The OLS Estimator (3)
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January 31, 2023

The following material was used by Yue Jiang during a live lecture.

Without the accompanying oral comments, the text is incomplete as a record of the presentation.
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Review: span and column space
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A set of vectors is linearly independent if no linear combination
(besides all zeroes) of the vectors equals the zero vector; that is, if
none of the vectors can be written as a linear combination of the
others (and non are the zero vector).
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Review: span and column space

A set of vectors is linearly independent if no linear combination
(besides all zeroes) of the vectors equals the zero vector; that is, if
none of the vectors can be written as a linear combination of the
others (and non are the zero vector).

The span of a set of vectors is the set of all possible linear
combinations of them (you may also recall that a linearly
independent set of vectors that spans a subspace forms a basis for
that subspace, but this is less relevant for today).

The column space of X is the span of the columns of X.

» What does the column space of X represent in plain English?
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A miscellaneous follow-up item...

Suppose we are trying to predict the amount of sleep a Duke
student gets based on whether they are in Pratt (vs. non-Pratt;
these are the only two options). Consider the following model:

Sleep; = Bo + B11(Pratt; =="Yes") + B21(Pratt; =="No")

In-class assignment (I originally intended for this to be homework,
but figured it'd be enlightening to go through in class!):

» Write out the design matrix for this hypothesized linear model.
» Demonstrate that the design matrix is not of full column rank

(that is, affirmatively provide one of the columns in terms of
the others).

> Use this intuition to explain why when we include categorical
predictors, we cannot include both indicators for every level of
the variable and an intercept.
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A geometric interpretation (see board)

The span of a single vector in R?
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A geometric interpretation (see board)

The span of two vectors in R3
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A geometric interpretation (see board)

y=X3

(X as a function being applied to 3)
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A geometric interpretation (see board)

y=X3

(X as a Salad (thanks Zi Chong Kao for the analogy))
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A geometric interpretation (see board)

y=X3

(X as "the space of all its possible outputs”)
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A geometric interpretation (see board)

Let's live in R3 for now (just for visualization purposes):

y = Boxo + P1x1, for instance with n = 3:
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» What might the column space of X look like? Where do the
vectors Xq (the vector of 1s) and x; fit in?

» Does y live in the column space of X?
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A geometric interpretation (see board)

» Uh oh, it looks like y doesn't live in C(X).

» Can we find another vector z that's in C(X), but is also " as
close as possible” to y?
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A geometric interpretation (see board)

» Uh oh, it looks like y doesn't live in C(X).

» Can we find another vector z that's in C(X), but is also " as
close as possible” to y?

» Why would this vector be expressible as z = Xw for some w?

» What's the "difference” between z and y (let's call it
e =y —z) (and how would we make this "as close as
possible,” which is to say, to minimize its length)? Have we
seen this thing before?
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A geometric interpretation (see board)

» Uh oh, it looks like y doesn't live in C(X).

» Can we find another vector z that's in C(X), but is also " as
close as possible” to y?

» Why would this vector be expressible as z = Xw for some w?

» What's the "difference” between z and y (let's call it
e =y —z) (and how would we make this "as close as
possible,” which is to say, to minimize its length)? Have we
seen this thing before?

» This is called the projection of y onto C(X). What would this
vector z look like, geometrically?

» How would we choose a z that minimizes the distance
between y and something that lives in C(X)?
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A geometric interpretation (see board)

Note that the vector e is orthogonal to the plane C(X) (that is, the
plane spanned by the variables in X). This means that for any
vector in C(x), the inner product between this vector and e is 0.
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A geometric interpretation (see board)

Note that the vector e is orthogonal to the plane C(X) (that is, the
plane spanned by the variables in X). This means that for any
vector in C(x), the inner product between this vector and e is 0.

We just established XTe = 0. Also notice that e =y — z, and
z = Xw for some vector w:

XT(y — Xw) =0

> Solve this equation for w. What is the solution? What
assumption did you have to make?

Of course, we can generalize this to any n-dimensional inner product space (it's just easier to visualize things in
three dimensions)
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e
Homework 3: Due Feb. 7

1. Recall the QR factorization of a full column rank n x p matrix
X into the product of an n x p matrix Q with orthonormal
columns and an invertible upper triangular p x p matrix R.
Express the least squares solution ,@ in terms of Q and R.
Compare this solution to (XTX)_1 XTy. Why might someone
want to use the QR decomposition instead (hint: can you
think of a reason after going through Exercise 2)?

2. Consider the estimation problem encountered on Slide 9. Use
the QR decomposition to solve for the least squares solution
(hint: use the Gram-Schmidt process to do this).

3. Explain why the residuals y —y live in the orthogonal
complement of the space spanned by X. What is the
dimension of this space?
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