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The following material was used by Yue Jiang during a live lecture.

Without the accompanying oral comments, the text is incomplete as a record of the presentation.
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An important disclaimer

This is not a mathematical statistics class. There are
semester-long (and multiple semester-long) courses on probability,
and so what we cover in just two lectures scarcely touches on even
the basics.

However, familiarity with some of these concepts, such as
probability distributions and certain aspects of them (e.g.,
expectation, variance, etc.) are needed to more fully grasp linear
models. As such, we will be presenting a very abridged treatment
of some of the fundamentals needed to proceed.
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Convergence of sequences

Thinking back to calculus, we’ve learned that a sequence of real
numbers X1,X2,X3, · · · converges to a limit X if we can find, for
every ε > 0, some natural number N such that for every n ≥ N,
|Xn − X | < ε.

But what about a sequence of random variables? What might it
mean for a sequence of random variables “to converge”?
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Some difficulties

Suppose X1,X2,X3, · · · is a random sequence, where each Xi is
i.i.d. from a N(0, 1) distribution. Can we say that Xn “converges”
to a random variable X ∼ N(0, 1)?

P(Xn = X ) = 0 for every n. Is this a problem?
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Some difficulties

How about X1,X2,X3, · · · , where Xi ∼ N(0, 1/n)? Can we say
that Xn “converges” to 0 somehow?

P(Xn = 0) = 0 for all n. Is this a problem?
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Convergence of random variables

What does it mean for a sequence of random variables “to
converge”? (kind of a trick question for now)
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Chebyshev’s Inequality

Let’s take a quick break from notions of convergence.

Chebyshev’s Inequality provides a statement about “how far we
can be” from the mean for any probability distribution, as long as
we know something about their expectations and variances. In
particular, if a random variable X has finite E (X ) = µ and
Var(X ) = σ2, then:

P(|X − µ| ≥ ε) ≤ σ2

ε2

I Take a moment to look at the statement above. What does it
mean “in plain English”?
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Example: the sample mean

Let’s consider the sample mean X̄ of n i.i.d. random variables
X1, · · · ,Xn, where Xi has finite expectation and variance
E (X ) = µ and Var(X ) = σ2.

I What are E (X̄ ) and Var(X̄ )?

I Can you provide a bound on P(|X̄ − E (X̄ )| ≥ ε)?

STA 211: The Mathematics of Regression Department of Statistical Science, Duke University

Yue Jiang Lecture 6 Slide 8



Example: the sample mean

E (X̄ ) = E

(
1

n

n∑
i=1

Xi

)

=
1

n
E

(
n∑

i=1

Xi

)

=
1

n

n∑
i=1

E (Xi )

=
1

n
nE (X )

= E (X ) = µ.
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Example: the sample mean

Var(X̄ ) = Var

(
1

n

n∑
i=1

Xi

)

=
1

n2
Var

(
n∑

i=1

Xi

)

=
1

n2

 n∑
i=1

Var(Xi ) + 2
∑
i<j

Cov(Xi ,Xj)


=

1

n2

n∑
i=1

Var(Xi )

=
1

n2
nVar(X )

= σ2/n
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Example: the sample mean

Thus, Chebyshev’s inequality gives us

P(|X̄ − µ| ≥ ε) ≤ σ2

nε2

I What happens as the sample size n goes to infinity?
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A consequence of Chebyshev’s inequality

For i.i.d. random variables X1, · · · ,Xn with finite expectation µ
and variance σ2,

lim
n→∞

P(|X̄ − µ| ≥ ε) = 0.

Technically, the statement is also true even if we don’t require
finite variance - this statement is known as the weak law of large
numbers.

I What does the WLLN mean, intuitively?
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The weak law of large numbers

For i.i.d. random variables X1, · · · ,Xn with finite expectation µ

lim
n→∞

P(|X̄ − µ| ≥ ε) = 0.

