
Generalized Linear Models (3)
STA 211: The Mathematics of Regression

Yue Jiang

April 18, 2023

The following material was used by Yue Jiang during a live lecture.

Without the accompanying oral comments, the text is incomplete as a record of the presentation.
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Review: GLMs

A generalized linear model has three components:

1. An outcome Y that follows a distribution from the
exponential family?

2. The linear predictor Xβ

3. A link function g that links the conditional expectation of Y
with the linear predictor:

E (Y |X) = g−1(Xβ)
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Review: Poisson regression

log(E (Y |X︸ ︷︷ ︸
λ

)) = XTβ

Generalized linear model often used for count (or rate) data,
assuming outcome has Poisson distribution and using log link
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Poisson regression

logL =
n∑

i=1

(yi log λ− λ− log yi !)

=
n∑

i=1

yiXiβ − eXiβ − log yi !

We would like to solve the equations

(
∂ logL
∂βj

)
set
= 0,
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Newton-Raphson in higher dimensions

Score vector and Hessian for logL(θ|X) with θ = (θ1, · · · , θp)T :

∇ logL =


∂ logL
∂θ1

...
∂ logL
∂θp



∇2 logL =


∂2 logL
∂θ21

∂2 logL
∂θ1θ2

· · · ∂2 logL
∂θ1θp

∂2 logL
∂θ2θ1

∂2 logL
∂θ22

· · · ∂2 logL
∂θ2θp

...
...

. . .
...

∂2 logL
∂θpθ1

∂2 logL
∂θpθ2

· · · ∂2 logL
∂θ2p


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Newton-Raphson in higher dimensions

1. Start with initial guess θ(0)

2. Iterate

θ(t+1) = θ(t) −
(
∇2 logL(θ(t)|X)

)−1 (
∇ logL(θ(t)|X)

)
3. Stop when convergence criterion is satisfied

Under certain conditions, a global maximum exists; this again is
guaranteed for many common applications.

Computing the Hessian can be computationally demanding (and
annoying), but there are ways around it in practice.
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Poisson regression

logL =
n∑

i=1

yiXiβ − eXiβ − log yi !

∇ logL =
n∑

i=1

(
yi − eXiβ

)
XT

i

∇2 logL = −
n∑

i=1

eXiβXiX
T
i

Newton-Raphson update steps for Poisson regression:

β(t+1) = β(t) −

(
−

n∑
i=1

eXiβ
(t)

XiX
T
i

)−1( n∑
i=1

(
yi − eXiβ

(t)
)
XT

i

)
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Back to bike crashes

m1 <- glm(crashes ~ traffic_vol + pct_rural,

data = bike, family = "poisson")

round(summary(m1)$coef, 6)

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 5.982181 0.053749 111.298625 0

## traffic_vol 0.001541 0.000166 9.262671 0

## pct_rural -0.044558 0.000875 -50.919036 0
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Back to bike crashes

while(delta > 0.000001 & iter < 500){

old <- beta

beta <- old - solve(d2func(beta = beta, X = X, y = y)) %*%

d1func(beta = beta, X = X, y = y)

temp[iter,] <- beta

delta <- sqrt(sum((beta - old)^2))

iter <- iter + 1

}
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Back to bike crashes

iter

## [1] 22

delta

## [1] 3.911961e-07

beta

## [,1]

## [1,] 5.98218054

## [2,] 0.00154064

## [3,] -0.04455809

m1$coefficients

## (Intercept) traffic_vol pct_rural

## 5.98218054 0.00154064 -0.04455809
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Back to bike crashes
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Two potential models

log (E (Y |X)) = β0 + β1(pop) + β2(traffic) + β3(rural)

log

(
E (Y |X)

pop

)
= β0 + β1(traffic) + β2(rural)

I What are the differences in the two models above?

I How is population being used, and how might it be
interpreted?
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Two potential models

log (E (Y |X)) = β0 + β1(pop) + β2(traffic) + β3(rural)

m2 <- glm(crashes ~ traffic_vol + pct_rural + pop,

data = bike, family = "poisson")

log

(
E (Y |X)

pop

)
= β0 + β1(traffic) + β2(rural)

m3 <- glm(crashes ~ traffic_vol + pct_rural,

offset = log(pop),

data = bike, family = "poisson")
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Two potential models

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 5.655725 0.054837 103.136325 0.000000

## traffic_vol -0.000093 0.000179 -0.518756 0.603931

## pct_rural -0.037761 0.000878 -43.015409 0.000000

## pop 0.000001 0.000000 30.215337 0.000000
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Two potential models

round(summary(m3)$coef, 6)

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -6.916803 0.054480 -126.961100 0.000000

## traffic_vol -0.000047 0.000171 -0.272118 0.785531

## pct_rural -0.010936 0.000857 -12.766690 0.000000

I Can we simply use bike$crashes/pop as our outcome
variable in the code we’ve already written?
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Comparing results

round(beta, 6)

## [,1]

## [1,] -6.810266

## [2,] 0.000314

## [3,] -0.011783

round(m3$coefficients, 6)

## (Intercept) traffic_vol pct_rural

## -6.916803 -0.000047 -0.010936
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Comparing results

m3_wrong <- glm(crashes/pop ~ traffic_vol + pct_rural,

data = bike, family = "poisson")

round(m3_wrong$coefficients, 6)

## (Intercept) traffic_vol pct_rural

## -6.810266 0.000314 -0.011783

STA 211: The Mathematics of Regression Department of Statistical Science, Duke University

Yue Jiang Lecture 13 Slide 17



The offset model

Denote the offset by ω. If we directly use crashes/pop in the
Poisson regression likelihood, we would have a log-likelihood along
the lines of

logL ∝
n∑

i=1

yi
ωi

Xiβ − eXiβ

I What do you think of this approach?
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The actual log-likelihood

The model with offset is given by:

log (E (Y |X)) = XTβ − logω

I What is the actual log-likelihood function to maximize here
(note, ω is also observed data)?

I What are the actual Newton-Raphson steps here?

I Can you write code that numerically implements this model?
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Last homework!

1. The last two questions on the previous slide. For the last
question (code), run your code on the dataset from last week
(this question will only be worth 2 points out of 10).

(I figured people might want more practice with this; originally this
lecture/homework was going to be about Fisher scoring and
iteratively-reweighted least squares, but we’ll cover those in our
last lecture next week instead).
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