Generalized Linear Models (1)
STA 211: The Mathematics of Regression

Yue Jiang

April 4, 2023

The following material was used by Yue Jiang during a live lecture.

Without the accompanying oral comments, the text is incomplete as a record of the presentation.
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Review: The exponential family

The exponential family of probability distributions are those that
can be expressed in a specific form. Suppose X is a random
variable with a distribution that depends on (a) parameter(s) 6. A
random variable is said to belong to the exponential family if it can
be expressed as:

f(x18) = h(x)exp (1(8)T T(x) = ¥(6))
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The exponential family

f(x18) = h(x)exp (1(8)T T(x) — 1(6))

Note in the exponent the ()7 T(x) term, which represents the
summation Ef‘zl ni(0) Ti(x).

In this expression, each 7;(@) and (0) are real-valued functions of
the parameter(s) 6, and each T;(x) and h(x) are real-valued
functions of the data.

If we have just a single parameter # in the expression above, then
we have a member of a one-parameter exponential family
distribution, expressible as

F(x]0) = h(x) exp (n(0) T(x) — ¥(0)) -
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The exponential family

For simplicity's sake, for now let’s consider one-parameter
exponential family distributions:

F(x[0) = h(x) exp (n(0) T(x) — 1(0))-
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e
The binomial distribution

Suppose X ~ Bin(n, p) where n is assumed known and we have a
single parameter 0 < p < 1. Then the probability P(X = x) is
given by:

P (1 = P)" Lixeq0,1,,n})

p X
() (1= p)"L(xeq0,1,,n})

1-p

exp {x log <1_Pp> + nlog(1 — p)} L(xe{0,1,-,n})
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e
The binomial distribution

n
f(xlp) = <X> exp {x log <1'_)p) + nlog(1 — p)} L(xe{0,1,,n})

This is a member of the one-parameter exponential family, with
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Canonical form

f(x16) = h(x)exp (n(6) T T(x) - v(6))
Notice that 1 and ¢ are both functions of 6.
For an invertible function 7(-), suppose we define the variable

n = n(6) such that & = n~1(n) (sorry for using 1 as both the
function and the variable).
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Canonical form

We can thus re-write the exponential family in its canonical form
using the 1 (the canonical parameter(s)):

F(x16) = h(x) exp (n(6)T T(x) — (6))
F(xln) = h(x)exp (17 T(x) = (5~1(9)))

Notice that here, the canonical parameter(s) are directly multiplied
with the sufficient statistic(s), and the ¢(-) function is composed
with n71(+) as it acts on the (untransformed) parameter 6.
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-______________________________________________
The binomial distribution (again)

Suppose X ~ Bin(n, p) where n is assumed known and we have a
single parameter 0 < p < 1. Then the probability P(X = x) is in
the exponential family with:

n
f(x|p) = <x> exp {x log <1_pp> + nlog(1l — p)} L(xe{0,1,-,n})

Taking n = log <1Tpp)' then we have 1 — p = and so in

1
1+emn?
canonical form, the binomial distribution is expressed as

n
7(x1e) = () exp U~ nog(t + &)} Lsegon.
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Canonical form

n
F(xle) = () exp {rx — nog(d + &)} Lo

In canonical form, we have
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Generalized linear models

A generalized linear model has three components:

1. An outcome Y that follows a distribution from the
exponential family*

2. The linear predictor X3

3. Alink function g that links the conditional expectation of Y
with the linear predictor:

E(Y|X) =g {(XB)
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Dispersion parameters

We often incorporate a dispersion parameter when thinking of
the exponential family distributions in GLMs:

F(x]0) = h(x) exp (n(0) T(x) — ¥(0)) -

The dispersion parameter often gets at notions of “variance” - we
now essentially have a two-parameter exponential family (with 6
“corresponding” to some notion of mean, and ¢ for variance)

n(0)T(x) - ¢(9)>
c(¢) '

F(x16,6) = h(x, &) exp (
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Generalized linear models

Generalized linear models:
E(Y|X) =g H(XB)

Keep in mind that for exponential distributions in canonical form,
the parameter relates to the sufficient statistic through the identity
function. Furthermore, the mean can be found by differentiating
the log-partition with respect to the canonical parameter.
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e
The link function

Generalized linear models:

E(Y|X) =g~ (XB)

The link function relates the linear predictor to the conditional
expectation of the response (the “mean” - how convenient!).

