
Generalized Linear Models (2)
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April 11, 2023

The following material was used by Yue Jiang during a live lecture.

Without the accompanying oral comments, the text is incomplete as a record of the presentation.
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Bike crashes

We have data that represented the number of bike crashes per year
for each North Carolina county. For instance:

I Alexander: 1

I Alleghany: 1

I Anson: 7

I Ashe: 4

I etc.

Suppose we thought these crashes came from a Poisson
distribution with parameter λ: fY (y) = λy exp(−λ)

y ! .

I How might you estimate the parameter of this Poisson
distribution, given our observed data?
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Review: Maximum likelihood estimation

We can maximize the likelihood function. Assuming the
observations are i.i.d., in general we have:

L(λ|Y ) = f (y1, y2, · · · , yn|λ)

= f (y1|λ)f (y2|λ) · · · f (yn|λ)

=
n∏

i=1

f (yi |λ).

The likelihood function is the probability of ”seeing our observed
data,” given a value of λ. Remember, do not get f (yi |λ) confused
with f (λ|yi )!

I If Y1,Y2, · · · ,Yn are each i.i.d. distributed with Pois(λ), then
what is the MLE of λ?
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Review: Maximum likelihood estimation

L(λ|Y ) =
n∏

i=1

f (yi |λ)

=
n∏

i=1

λyi e
−λ

yi !

logL(λ|Y ) =
n∑

i=1

(yi log λ− λ− log yi !)

= log λ
n∑

i=1

yi − nλ−
n∑

i=1

log yi !
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Review: Maximum likelihood estimation
Setting the score function equal to 0:

∂

∂λ
logL(λ|Y ) =

1

λ

n∑
i=1

yi − n
set
= 0

=⇒ λ̂ =
1

n

n∑
i=1

yi ,

as expected. Next, let’s verify that λ̂ is indeed a maximum:

∂2

∂λ2
logL(λ|Y ) = − 1

λ2

n∑
i=1

yi − n

< 0.
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Can we do better?

We might expect that more populous, more urban counties might
have more crashes. There might also be a relationship with traffic
volume.

I Can we incorporate this additional information while
accounting for potential confounding?
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Poisson regression

log(E (Y |X︸ ︷︷ ︸
λ

)) = XTβ

Generalized linear model often used for count (or rate) data,
assuming outcome has Poisson distribution and using log link

I Can we differentiate the (log) likelihood function, set it equal
to zero, and solve for the MLEs for β = (β0, β1, · · · , βp) as
before?
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Poisson regression

logL =
n∑

i=1

(yi log λ− λ− log yi !)

=
n∑

i=1

yiXiβ − eXiβ − log yi !

We would like to solve the equations

(
∂ logL
∂βj

)
set
= 0,

but there is no closed-form solution, as this is a transcendental
equation in the parameters of interest.

I How might we solve these equations numerically?
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A one-dimensional problem

Suppose you’re trying to find the maximum of the following
function:

f (x) =
x + log(x)

2x

Let’s try differentiating, setting equal to 0, and solving:

d

dx
f (x) = 2−x

(
1 +

1

x
− log(2)(x + log(x))

)
.

We run into a similar problem: we cannot algebraically solve for
the root of this equation.
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A one-dimensional problem

I It looks like the maximum is a bit shy of 2 (trust me on this
one, it’s a global maximum). How might we find where it is?
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A one-dimensional problem

I It looks like the maximum is a bit shy of 2 (trust me on this
one, it’s a global maximum). How might we find where it is?
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A one-dimensional problem

Newton-Raphson algorithm for root finding is based on
second-order Taylor approximation around true root:

1. Start with initial guess θ(0)

2. Iterate θ(t+1) = θ(t) − f ′(θ(t))
f ′′(θ(t))

3. Stop when convergence criterion is satisfied

Although it requires explicit forms of first two derivatives, the
convergence speed is quite fast.
There are some necessary conditions for convergence, but this is
beyond the scope of STA 211. Many likelihood functions you are
likely to encounter (e.g., GLMs with canonical link) will in fact
converge from any starting value.
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A one-dimensional problem

I It looks like the maximum is a bit shy of 2 (trust me on this
one, it’s a global maximum). How might we find where it is?
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A one-dimensional problem

f (x) =
x + log(x)

2x

d

dx
f (x) = 2−x

(
1 +

1

x
− log(2)(x + log(x))

)
.
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Newton-Raphson in higher dimensions

Score vector and Hessian for logL(θ|X) with θ = (θ1, · · · , θp)T :

∇ logL =


∂ logL
∂θ1

...
∂ logL
∂θp



∇2 logL =


∂2 logL
∂θ21

∂2 logL
∂θ1θ2

· · · ∂2 logL
∂θ1θp

∂2 logL
∂θ2θ1

∂2 logL
∂θ22

· · · ∂2 logL
∂θ2θp

...
...

