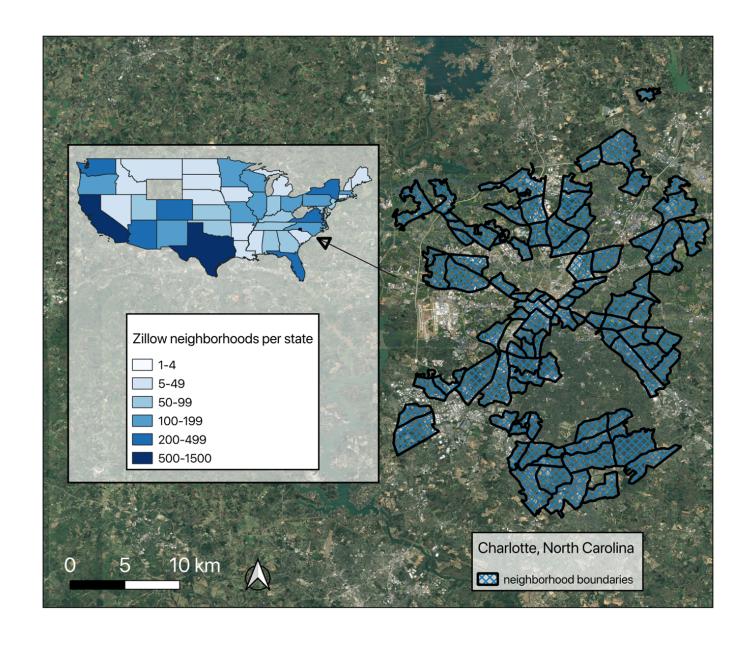
This is called a <u>hedonic pricing analysis</u>.

The least squares model looks like this:

$$price \sim \beta_0 + (\beta_1 * income) + (\beta_2 * age of home) + \dots + (\beta_3 * tree cover) + \varepsilon$$

This is what we are interested in

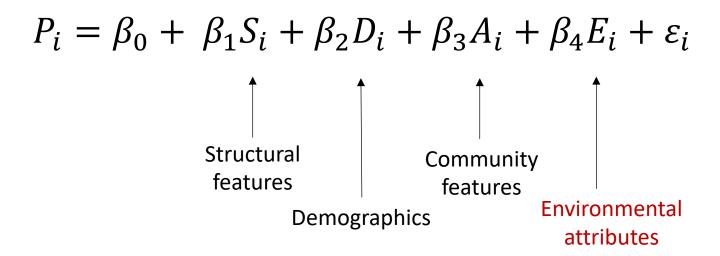
Zillow neighborhoods are spatially distributed, so we need to consider spatial autocorrelation.



What does Mr. Moran say?

"Reject the null hypothesis!"

Original model (ordinary least squares)



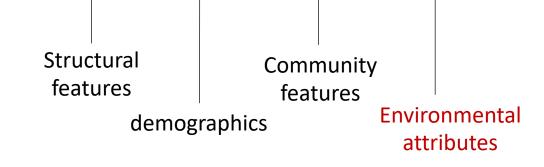
Spatial lag model

 λ is an Estimated parameter (just like β)

$$P_i \sim \beta_0 + \lambda W P_i + \beta_1 S_i + \beta_2 D_i + \beta_3 A_i + \beta_4 E_i + \varepsilon_i$$

W

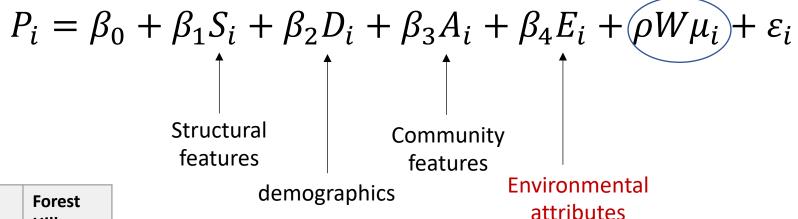
	Walltown	Trinity Heights	Forest Hills
Walltown	0	1	0
Trinity Heights	1	0	0
Forest Hills	0	0	0



