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The following material was used by Yue Jiang during a live lecture.

Without the accompanying oral comments, the text is incomplete as a record of the presentation.
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Why care about linear models?
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Review: vector operations

Let x be a k-vector (this is to say, with dimensions k × 1):

x =


x1
x2
...
xk


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Review: vector operations

Suppose we have some function of x, f (x). Then the gradient ∇f
(with respect to x) is the k-vector of partial derivatives:

∇x f =


∂f
∂x1
∂f
∂x2
...
∂f
∂xk


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Review: vector operations

Similarly, the Hessian ∇2f is the k × k matrix of second partial
derivatives:

∇2
x f =


∂2f
∂x21

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xk

∂2f
∂x2∂x1

∂2f
∂x22

· · · ∂2f
∂x2∂xk

...
...

. . .
...

∂2f
∂xk∂x1

∂2f
∂xk∂x2

· · · ∂2f
∂x2n


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Review: vector operations

The gradient has some convenient properties. For instance,
suppose we wish to differentiate the linear form xTz, where z is
also a k-vector (and not a function of x):

xTz =
[
x1 · · · xk

] z1...
zk

 = x1z1 + · · ·+ xkzk

Then the gradient with respect to x is

∇xTz =


∂xT z
∂x1
...

∂xT z
∂xk

 =


∂
∂x1

(x1z1 + · · ·+ xkzk)
...

∂
∂xk

(x1z1 + · · ·+ xkzk)

 =

z1...
zk

 = z
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Review: vector operations

Similarly, if A is a k × k matrix that is not a function of x, then the
gradient of the quadratic form xTAx (again, with respect to x) is

∇
(
xTAx

)
=
(
A + AT

)
X,

which is 2Ax if A is symmetric.
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The linear model in matrix form

We have n observations of a response variable Y and each
predictor X1, X2, · · · , Xp. As well, each observation has some
unobserved error ε (which may have certain properties, which we’ll
talk about later this semester).

We wish to fit the model

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε
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The linear model in matrix form

y1...
yn


︸ ︷︷ ︸

y

=

1 x11 · · · x1p
...

...
. . .

...
1 xn1 · · · xnp


︸ ︷︷ ︸

X


β0
β1
...
βp


︸ ︷︷ ︸

β

+

ε1...
εn


︸ ︷︷ ︸

ε

I What are the dimensions of each of the pieces above?
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The mean squared error

Note the error term, ε; suppose we are interested in the mean
squared error (MSE), given by

1

n
εTε

I What is the dimension of the MSE?

I How would you express the MSE in terms of y, X, and β?
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Minimizing the mean squared error

1

n
εTε =

1

n
(y − Xβ)T (y − Xβ)

=
1

n

(
yT − βTXT

)
(y − Xβ)

=
1

n

(
yTy − 2βTXTy + βTXTXβ

)
Suppose we wanted to minimize the MSE with respect to β.

I What is the gradient of the MSE with respect to β?
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The mean squared error

∇β
1

n
εTε =

1

n

(
∇yTy − 2∇βTXTy +∇βTXTXβ

)

=
1

n

(
0− 2XTy + 2XTXβ

)
∝ XTXβ − XTy

If a solution β̂ exists, it occurs when this quantity is zero:

0
set
= XTXβ̂ − XTy

I What is the (candidate) solution?
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Minimizing the mean squared error

0
set
= XTXβ̂ − XTy

XTy = XTXβ̂(
XTX

)−1
XTy = β̂

I Is this proposed solution a minimum?
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The ordinary least squares estimate

∇β
(
XTXβ − XTy

)
= XTX

If X has full column rank, then we have indeed found a minimizing
solution, since for any non-zero z zT

(
XTX

)
z > 0 (that is, the

Hessian is positive definite). In fact, this is the unique global
solution.
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Fitted values

Suppose we use our OLS estimates β̂ to try and predict y from X:
ŷ = Xβ̂. This gives us a vector of fitted values:

ŷ = Xβ̂

= X
(
XTX

)−1
XT︸ ︷︷ ︸

H

y

where H is known as the ”hat matrix” (it puts the hat on the y).
Note that this is only a function of X, NOT of y. From this
matrix, we can see how our predictions change as X varies.
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Residuals

The difference between the observed outcome y and the predicted
outcome ŷ is known as the residual:

e = y − ŷ

= y − Xβ̂

We can equivalently use the hat matrix here:

e = (I−H)y
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Homework 1: Due Jan. 24

1. Show that ∇
(
xTAx

)
= 2Ax for a k-vector x and symmetric

k × k matrix A.

2. Show that H and I−H are symmetric (i.e., HT = H, etc.)
and idempotent (i.e., H2 = H, etc.).

3. Instead of the MSE, suppose we wanted to minimize the
following function with respect to β, for some scalar λ > 0
(assuming full rank X):

(y − Xβ)T (y − Xβ) + λβTβ.

Is there an analytical solution to this objective function? If so,
provide the solution and demonstrate that it indeed minimizes
the objective function. Otherwise, explain why not.
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Some housekeeping
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