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Recap from Lecture 10

1. Discussed conjugate priors
2. Four typical ways to construct priors

• Prior data experience
• Subjective prior
• Objective prior
• Convenience prior

3. Pros of Bayes:
• Straighforward construction of Bayes estimators
• Bayes optimal
• Detailed output

4. Cons of Bayes:
• Difficulty in choosing prior
• Difficulty in specifying the whole model
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Goal of Lecture 11

1. Hierarchical Bayes

2. Empirical Bayes

3. James-Stein estimator

Chap. 15.1, 11.1-2 of Keener or 4.5, 4.6 of Lehmann and Casella
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Hierarchical Bayes



Motivation

Recall from last lecture that we can construct prior from previous
data experience:

• In a standard Bayesian model𝑋 ∼ 𝑝𝜃(⋅), Θ ∼ Λ, we only have
one draw ofΘ

• If we have previous data with similar structure, we can decide
the prior better
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Predict a batter’s batting average from data𝑋 = number of hits
∼ Binomial(𝑛, 𝜃).
Prior info:

• most batting averages are between 0.1 and 0.3
• 0.8 is rare
• We can specify the prior using a Beta distribution

Q: how to set 𝛼, 𝛽 in Beta(𝛼, 𝛽)?

Photo by Chris Chow on Unsplash
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Hierarchical Bayes solution to the prior choice

Suppose we have data from𝑚 batters (each batter has data𝑋𝑖 =
number of hits, 𝑖 = 1,… ,𝑚)
the hierarchical Bayes solution is a hierachical modelling of the
batting average by pooling prior info across batters

𝛼 ∼ Exp(1), 𝛽 ∼ Exp(1), independently
Θ𝑖 ∣ 𝛼, 𝛽

i.i.d∼ Beta(𝛼, 𝛽), 𝑖 = 1,… ,𝑚

𝑋𝑖 ∣ Θ𝑖 = 𝜃𝑖
indep∼ Binomial(𝑛𝑖, 𝜃𝑖), 𝑖 = 1,… ,𝑚
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Graphical model for the hierarchical model

𝛼, 𝛽

Θ1

𝑋1

Θ2

𝑋2

⋯

⋯

Θ𝑚

𝑋𝑚

Directed graphical model. The joint density factorizes

𝑝(𝛼, 𝛽, 𝜃1,… , 𝜃𝑚, 𝑥1,… , 𝑥𝑚)

= 𝑝(𝛼, 𝛽) ⋅
𝑚
∏
𝑖=1

𝑝(𝜃𝑖 ∣ 𝛼, 𝛽) ⋅
𝑚
∏
𝑖=1

𝑝(𝑥𝑖 ∣ 𝜃𝑖) 7



Posterior computation

To obtain a Bayes estimator, we are interested in the posterior

𝑝(𝜃1,… , 𝜃𝑚 ∣ 𝑥1,… , 𝑥𝑚),

It does not have a closed form in this case.

Computational strategy:

Set up a Markov chain with stationary distribution
∝ 𝑝(𝜃1,… , 𝜃𝑚 ∣ 𝑥1,… , 𝑥𝑚), run it long enough to get approximate
samples

MCMC is not the main focus of this course
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Practical implication of the joint modeling of the prior

The posterior for a single parameter also depends on all data

𝑝(𝜃1 ∣ 𝑥1,… , 𝑥𝑚)

Intuitively,

𝑋2,… ,𝑋𝑚 indirectly influence the estimate of 𝜃1 through the
hyperprior, by teaching us what values of 𝜃 are more plausible
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Examples where hierarchical Bayes maymake sense

• Model COVID reproduction number𝑅 for multiple countries

• SAT scores collected from five high schools in NC

• Mortality rate after heart attack across 10 hospital in NYC

Exercise:

Modelling batting average for players in Major League Baseball

• Shall we always pool the data from all batters?

• If we have batter data from college baseball, should we include
them?

• By pooling more data, what estimate is improved and what
estimate might deteriorate?
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Example: Gaussian hierarchical model

𝜏 ∼ 𝜆(𝜏) e.g. 1/𝜏2 ∼ Gamma(𝑘, 𝑠)
𝜃𝑖 ∣ 𝜏2 i.i.d.∼ 𝒩(0, 𝜏2)

𝑋𝑖 ∣ 𝜃𝑖, 𝜏2 indep∼ 𝒩(𝜃𝑖, 1)

Compute the posterior mean
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• What is the shrinkage factor?

• What is a good estimate of the shrinkage factor?

• Howmuch does the prior on 𝜏 matter? The prior on 𝜏 does not

matter much
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Empirical Bayes



Recall the situation in hierarchical Bayes:

• Prior on 𝜏 Always ask does the prior matter?

• Θ𝑖 ∣ 𝜏 Key part in hierarchical Bayes

• 𝑋𝑖 ∣ Θ𝑖, 𝜏
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Empirical Bayes as a hybrid approach

• Estimate 𝜉 based on all data, e.g. via MLE

• Plug in ̂𝜉 as if it is known
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Empirical Bayes applied to Gaussian mean estimation

Θ𝑖 ∼ 𝒩(0, 𝜏2)
𝑋𝑖 ∣ Θ𝑖 ∼ 𝒩(𝜃𝑖, 1), 𝑖 = 1,… ,𝑚

• Compute the posterior mean treating 𝜏 is known
• What would be a good estimate of 𝜏2?
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James-Stein estimator



James-Stein estimator as an empirical Bayes estimator

James and Stein proposed a slight different shrinkage factor𝑚 ≥ 3

𝛿JS,𝑖(𝑋) = (1 − 𝑚− 2
‖𝑋‖22

)𝑋𝑖

Interpretation
𝑚−2
‖𝑋‖22

is UMVU for 1
1+𝜏2
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Prop.

