Comuter Science Data The computer science department of a large university was interested in understanding why a large portion of their first-year students failed to graduate as computer science majors. An examination of records from the registrar indicated that most of the attrition occurred during the first three semesters. Therefore, they decided to study all first-year students entering their program in a particular year and to follow their progress for the first three semesters. The variables studied included the grade point average after 3 semesters and a collection of variables that would be available as students entered their program. These included standardized tests such as the SAT and high school grades in various subjects. The individuals who conducted the study were also interested in examining differences between men and women in this program. Therefore, sex was included as a variable. Data on 224 students who began study as computer science majors in a particular year are given below. There are eight variables recorded for each student: obs identifies the student; gpa is grade point average after 3 semesters - this university uses a 6 point scale A=6,B=5,…,F=2; hsm - high school math 10=A+,9=A,8=A-,7=B+ and so on;" hss - high school science (scored as hsm); hse - high school english (scored as hsm and hss); satm - math SAT score; satv - verbal SAT score; sex - 0=male, 1=female" Questions: 1. Make histograms to compare the distribution of math SAT scores of males and females. If you sort the data by sex, this will be easier. Also, be sure the x-axis is the same for both histograms. 2. Compute the mean, median, and SD for the math SAT scores for males and females separately. 3. It seems that for this sample, the histogram of math SAT scores is shifted to the right for the" males relative to the females. Can we conclude that on average men score higher than women on the math portion of the SAT? If not, what can you conclude from looking" at the math SAT scores? 4. For something different, let's look at the relationship between verbal and math SAT scores. There's no need to separate men and women now. Make a scatterplot of math SAT scores vs. verbal SAT scores. Also compute the correlation. These are scores for a computer science department. Would the correlation be higher or for all first year students in the university. Why? 5. Compute the regression equation for predicting verbal SAT given the math SAT scores. obs gpa hsm hss hse satm satv sex 1 5 10 10 10 670 600 0 2 5 9 9 10 630 700 1 3 4 9 6 6 610 390 0 4 5 10 9 9 570 530 1 5 4 6 8 5 700 640 0 6 4 8 6 8 640 530 0 7 5 9 7 9 630 560 1 8 5 10 8 8 610 460 1 9 5 10 10 10 570 570 1 10 6 7 8 7 550 500 0 11 4 9 10 7 670 600 0 12 5 8 9 8 540 580 0 13 2 6 6 7 560 690 0 14 6 8 7 8 630 500 0 15 6 10 10 8 710 470 1 16 5 9 9 9 580 540 1 17 5 10 8 8 760 630 0 18 4 7 7 7 620 470 1 19 5 6 7 7 690 440 0 20 5 9 10 10 417 518 1 21 6 10 9 8 560 530 1 22 5 9 7 6 690 460 0 23 4 8 10 10 600 600 1 24 5 8 6 5 540 400 0 25 5 8 8 7 600 400 0 26 4 4 7 7 460 460 1 27 5 10 10 9 720 680 1 28 4 3 7 6 460 530 0 29 5 9 10 8 670 450 0 30 5 6 5 9 590 440 0 31 4 9 9 10 650 570 1 32 5 10 10 9 440 430 1 33 4 7 7 6 570 480 0 34 4 5 7 7 530 440 0 35 5 10 10 9 640 590 1 36 4 6 7 9 540 610 0 37 5 9 10 6 491 488 0 38 5 5 9 7 600 600 0 39 3 6 8 8 510 530 0 40 4 2 4 6 300 290 1 41 3 10 9 9 750 610 0 42 4 8 9 6 650 460 0 43 6 10 10 9 720 630 0 44 4 7 10 10 530 560 0 45 4 7 6 7 560 480 1 46 6 10 10 9 760 500 0 47 5 10 10 10 570 750 1 48 6 9 10 10 640 