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The following material was used by Yue Jiang during a live lecture.

Without the accompanying oral comments, the text is incomplete as a record of the presentation.
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An important disclaimer

This is not a mathematical statistics class. There are
semester-long (and multiple semester-long) courses on these
topics, and so what we cover in just two lectures scarcely touches
on even the basics.

However, familiarity with some of these concepts are needed to
more fully grasp generalized linear models, especially since the
definition of a GLM directly depends on distributions in the
exponential family. As such, we will be presenting a very abridged
treatment of some of the fundamentals needed to proceed.
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The exponential family

The exponential family of probability distributions are those that
can be expressed in a specific form. Suppose X is a random
variable with a distribution that depends on (a) parameter(s) θ. A
random variable is said to belong to the exponential family if it can
be expressed as:

f (x |θ) = h(x) exp
(
η(θ)TT (x)− ψ(θ)

)
,
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The exponential family

f (x |θ) = h(x) exp
(
η(θ)TT (x)− ψ(θ)

)
,

Note in the exponent the η(θ)TT (x) term, which represents the
summation

∑k
i=1 ηi (θ)Ti (x).

In this expression, each ηi (θ) and ψ(θ) are real-valued functions of
the parameter(s) θ, and each Ti (x) and h(x) are real-valued
functions of the data.

If we have just a single parameter θ in the expression above, then
we have a member of a one-parameter exponential family
distribution, expressible as

f (x |θ) = h(x) exp (η(θ)T (x)− ψ(θ)) .
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The exponential family

For simplicity’s sake, for now let’s consider one-parameter
exponential family distributions:

f (x |θ) = h(x) exp (η(θ)T (x)− ψ(θ)) .
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The binomial distribution

Suppose X ∼ Bin(n, p) where n is assumed known and we have a
single parameter 0 < p < 1.

I What is the probability mass function f (x |p) corresponding to
X? (there’s a technicality here that you probably haven’t had
to bother with before)

I Is X a member of the one-parameter exponential family?

I If yes, identify the components η(p), ψ(p), T (x), and h(x). If
not, explain why not
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The binomial distribution
Suppose X ∼ Bin(n, p) where n is assumed known and we have a
single parameter 0 < p < 1. Then the probability P(X = x) is
given by:

f (x |p) =

(
n

x

)
px(1− p)n−x1(x∈{0,1,··· ,n})

=

(
n

x

)(
p

1− p

)x

(1− p)n1(x∈{0,1,··· ,n})

=

(
n

x

)
exp

{
x log

(
p

1− p

)
+ n log(1− p)

}
1(x∈{0,1,··· ,n})

I Is X a member of the one-parameter exponential family?

I If yes, identify the components η(p), ψ(p), T (x), and h(x). If
not, explain why not
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The binomial distribution
Suppose X ∼ Bin(n, p) where n is assumed known and we have a
single parameter 0 < p < 1. Then the probability P(X = x) is
given by:

f (x |p) =

(
n

x

)
exp

{
x log

(
p

1− p

)
+ n log(1− p)

}
1(x∈{0,1,··· ,n})

Yes, this is a member of the one-parameter exponential family, with

η(p) = log

(
p

1− p

)
T (x) = x

ψ(p) = −n log(1− p)

h(x) =

(
n

x

)
1(x∈{0,1,··· ,n})
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The binomial distribution

Suppose X ∼ Bin(n, p) where n is assumed known and we have a
single parameter 0 < p < 1. Then the probability P(X = x) is
given by:

f (x |p) =

(
n

x

)
px(1− p)n−x1(x∈{0,1,··· ,n})

The sufficient statistic is T (x) = x . A sufficient statistic is a
statistic that provides “all the information about θ” that the entire
sample could have provided (more on this when we see an
example).

I What does this mean intuitively, specifically in the context of
this binomial distribution?
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More on sufficiency
Suppose X ∼ Bin(n, p) where n is assumed known and we have a
single parameter 0 < p < 1. Then the probability P(X = x) is
given by:

f (x |p) =

(
n

x

)
px(1− p)n−x1(x∈{0,1,··· ,n})

Keep in mind that sufficient statistics must be functions of the
data only, not the parameter itself (even though the distribution of
X might depend on the parameter).

