class: center, middle, inverse, title-slide .title[ # Welcome! ] .author[ ### Yue Jiang ] .date[ ### STA 210 / Duke University / Spring 2024 ] --- ### Tracking Ceres <img src="img/ceres.jpg" width="60%" style="display: block; margin: auto;" /> --- ### Carl Friedrich Gauss <img src="img/deutschemark.png" width="100%" style="display: block; margin: auto;" /> --- ### *Theoria motus corporum coelestium* <img src="img/gauss2.png" width="60%" style="display: block; margin: auto;" /> --- ### *Theoria motus corporum coelestium* <img src="img/gaussa.png" width="90%" style="display: block; margin: auto;" /> --- ### *Theoria motus corporum coelestium* <img src="img/gaussb.png" width="90%" style="display: block; margin: auto;" /> --- ### The problem at hand <img src="img/gauss1.png" width="60%" style="display: block; margin: auto;" /><img src="img/gauss3.png" width="60%" style="display: block; margin: auto;" /> --- ### The solution <img src="img/gaussc.png" width="90%" style="display: block; margin: auto;" /> --- ### Prediction vs. Explanation <img src="img/gauss1.png" width="60%" style="display: block; margin: auto;" /><img src="img/gauss3.png" width="60%" style="display: block; margin: auto;" /> --- ### Prediction vs. Explanation <img src="img/fire.png" width="90%" style="display: block; margin: auto;" /> --- ### Association vs. Causation <img src="img/fire.png" width="90%" style="display: block; margin: auto;" /> --- ### Data-driven vs. Theory-driven <img src="img/experiment.png" width="90%" style="display: block; margin: auto;" /> --- ### Prospective vs. Retrospective <img src="img/ikea.png" width="90%" style="display: block; margin: auto;" /> --- ### Why should we care about linear models? <img src="img/eniac.png" width="90%" style="display: block; margin: auto;" /> --- ### Linear models are foundational <img src="img/trading.png" width="90%" style="display: block; margin: auto;" /> --- ### Linear models are flexible <img src="img/cholera.png" width="90%" style="display: block; margin: auto;" /> --- ### Linear models are transparent <img src="img/scatter2.png" width="90%" style="display: block; margin: auto;" /> --- ### Linear models are translational <img src="img/mnist.png" width="90%" style="display: block; margin: auto;" /> --- ### Linear models are useful <img src="img/basketball.png" width="90%" style="display: block; margin: auto;" /> --- ### How does Y change as X varies? <img src="img/scatter.png" width="90%" style="display: block; margin: auto;" /> --- ### Means and variances <img src="img/hurricane.png" width="90%" style="display: block; margin: auto;" /> --- ### Means and variances .vocab[Expectations] are *"averages"* : `\begin{align*} E(Y) &= \sum_{y} y \times p_Y(y) \end{align*}` .vocab[Variances] are *"expected squared deviations around the mean"* : `\begin{align*} Var(Y) &= E\left[ \left(Y - E(Y)\right)^2 \right] \end{align*}` --- ### Means and variances .vocab[Conditional] means and variances, for instance `\begin{align*} E(Y | X = x) = \textrm{...some function of x} \end{align*}` `\begin{align*} Var(Y | X = x) = \textrm{...some other function of x} \end{align*}` --- ### How does Y change as X varies? Well, how does the .vocab[distribution] of Y change as X varies? <img src="img/scatter.png" width="45%" style="display: block; margin: auto;" /> Maybe... `\begin{align*} E(Y | X = x) = \beta_0 + \beta_1x \end{align*}` `\begin{align*} Var(Y | X = x) = \sigma^2 \end{align*}` --- ### Looking ahead <img src="img/meteora.jpg" width="90%" style="display: block; margin: auto;" /> --- ### Some housekeeping <img src="img/website.png" width="90%" style="display: block; margin: auto;" />