Question: 3 minutes

Link: https://bit.ly/38AAVnj

Spatial error model



	Walltow n	Trinity Heights	Forest Hills
Walltow n	0	1	0
Trinity Heights	1	0	0
Forest Hills	0	0	0

W

Spatial lag AND error model

$$P_{i} = \beta_{0} + \lambda W P_{i} + \beta_{1} S_{i} + \beta_{2} D_{i} + \beta_{3} A_{i} + \beta_{4} E_{i} + \rho W \mu_{i} + \varepsilon_{i}$$

$$W$$
Structural features features

Trinity Forest demographies Environmental

demographics

attributes

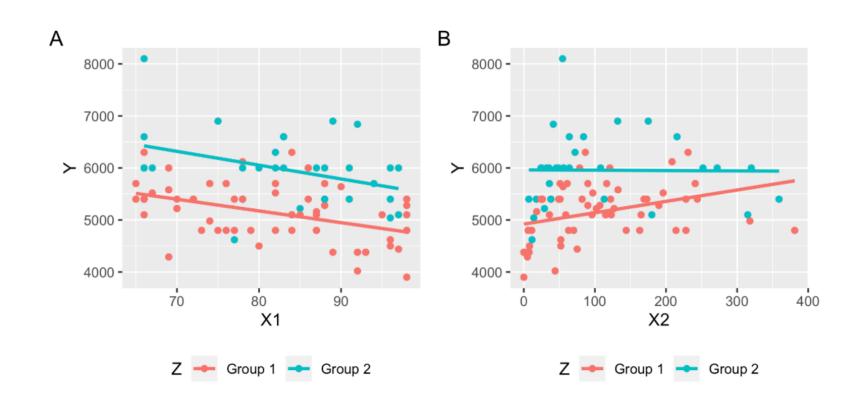
	Walltown	Trinity Heights	Forest Hills
Walltown	0	1	0
Trinity Heights	1	0	0
Forest Hills	0	0	0

Actual model estimates for the spatial lag + spatial error model

Interaction term!

Variable	coeff.
spatial lag for price (λ)	0.03***
spatial error ($ ho$)	0.72***
intercept	0.45**
environmental attribute variables	
park = 1	0.05***
park = 1 * park area	0.005**
stream/river = 1	-0.02**
n(land surface temperature)	0.23***
(In(land surface temperature))^2	-0.04***
n(percent tree canopy cover)	0.05***
n(NDVI)	-0.17***
n(open space)	-0.007***
R ²	0.90
og-likelihood	275
AIC	-392

Recall interactions from Monday's lecture



Include interaction terms in the Zillow model

"main effects"

"interaction effects"

$$P_i = \beta_0 + \beta_1 (temperature) + \beta_2 (tree\ cover) + \beta_3 (temperature * tree\ cover)$$

= $(\beta_3 * temperature) (tree\ cover)$
= $(\beta_3 * tree\ cover) (temperature)$

How to interpret interaction coefficient β_3 ?

- β_3 positive
 - "As temperature increases, the effect of tree cover on price becomes more positive"
 - And vice versa
- β_3 negative
 - "As temperature increases, the effect of tree cover on price becomes more negative"
 - And vice versa

 $\beta_1(temperature) + \beta_2(tree\ cover) + \beta_3(open\ space) + \beta_4(temperature * tree\ cover) + \beta_5(temperature * open\ space) + \beta_6(tree\ cover * open\ space)$

	interaction e	main effects	
	Tree canopy cover	open space	
temperature	0.18***	-0.06***	0.24***
tree canopy cover		-0.002	-0.56***
open space			0.17***

Question: 4 minutes. https://bit.ly/2Hy7VRd

 $\beta_1(temperature) + \beta_2(tree\ cover) + \beta_3(NDVI) + \beta_4(open\ space) + \beta_5(temperature * income) + \beta_6(tree\ cover * income) + \beta_7(NDVI * income) + \beta_8(open\ space * income)$

	interaction effects with income	main effects
temperature	-0.15***	1.78***
tree canopy cover	0.04***	-0.39***
NDVI	0.03	-0.46
open space	0.01	-0.07

Question: 4 minutes. https://bit.ly/3250fOd