. . .
...

∂2 logL
∂θpθ1

∂2 logL
∂θpθ2

· · · ∂2 logL
∂θ2p


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Newton-Raphson in higher dimensions

We can modify the Newton-Raphson algorithm for higher
dimensions:

1. Start with initial guess θ(0)

2. Iterate

θ(t+1) = θ(t) −
(
∇2 logL(θ(t)|X)

)−1 (
∇ logL(θ(t)|X)

)
3. Stop when convergence criterion is satisfied

Under certain conditions, a global maximum exists; this again is
guaranteed for many common applications.
Computing the Hessian can be computationally demanding (and
annoying), but there are ways around it in practice.
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Poisson regression

logL =
n∑

i=1

yiXiβ − eXiβ − log yi !

I What are the score vector and Hessian corresponding to the
Poisson regression log-likelihood? What would the
Newton-Raphson update steps be?
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Newton-Raphson in higher dimensions

logL =
n∑

i=1

yiXiβ − eXiβ − log yi !

∇ logL =
n∑

i=1

(
yi − eXiβ

)
XT

i

∇2 logL = −
n∑

i=1

eXiβXiX
T
i

Newton-Raphson update steps for Poisson regression:

β(t+1) = β(t) −

(
−

n∑
i=1

eXiβXiX
T
i

)−1( n∑
i=1

(
yi − eXiβ

)
XT

i

)
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Newton-Raphson in higher dimensions

Newton-Raphson update steps for Poisson regression:

β(t+1) = β(t) −

(
−

n∑
i=1

eXiβXiX
T
i

)−1( n∑
i=1

(
yi − eXiβ

)
XT

i

)
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Some R code

d1func <- function(beta, X, y){

d1 <- rep(0, length(beta))

for(i in 1:length(y)){

d1 <- d1 + (y[i] - exp(X[i,] %*% beta)) %*% X[i,]

}

return(colSums(d1))

}
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Some R code

d2func <- function(beta, X, y){

d2 <- matrix(0, nrow = length(beta), ncol = length(beta))

for(i in 1:length(y)){

d2 <- d2 - t((exp(X[i,] %*% beta)) %*% X[i,]) %*% (X[i,])

}

return(d2)

}
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Some R code

beta <- c(mean(log(y)), 0, 0)

X <- cbind(1, x_1, x_2)

y <- y

iter <- 1

delta <- 1

temp <- matrix(0, nrow = 500, ncol = 3)
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Some R code

while(delta > 0.000001 & iter < 500){

old <- beta

beta <- old - solve(d2func(beta = beta, X = X, y = y)) %*%

d1func(beta = beta, X = X, y = y)

temp[iter,] <- beta

delta <- sqrt(sum((beta - old)^2))

iter <- iter + 1

}
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Homework (Due April 18) - part 1 of 2

1. Derive the score and Hessian functions of the log-likelihood
for a logistic regression model (i.e., binary regression under
canonical link).

2. The file bikecrash agg.csv on Sakai/Resources contains
yearly fatal bike crash data for each of North Carolina’s 100
counties in 2017. Implement a Poisson regression model “by
hand” (i.e., without using glm()) that predicts the number of
fatal bike crashes based on pop (population) and
traffic vol (traffic volume), and also be sure to include an
intercept term by adapting the code from lecture (you might
have to copy/paste to get to the stuff that’s off-screen).
Verify that your estimates match what you get from using
glm() (hint: it should).
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Homework (Due April 18) - part 1 of 2

3 Implement a logistic regression model “by hand” (i.e.,
without using glm()) that predicts whether there are more
than 50 fatal bike crashes per 100,000 residents based on pop

and traffic vol, and also be sure to include an intercept
term. Note that 45 counties should satisfy this criterion.
Verify that your estimates match what you get from using
glm() (hint: it should).

Important note: Ex. 1 and Ex. 2 are worth 13 of 15 total points
on this assignment; Ex. 3 is worth only 2 points.
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