As n gets larger and larger, the sample mean will be within any ε
of µ with a “high probability.” As n goes to infinity, the probability
that the sample mean is farther than ε from µ goes to 0.
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Convergence in probability

A sequence of random variables X1,X2,X3, · · · is said to converge
in probability to a random variable X if

lim
n→∞

P(|Xn − X | ≥ ε) = 0,

for all ε > 0.

An estimator that is consistent is one that converges in
probability to the parameter of interest. For instance, we saw that
for the example on the previous slide, the sample mean was a
consistent estimator for the population mean.

I What is the “sequence” of random variables here?
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Consistency and unbiasedness

I Is a consistent estimator always unbiased?

I Is an unbiased estimator always consistent?
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Consistency and unbiasedness

Consider a random sequence of estimators of the population mean
(where E (X ) = µ, and let’s suppose Var(X ) = σ2 <∞ for
simplicity), given by Xn = X̄ + 1

n . This is indeed a consistent
estimator for the mean µ, since

limn→∞P

(∣∣∣∣∣X̄ +
1

n
− µ

∣∣∣∣∣ ≥ ε
)

= 0,

even though it is biased (the expectation is µ+ 1
n , which is not

equal to µ).
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Consistency and unbiasedness

Consider a the estimator of the population variance for an
N(µ, σ2) distribution given by σ̃2 = 1

n

∑n
i=1(Xi − X̄ )2. As we’ve

seen on HW 6, this is a biased estimator for σ2. However, it is
consistent (homework).
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Consistency and unbiasedness

Consider a random sequence of estimators of the population mean
for an N(µ, σ2) distribution, given by Xn = X1. This is unbiased,
but not consistent for µ (Why? What is the variance of this
estimator?)
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Consistency and unbiasedness

(See board).
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A sufficient condition for consistency

With that said, if you have a consistent estimator whose variance
goes to zero asymptotically, then this estimator is also consistent
(for the parameter of interest). This is a pretty common strategy
for demonstrating consistency of estimators.

As an aside, anyone know a one-line reason for why this is the case? (if you do, you
really shouldn’t be in this class!)
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Consistency of the OLS estimator

We’ve previously established that the OLS estimator is unbiased
for β. Is it also a consistent estimator?

Note - we’ll be generalizing the definition of convergence in probability to the
multivariate case for random vectors, but this isn’t too bad of a problem. Choose your
favorite vector norm; we won’t go through the details, but it’s basically the same
definition just using the distance between vectors.
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Consistency of the OLS estimator

β̂ = (XTX)−1XTy

= β + (XTX)−1XTε

= β +

(
1

n

n∑
i=1

xix
T
i

)−1(
1

n

n∑
i=1

xiεi

)
,

where xi represents the i th row of the design matrix X.
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Consistency of the OLS estimator

Then under some assumptions (which ones?), the WLLN says that

1

n

n∑
i=1

xix
T
i →p E (xix

T
i ),

which is some non-singular matrix, and

1

n

n∑
i=1

xiεi →p E (xiεi ) = 0.
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Consistency of the OLS estimator

Thus,

β̂ = β +

(
1

n

n∑
i=1

xix
T
i

)−1

︸ ︷︷ ︸
→pE(xixTi )−1

(
1

n

n∑
i=1

xiεi

)
︸ ︷︷ ︸

→p0

→p β

demonstrating consistency. Under weak assumptions, the OLS
estimator is both unbiased and consistent for β.

(there were a few details we skipped, mostly the use of Slutsky’s Theorem and the
continuous mapping theorem and “why/what” “converging” in probability to a matrix
means, but this will be covered in more detail in an actual math stats course - the
intuition and broad details are what’s important here).
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A different type of convergence

We just explored convergence in probability, which described a
notion of convergence where random variables “converge” if there
is a low probability of them being “very far” from each other.