If 𝑌 ∼ Χ2
𝑑, 𝑑 ≥ 3, then

𝔼[ 1
𝑌 ] = 1

𝑑 − 2
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James-Stein “paradox”

JS estimator better than sample mean

In the non-Bayesian Gaussian sequence model, 𝑛 data points,
𝑋𝑖

i.i.d.∼ 𝒩(𝜃, 𝜎2𝕀𝑑), 𝜃 ∈ ℝ𝑑 (fixed), 𝜎2 > 0 (known), for 𝑑 ≥ 3, the
sample mean

�̄� = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

is inadmissible for estimating 𝜃 under squared error loss
The JS estimator

𝛿JS(𝑋) = ⎛⎜
⎝
1 − (𝑑 − 2)𝜎2/𝑛

∥�̄�∥22
⎞⎟
⎠

�̄�

has strictly lower risk uniformly
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Interpretation of the James-Stein paradox

• Could take 𝑛 = 1 by reasoning about sufficient statistics

• The result holds without assumption on the prior model on 𝜃
• There isn’t much speciality about 0: for any 𝜃0 ∈ ℝ, we can
introduce the estimator

𝛿′ = 𝜃0 +(1 − (𝑑 − 2)
‖𝑋‖22

)(𝑋 − 𝜃0)

• The current justification comes from empirical Bayes. But
shrinkage makes sense even without Bayes justification.
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Linear shrinkage

Gaussian sequence model𝑋𝑖
ind.∼ 𝒩(𝜃𝑖, 1), 𝜃 (fixed)

Let 𝛿𝑆(𝑋) = (1 − 𝑆)𝑋 for fixed 𝑆.

• Derive the optimal 𝑆 for the risk under squared error loss

• Give an estimate of the optimal 𝑆∗
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Stein’s lemma

Useful tool for computing risk in Gaussian estimation problems.

Stein’s Lemma, univariate, Lem 11.1 in Keener

Suppose𝑋 ∼ 𝒩(𝜃, 𝜎2), ℎ ∶ ℝ → ℝ, differentiable, 𝔼 ∣ℎ̇(𝑋)∣ < ∞,
then

𝔼[(𝑋 − 𝜃)ℎ(𝑋)] = 𝜎2𝔼[ℎ̇(𝑋)]
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proof idea: write down the intergrals for 𝜃 = 0,𝜎2 = 1 first
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Multivariate Stein’s lemma

Multivariate Stein’s Lemma, Thm 11.3 in Keener

Suppose𝑋 ∼ 𝒩(𝜃, 𝜎2𝕀𝑑), 𝜃 ∈ ℝ𝑑, ℎ ∶ ℝ𝑑 → ℝ𝑑, differentiable,
𝔼 ‖𝐷ℎ(𝑋)‖𝐹 < ∞.

𝔼 [(𝑋 − 𝜃)⊤ℎ(𝑋)] = 𝜎2
𝑑

∑
𝑖=1

𝔼𝜕ℎ𝑖
𝜕𝑥𝑖

(𝑋)
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Stein’s unbiased risk estimator (SURE)

We can use Stein’s lemma to get unbiased estimator of the risk
under squared error loss for any 𝛿(𝑋), apply with
ℎ(𝑋) = 𝑋 − 𝛿(𝑋).

𝑅(𝜃, 𝛿) = 𝔼𝜃 [‖𝑋 − 𝜃 − ℎ(𝑋)‖22]
= 𝔼𝜃 ‖𝑋 − 𝜃‖22 + 𝔼𝜃 ‖ℎ(𝑋)‖22 − 2𝔼𝜃 [(𝑋 − 𝜃)⊤ℎ(𝑋)]
= 𝑑 + 𝔼𝜃 ‖ℎ(𝑋)‖22 − 2𝔼𝜃 Tr(𝐷ℎ(𝑋))

We get an unbiased estimator for the risk

�̂�(𝑋) = 𝑑 + ‖ℎ(𝑋)‖22 − 2Tr(𝐷ℎ(𝑋))
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Calculate the risk of James-Stein

proof idea: apply SURE
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Other notes on JS

• 𝛿JS is also inadmissible

𝛿JS+(𝑋) = (1 − 𝑑 − 2
‖𝑋‖2

)
+
𝑋

is strictly better

• There is a better version called positive-part James–Stein
estimator

• But the positive-part James–Stein estimator is also
inadmissible, although not much improvement can be made,
read around Chap 5.5 in Lehmann and Casella.
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Summary

• Hierarchical Bayes is good for poolingmultiple similar datasets

• Empirical Bayes is similar to Hierarchical Bayes if the
hyperprior is not important

• Empirical Bayes gives the James-Stein estimator, which makes
the sample mean inadmissible

• Think about shrinkage
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What is next?

• Minimax optimality
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Thank you for attending
See you on Wednesday in Old

Chem 025
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