Intuitively, sufficiency suggests that since T (x) contains all the
information about θ, all we need for inference regarding θ is given
by T (x) (and thus we don’t actually need all of the X themselves -
just the T (x)).
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More on sufficiency

Suppose X ∼ Bin(n, p) where n is assumed known and we have a
single parameter 0 < p < 1. Then the probability P(X = x) is
given by:

f (x |p) =

(
n

x

)
px(1− p)n−x1(x∈{0,1,··· ,n})

T (x) = x is sufficient for p; all we need to know from the data in
order to make inference on p is the number of successes
themselves, x , not which specific observations were successes or
failures.
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The normal distribution

Suppose X ∼ N(µ, σ2). Then the parameter is θ = (µ, σ)

I What is the dimension of θ?

I What is the probability density function f (x |θ)? Again, watch
out for the support of X

I Is X a member of the exponential family? If yes, identify the
components ηi (θ), ψ(θ), Ti (x), and h(x). If not, explain why
not
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The normal distribution

Suppose X ∼ N(µ, σ2). Then the parameter is θ = (µ, σ).

f (x |µ, σ) =
1√

2πσ2
exp

{
−(x − µ)2

2σ2

}
1x∈R

=
1√
2π

exp

{
− x2

2σ2
+

xµ

σ2
− µ2

2σ2
− log(σ)

}
1x∈R

I Is X a member of the exponential family? If yes, identify the
components ηi (θ), ψ(θ), Ti (x), and h(x). If not, explain why
not
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The normal distribution
Suppose X ∼ N(µ, σ2). Then the parameter is θ = (µ, σ).

f (x |µ, σ) =
1√
2π

exp

{
− x2

2σ2
+

xµ

σ
− µ2

2σ2
− log(σ2)

}
1x∈R

Yes, this is a member of the two-parameter exponential family, with

η1(θ) = − 1

2σ2
; η2(θ) =

µ

σ2

T1(x) = x2;T2(x) = x

ψ(θ) =
µ2

2σ2
+ log(σ)

h(x) =
1√
2π

1x∈R
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i.i.d. sampling

Suppose we have n i.i.d. samples from the same distribution that is
in the exponential family. Then the joint density of these sample is:

f (x|θ) =
n∏

i=1

h(xi ) exp
{
η(θ)TT (xi )− ψ(θ)

}
=

(
n∏

i=1

h(xi )

)
exp

{
η(θ)T

n∑
i=1

T (xi )− nψ(θ)

}

I What important fact do you notice above?
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The normal distribution

Suppose X ∼ N(µ, σ2). Then the parameter is θ = (µ, σ).

η1(θ) = − 1

2σ2
; η2(θ) =

µ

σ2

T1(x) = x2;T2(x) = x

ψ(θ) =
µ2

2σ2
+ log(σ2)

h(x) =
1√
2π

1x∈R

We see that for an i.i.d. sample from a normal distribution with
mean µ and variance σ2,

(∑n
i=1 x

2
i ,
∑n

i=1 xi
)

are sufficient for the
parameters ( µ, σ2).

I What does this mean in plain English?
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Canonical form

f (x |θ) = h(x) exp
(
η(θ)TT (x)− ψ(θ)

)
,

Notice that η and ψ are both functions of θ.

For an invertible function η(), suppose we define the variable
η = η(θ) such that θ = η−1(η) (sorry for using η as both the
function and the variable).
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Canonical form

We can thus re-write the exponential family in its canonical form
using the η (the canonical parameters):

f (x |θ) = h(x) exp
(
η(θ)TT (x)− ψ(θ)

)
f (x |η) = h(x) exp

(
ηTT (x)− ψ(η−1(θ))

)
Notice that here, the canonical parameter(s) are directly multiplied
with the sufficient statistic(s), and the ψ() function is composed
with η−1() as it acts on the (untransformed) parameters θ.
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The binomial distribution (again)

Suppose X ∼ Bin(n, p) where n is assumed known and we have a
single parameter 0 < p < 1. Then the probability P(X = x) is in
the exponential family with:

f (x |p) =

(
n

x

)
exp

{
x log

(
p

1− p

)
+ n log(1− p)