What about some notion of distance based on whether their
distribution functions are “close” to each other? Can we derive
some notion of “convergence” in this sense?
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Convergence in distribution

Consider a sequence X1,X2,X3, · · · of random variables, and let
FXn be the distribution function of this sequence.

The sequence X1,X2,X3, · · · is said to be convergent in
distribution to a random variable X if

lim
n→∞

FXn(x) = FX (x)

at all continuity points of FX . We commonly call X the
“asymptotic distribution” or “limiting distribution” of the sequence
of random variables {Xn}.
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An example
Consider the random sequence X1,X2,X3, · · ·

i .i .d .∼ Unif (0, 1). Let
X (n) be the maximum. Note the following for any ε > 0:

P(X (n) ≤ 1− ε) = P(X1 ≤ 1− ε,X2 ≤ 1− ε, · · · )
= (1− ε)n.

Setting ε = t/n:

P(X (n) ≤ 1− t/n) = (1− t/n)n

P(n(1− X (n)) ≥ t) = (1− t/n)n

P(n(1− X (n)) ≤ t) = 1− (1− t/n)n

→ 1− e−t ,

which is the distribution function of Exp(1). So the random
variable n(1− X (n))→d Exp(1).
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Another example

Suppose you have a random sequence of i.i.d. X1,X2,X3, · · · all
drawn from a population with finite mean µ and variance σ2. Then
we have

√
n(X̄n − µ)→d N(0, σ2)

I What is this result?

I What is the importance of scaling by
√
n?
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Asymptotic normality of OLS estimator

Consider the term 1
n

∑n
i=1 xiεi . This “looks like” a sample mean of

some sort, and we might expect some CLT-like result to hold. We
additionally know from before that the expectation of this quantity
is 0.

In fact, the CLT (well, the multivariate case, but don’t worry too
much) precisely tells us that

√
n

(
1

n

n∑
i=1

xiεi − 0

)
→d N(0,Σ),

where Σ = σ2E (xix
T
i ).
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Asymptotic normality of OLS estimator

Then in fact, appropriately scaling the β̂ term, we’ll get

√
n
(
β̂ − β

)
=

(
1

n

n∑
i=1

xix
T
i

)−1

︸ ︷︷ ︸
→pE(xixTi )−1

√
n

(
1

n

n∑
i=1

xiεi

)
︸ ︷︷ ︸
→dN(0,σ2E(xixTi ))

→d N(0, σ2E (xix
T
i )−1).

And so we have that the OLS estimator, appropriately scaled, is
also asymptotically normal.

(we skipped some more details again, primarily around Slutsky’s Theorem and the
Cramer-Wold Theorem. Again, this will be covered in more detail in an actual math
stats course - the intuition and broad details are what’s important here).

STA 211: The Mathematics of Regression Department of Statistical Science, Duke University

Yue Jiang Lecture 6 Slide 30



Homework 7: Due Mar. 7
1. Consider again the estimate of the population variance for an

N(µ, σ2) distribution given by σ̃2 = 1
n

∑n
i=1(Xi − X̄ )2.

Demonstrate that it is a consistent estimator. You may use
the fact that if you have an i.i.d. sample from a N(µ, σ2)
distribution, then the variance of the sample variance,
Var(s2) = 2σ4

n−1 . For this problem you may assume σ4 <∞.

2. Let X be 1 with probability 0.5 and 0 with probability 0.5
(that is, Bern(0.5)). Let Xn = X , and Y = 1− X . Show that
Xn →d Y but that Xn 6→p Y (hint: consider how “far apart”
Xn and Y are, then use the definition of convergence in
probability for an appropriate ε).

3. Suppose X1, · · · ,Xn are an i.i.d. sample from a distribution
with density fX (x) = λx+1

2 for x ∈ (−1, 1) and λ ∈ (−1, 1).
Consider the estimator 3X̄ . Is it a biased estimator for λ? Is it
a consistent estimator for λ? Show your work and explain.
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