There are any number of link functions that might be used. One
important link function in particular is the canonical link function
which directly relates the canonical parameter to the linear
predictor.
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Binary regression
Let's formulate binary regression as a generalized linear model:

1. The outcome Y follows a Bernoulli distribution (this is in the
exponential family - just a binomial with fixed n = 1)

2. We'll assume the functional form of the predictors is a linear
combination

3. We'll use a link function g to specifically relate the
conditional mean of Y with the predictors

E(Y|X) =g '(XB)

» What might be some candidates for g(-) (it must be
invertible; we generally like smooth, monotonic functions)?
> What properties or interpretations might different choices of

g(-) provide us?
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Canonical form

f(ylp) = exp{ny — nlog(1+ ")} L(yef01})

In canonical form, we have

T) =y
A(n) = nlog(1 + ")
h(y) = Lyefoay)

Note that p = E(Y) for a Bernoulli distributed Y.
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Canonical link function
For an inverse logit link function

_ exp(XB3)
g '(XB) = T+ exp(X8)
We have
E(Y|X) =g 1(XB)
_ exp(XB)

T T eexa)

E(Y[X) \ _

o (o) =X

which is exactly the logistic regression model. Note the form of the
link function, which is the canonical parameter of the Bernoulli
distribution.
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Logistic regression

1. The outcome Y follows a Bernoulli distribution (this is in the
exponential family - just a binomial with fixed n = 1)

2. We'll assume the functional form of the predictors is a linear
combination

3. We use the canonical link function logit(-) to link the
conditional mean of Y with the predictors

g(E(Y[XB)) = XB

(e =2
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Probit regression

1. The outcome Y follows a Bernoulli distribution (this is in the
exponential family - just a binomial with fixed n = 1)

2. We'll assume the functional form of the predictors is a linear
combination

3. We can use the non-canonical link function ®~1 (inverse of
the normal cdf) to link the conditional mean of Y with the
predictors

g(E(Y|XB)) = X3
o H(E(Y[XB)) = X3

STA 211: The Mathematics of Regression Department of Statistical Science, Duke University

Lecture 10 Slide 19



________________________________________________________
A linear probability model

1. The outcome Y follows a Bernoulli distribution (this is in the
exponential family - just a binomial with fixed n = 1)

2. We'll assume the functional form of the predictors is a linear
combination

3. We can use the non-canonical identity link function to link the
conditional mean of Y with the predictors

g(E(Y[XB)) = Xp
E(Y[XB) = Xp
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Why canonical link functions?

Honestly, often just computational convenience.

For instance, the sufficient statistic under canonical link is XY
We also get nice properties inherited from exponential families
under canonical link (such as easily finding MLEs). Various
computational algorithms also coincide (e.g., Newton-Raphson and
Fisher Scoring are equivalent - we'll talk about this next time).

But there are also reasons for using non-canonical links (even some
computational)! For instance, you might want the interpretation
associated with a non-canonical link, or have a specific
computational reason (e.g., Bayesian logistic regression and Gibbs
samplers with probit link on normally-distributed priors).
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-______________________________________________
Homework (page 1 of 2)

1. Consider the linear regression model under the normality
assumption (and constant variance). Is this a GLM? If so,
identify the three components needed and specifically identify
whether the link function is canonical. If not, explain why not.

2. Suppose we're trying to model the number of cancer cases per
month (Y) in a city, conditionally on various demographic and
exposure factors. Consider the log-linear regression model
log(E(Y|X)) = X3, where Y takes on a Poisson distribution
with parameter . Is this a GLM? If so, identify the three
components needed (including specifics regarding the
exponential family) and specifically identify whether the link
function is canonical. If not, explain why not.
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-______________________________________________
Homework (page 2 of 2)

3 Suppose we're trying to model the waiting time until the next
bus arrives (Y'), conditionally on weather conditions and
traffic. Consider the log-linear regression model
log(E(Y|X)) = X3, where Y takes on an Exponential
distribution with parameter \. Is this a GLM? If so, identify
the three components needed (including specifics regarding
the exponential family) and specifically identify whether the
link function is canonical. If not, explain why not.

STA 211: The Mathematics of Regression Department of Statistical Science, Duke University

Lecture 10 Slide 23