}
1(x∈{0,1,··· ,n})

Taking η = log
(

p
1−p

)
, then we have 1− p = 1

1+eη , and so in

canonical form, the binomial distribution is expressed as

f (x |p) =

(
n

x

)
exp {ηx − n log(1 + eη)} 1(x∈{0,1,··· ,n})
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Canonical form

f (x |p) =

(
n

x

)
exp {ηx − n log(1 + eη)} 1(x∈{0,1,··· ,n})

In canonical form, we have

η =
p

1− p

T (x) = x

A(η) = n log(1 + eη)

h(x) =

(
n

x

)
1(x∈{0,1,··· ,n})
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The log-partition function
This function composition ψ(η−1(θ) is known as the log-partition
function (let’s give it a new name, A(η), in terms of the canonical
parameters).

We can use this function to easily calculate the mean and variance
of distributions in the exponential family by differentiating the
log-partition (often a lot easier than performing messy integration):

∂A

∂ηi
= E (Ti (x))

∂2A

∂ηi∂ηj
= Cov(Ti (x),Tj(x))

The first and second derivatives of A(η) are the mean and
variances of the sufficient statistic, respectively.
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The log-partition function

Remember, in canonical form the binomial distribution had

log-partition A(η) = n log(1 + eη), where η = log
(

p
1−p

)
, and

sufficient statistic T (x).

E (T (x)) = E (x) =
∂A

∂η
= n

eη

1 + eη

= np

Var(T (x)) = Var(x) =
∂2A

∂η2
= n

eη

(1 + eη)2

= np(1− p)

The mean and variance of the binomial distribution.
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Maximum likelihood estimation

Suppose we have n i.i.d. samples from the same distribution that
is in the exponential family (let’s say canonical form). Then the
joint density of these sample is:

f (x|η) =

(
n∏

i=1

h(xi )

)
exp

{
ηT

n∑
i=1

T (xi )− nA(η)

}

I What important fact do you notice above?
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Maximum likelihood estimation

The product of exponential family distributions is also in the
exponential family (with sufficient statistic

∑n
i=1 T (xi ))

So, for instance, the sufficient statistic for the joint distribution of
n i.i.d. binomial random variables is

∑n
i=1 xi . All we need for

inference on the parameter p from the n observations is the sum of
the xi s.
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Maximum likelihood estimation

f (x|η) =

(
n∏

i=1

h(xi )

)
exp

{
ηT

n∑
i=1

T (xi )− nA(η)

}

logL(η|x) = log

(
n∏

i=1

h(xi )

)
+ ηT

n∑
i=1

T (xi )− nA(η)

∇η logL =
n∑

i=1

T (xi )− n∇ηA(η).

Setting the last line equal to zero suggests the MLE for the mean
parameter of an exponential family distribution is simply a method
of moments estimator:

E (T (x)) = ∇ηA(η̂) =
1

n

n∑
i=1

T (xi )
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Random closing comments

We just saw a nice property of the exponential family - that the
expectation of sufficient statistics for the model are the empirical
average of the sufficient statistics, and furthermore that this is the
MLE.

This is just one of the many nice properties of exponential family
distributions. A random aside for when you see these again -
exponential family distributions have all sorts of nice properties
that we don’t have time to cover (e.g., existence of conjugate
priors, connection to estimation theory, guaranteed log-concave
likelihoods, etc.). You’ll cover these in later classes!
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Homework

1. Consider a uniform distribution on (0, θ) (that is, f (x) = 1/θ
if x ∈ (0, θ)). Is this a member of the exponential family? If
so, identify the components in canonical form and use the
log-partition function to calculate the MLE for θ from an i.i.d.
sample. If not, explain why not.

2. Consider a normal distribution N(µ, µ) for µ > 0 (that is,
where the variance equals the mean). Is this a member of the
exponential family? If so, identify the components in the
canonical form and use the log-partition function to calculate
the MLE for µ from an i.i.d. sample. If not, explain why not.

3. Consider a distribution f (x |λ) = λ
x1+λ for λ > 0 and x > 1. Is

this a member of the exponential family? If so, identify the
components in the canonical form and use the log-partition
function to calculate the MLE for λ from an i.i.d. sample. If
not, explain why not.
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