STA732 Statistical Inference

Lecture 11: Empirical Bayes and Hierarchical Bayes

Yuansi Chen

Spring 2022

Duke University

https://www2.stat.duke.edu/courses/Spring22/sta732.01/

Recap from Lecture 10

- 1. Discussed conjugate priors
- 2. Four typical ways to construct priors
 - Prior data experience
 - · Subjective prior
 - Objective prior
 - Convenience prior
- 3. Pros of Bayes:
 - Straighforward construction of Bayes estimators
 - Bayes optimal
 - Detailed output
- 4. Cons of Bayes:
 - Difficulty in choosing prior
 - Difficulty in specifying the whole model

- 1. Hierarchical Bayes
- 2. Empirical Bayes
- 3. James-Stein estimator

Chap. 15.1, 11.1-2 of Keener or 4.5, 4.6 of Lehmann and Casella

Hierarchical Bayes

Recall from last lecture that we can construct prior from previous data experience:

- In a standard Bayesian model $X \sim p_{\theta}(\cdot), \Theta \sim \Lambda$, we only have one draw of Θ
- If we have previous data with similar structure, we can decide the prior better

Predict a batter's batting average from data X = number of hits \sim Binomial (n, θ) .

Prior info:

- most batting averages are between $0.1 \ \mathrm{and} \ 0.3$
- 0.8 is rare
- We can specify the prior using a Beta distribution

Q: how to set α, β in $\text{Beta}(\alpha, \beta)$?

Suppose we have data from m batters (each batter has data X_i = number of hits, i = 1, ..., m) the hierarchical Bayes solution is a hierachical modelling of the

batting average by pooling prior info across batters

$$\begin{split} \alpha &\sim \mathsf{Exp}(1), \beta \sim \mathsf{Exp}(1), \mathsf{independently} \\ \Theta_i \mid \alpha, \beta \stackrel{\mathsf{i.i.d}}{\sim} \mathsf{Beta}(\alpha, \beta), i = 1, \dots, m \\ X_i \mid \Theta_i = \theta_i \stackrel{\mathsf{indep}}{\sim} \mathsf{Binomial}(n_i, \theta_i), i = 1, \dots, m \end{split}$$

Graphical model for the hierarchical model

Directed graphical model. The joint density factorizes

$$\begin{split} p(\alpha, \beta, \theta_1, \dots, \theta_m, x_1, \dots, x_m) \\ = p(\alpha, \beta) \cdot \prod_{i=1}^m p(\theta_i \mid \alpha, \beta) \cdot \prod_{i=1}^m p(x_i \mid \theta_i) \end{split}$$

7

To obtain a Bayes estimator, we are interested in the posterior

$$p(\theta_1,\ldots,\theta_m \mid x_1,\ldots,x_m),$$

It does not have a closed form in this case.

Computational strategy:

Set up a Markov chain with stationary distribution $\propto p(\theta_1,\ldots,\theta_m\mid x_1,\ldots,x_m)\text{, run it long enough to get approximate samples}$

MCMC is not the main focus of this course

The posterior for a single parameter also depends on all data

 $p(\theta_1 \mid x_1, \dots, x_m)$

Intuitively,

 X_2,\ldots,X_m indirectly influence the estimate of θ_1 through the hyperprior, by teaching us what values of θ are more plausible

Examples where hierarchical Bayes may make sense

- Model COVID reproduction number R for multiple countries
- SAT scores collected from five high schools in NC
- Mortality rate after heart attack across 10 hospital in NYC

Examples where hierarchical Bayes may make sense

- Model COVID reproduction number ${\cal R}$ for multiple countries
- SAT scores collected from five high schools in NC
- Mortality rate after heart attack across 10 hospital in NYC

Exercise:

Modelling batting average for players in Major League Baseball

- Shall we always pool the data from all batters?
- If we have batter data from college baseball, should we include them?
- By pooling more data, what estimate is improved and what estimate might deteriorate?

$$\begin{split} \tau &\sim \lambda(\tau) \quad \text{e.g. } 1/\tau^2 \sim \text{Gamma}(k,s) \\ \theta_i \mid \tau^2 \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,\tau^2) \\ X_i \mid \theta_i, \tau^2 \stackrel{\text{indep}}{\sim} \mathcal{N}(\theta_i,1) \end{split}$$

Compute the posterior mean

- What is the shrinkage factor?
- What is a good estimate of the shrinkage factor?
- How much does the prior on τ matter? The prior on τ does not matter much

Empirical Bayes

- Prior on au Always ask does the prior matter?
- + $\,\Theta_i \mid au$ Key part in hierarchical Bayes
- $\bullet \ X_i \mid \Theta_i, \tau$

- Estimate ξ based on all data, e.g. via MLE
- Plug in $\hat{\xi}$ as if it is known

$$\begin{split} \Theta_i &\sim \mathcal{N}(0,\tau^2) \\ X_i \mid \Theta_i &\sim \mathcal{N}(\theta_i,1), i=1,\ldots,m \end{split}$$

- Compute the posterior mean treating au is known
- What would be a good estimate of τ^2 ?

James-Stein estimator

James and Stein proposed a slight different shrinkage factor $m\geq 3$

$$\delta_{\mathrm{JS},i}(X) = \left(1 - \frac{m-2}{\left\|X\right\|_2^2}\right) X_i$$

Interpretation

$$\frac{m-2}{\left\|X\right\|_{2}^{2}}$$
 is UMVU for $\frac{1}{1+\tau^{2}}$

Prop.

If $Y \sim \mathbf{X}_d^2, d \geq 3$, then

$$\mathbb{E}\left[\frac{1}{Y}\right] = \frac{1}{d-2}$$

JS estimator better than sample mean

In the non-Bayesian Gaussian sequence model, n data points, $X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, \sigma^2 \mathbb{I}_d), \theta \in \mathbb{R}^d$ (fixed), $\sigma^2 > 0$ (known), for $d \geq 3$, the sample mean

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

is inadmissible for estimating θ under squared error loss The JS estimator

$$\delta_{\rm JS}(X) = \left(1 - \frac{(d-2)\sigma^2/n}{\left\|\bar{X}\right\|_2^2}\right)\bar{X}$$

has strictly lower risk uniformly

- Could take n = 1 by reasoning about sufficient statistics
- The result holds without assumption on the prior model on θ
- There isn't much speciality about 0: for any $\theta_0 \in \mathbb{R}$, we can introduce the estimator

$$\delta' = \theta_0 + \left(1 - \frac{(d-2)}{\left\|X\right\|_2^2}\right) (X - \theta_0)$$

• The current justification comes from empirical Bayes. But shrinkage makes sense even without Bayes justification.

Gaussian sequence model $X_i \stackrel{\text{ind.}}{\sim} \mathcal{N}(\theta_i, 1), \theta$ (fixed) Let $\delta_S(X) = (1 - S)X$ for fixed S.

- Derive the optimal S for the risk under squared error loss
- Give an estimate of the optimal S^*

Useful tool for computing risk in Gaussian estimation problems. **Stein's Lemma, univariate, Lem 11.1 in Keener** Suppose $X \sim \mathcal{N}(\theta, \sigma^2)$, $h : \mathbb{R} \to \mathbb{R}$, differentiable, $\mathbb{E} \left| \dot{h}(X) \right| < \infty$, then

$$\mathbb{E}[(X-\theta)h(X)] = \sigma^2 \mathbb{E}[\dot{h}(X)]$$

proof idea: write down the intergrals for $heta=0, \sigma^2=1$ first

Multivariate Stein's Lemma, Thm 11.3 in Keener

$$\begin{split} & \text{Suppose } X \sim \mathcal{N}(\theta, \sigma^2 \mathbb{I}_d), \theta \in \mathbb{R}^d, h: \mathbb{R}^d \to \mathbb{R}^d, \text{differentiable,} \\ & \mathbb{E} \left\| Dh(X) \right\|_F < \infty. \end{split}$$

$$\mathbb{E}\left[(X-\theta)^{\top}h(X)\right] = \sigma^2 \sum_{i=1}^d \mathbb{E}\frac{\partial h_i}{\partial x_i}(X)$$

We can use Stein's lemma to get unbiased estimator of the risk under squared error loss for any $\delta(X)$, apply with $h(X) = X - \delta(X)$.

$$\begin{split} R(\theta, \delta) &= \mathbb{E}_{\theta} \left[\left\| X - \theta - h(X) \right\|_{2}^{2} \right] \\ &= \mathbb{E}_{\theta} \left\| X - \theta \right\|_{2}^{2} + \mathbb{E}_{\theta} \left\| h(X) \right\|_{2}^{2} - 2\mathbb{E}_{\theta} \left[(X - \theta)^{\top} h(X) \right] \\ &= d + \mathbb{E}_{\theta} \left\| h(X) \right\|_{2}^{2} - 2\mathbb{E}_{\theta} \operatorname{Tr}(Dh(X)) \end{split}$$

We get an unbiased estimator for the risk

$$\hat{R}(X) = d + \left\| h(X) \right\|_2^2 - 2\operatorname{Tr}(Dh(X))$$

proof idea: apply SURE

+ $\delta_{\rm JS}$ is also inadmissible

$$\delta_{\mathsf{JS+}}(X) = \left(1 - \frac{d-2}{\left\|X\right\|_2}\right)_+ X$$

is strictly better

- There is a better version called positive-part James–Stein estimator
- But the positive-part James–Stein estimator is also inadmissible, although not much improvement can be made, read around Chap 5.5 in Lehmann and Casella.

- Hierarchical Bayes is good for pooling multiple similar datasets
- Empirical Bayes is similar to Hierarchical Bayes if the hyperprior is not important
- Empirical Bayes gives the James-Stein estimator, which makes the sample mean inadmissible
- Think about shrinkage

• Minimax optimality

Thank you for attending See you on Wednesday in Old Chem 025