480 0 49 6 9 9 8 800 610 0 50 4 9 6 5 640 670 0 51 5 9 10 9 590 420 1 52 6 9 10 9 750 700 0 53 4 9 7 8 520 440 0 54 5 10 10 6 640 500 0 55 5 8 8 7 610 530 0 56 6 8 10 8 520 410 0 57 4 8 4 3 590 470 0 58 5 9 9 9 520 490 0 59 5 7 9 8 505 435 0 60 5 9 10 8 559 607 0 61 5 8 9 8 559 435 0 62 5 9 7 4 559 488 0 63 4 7 7 8 559 545 0 64 5 7 6 7 500 460 0 65 6 10 9 9 760 620 0 66 4 8 7 7 490 390 0 67 5 8 8 7 476 576 1 68 5 8 9 8 680 700 1 69 4 8 6 8 590 510 0 70 5 9 10 8 550 440 1 71 5 10 9 8 640 490 0 72 5 9 8 7 520 360 0 73 4 6 7 7 490 370 0 74 5 8 10 10 580 460 0 75 2 7 10 9 550 660 1 76 4 10 9 9 650 350 1 77 3 7 8 6 700 520 0 78 5 9 9 8 610 520 1 79 5 10 10 10 620 570 0 80 4 8 7 9 530 480 1 81 3 7 8 6 480 360 1 82 4 6 8 6 490 550 0 83 4 8 9 7 670 480 0 84 5 10 9 9 550 450 1 85 3 10 10 7 720 610 0 86 5 9 8 9 490 480 1 87 3 9 7 7 640 520 0 88 4 7 6 7 520 380 0 89 6 10 10 10 580 580 0 90 6 10 8 9 590 490 1 91 5 4 5 7 400 470 0 92 5 10 10 7 640 520 0 93 6 10 10 10 650 500 1 94 4 5 4 8 560 420 1 95 5 10 9 10 590 580 1 96 4 7 7 8 430 330 1 97 5 9 7 10 490 400 1 98 5 10 10 10 590 470 1 99 4 9 7 4 550 290 0 100 5 10 10 10 600 520 0 101 4 8 9 7 480 410 0 102 5 9 7 7 400 390 0 103 4 6 9 9 480 390 0 104 3 6 7 8 530 470 0 105 5 9 7 6 670 440 0 106 5 10 9 9 710 530 0 107 5 9 10 9 750 670 0 108 5 9 9 10 690 510 1 109 5 7 6 9 570 480 1 110 4 6 6 9 550 600 1 111 5 7 4 7 660 480 0 112 5 9 9 10 510 570 1 113 4 10 8 8 650 490 1 114 5 8 9 8 550 500 0 115 5 9 9 9 620 480 0 116 5 10 10 10 720 500 0 117 6 10 10 9 630 440 0 118 5 9 8 9 640 630 0 119 5 8 6 9 470 420 1 120 4 10 10 10 690 580 0 121 3 8 9 10 640 600 0 122 4 9 5 9 480 520 1 123 5 9 6 7 690 400 0 124 6 9 9 9 640 430 1 125 4 10 7 7 650 450 0 126 4 7 8 9 550 570 0 127 4 8 8 8 470 330 1 128 5 10 8 9 510 360 1 129 4 6 5 6 470 330 0 130 4 6 6 6 480 460 0 131 4 9 7 8 450 460 1 132 4 10 8 10 530 550 1 133 5 10 10 10 670 490 1 134 3 7 6 6 540 590 0 135 5 10 10 10 730 650 0 136 5 10 9 10 490 410 1 137 6 10 7 8 710 400 0 138 5 5 9 9 510 380 0 139 5 10 7 5 770 720 0 140 4 6 9 10 530 510 1 141 6 10 10 10 580 490 1 142 3 9 8 9 740 460 1 143 5 9 9 9 560 500 0 144 6 10 10 10 710 600 1 145 5 9 9 10 600 510 0 146 5 6 5 7 580 490 1 147 5 9 9 8 620 590 0 148 5 10 10 9 610 560 0 149 5 10 10 8 540 470 0 150 5 9 4 7 600 360 0 151 4 7 6 8 570 570 1 152 4 8 8 8 690 490 0 153 3 7 7 7 590 480 0 154 5 4 3 4 620 560 0 155 6 10 10 10 640 570 0 156 5 10 10 10 580 340 0 157 6 10 10 7 750 540 0 158 4 8 7 8 650 500 0 159 2 4 6 6 630 490 0 160 5 10 10 9 650 480 0 161 4 9 10 10 590 420 0 162 4 6 5 6 530 320 0 163 5 9 7 9 650 490 0 164 6 10 10 8 660 630 0 165 5 9 7 8 620 420 1 166 4 6 6 7 430 460 1 167 5 10 10 10 500 390 1 168 6 8 6 8 590 580 1 169 4 10 6 6 620 430 0 170 5 9 5 7 570 570 0 171 5 7 8 8 570 480 0 172 4 8 7 7 690 440 0 173 5 10 9 9 660 550 0 174 5 9 7 8 690 550 0 175 5 10 10 10 770 540 0 176 4 7 7 8 670 500 0 177 5 10 10 10 620 570 0 178 4 6 5 6 540 460 1 179 5 10 10 10 620 510 1 180 4 8 7 9 620 600 1 181 5 10 9 9 660 460 0 182 5 8 8 7 600 630 0 183 4 9 10 8 447 320 0 184 5 10 9 9 720 740 0 185 4 9 9 10 520 570 1 186 5 6 9 9 480 480 1 187 4 6 6 6 590 440 0 188 6 7 6 6 600 410 0 189 5 9 4 8 640 470 1 190 5 7 10 10 630 500 0 191 4 9 9 9 620 580 0 192 4 10 8 7 700 480 0 193 5 6 8 6 580 470 0 194 5 9 7 8 630 630 0 195 5 10 10 10 600 660 1 196 3 7 7 8 630 540 0 197 5 10 9 10 650 430 1 198 5 10 9 10 660 560 0 199 5 10 10 10 600 560 0 200 5 8 7 9 700 440 0 201 5 10 9 10 640 560 1 202 5 9 10 9 550 560 0 203 5 9 9 8 620 400 0 204 5 8 10 8 680 450 0 205 5 8 9 10 510 440 1 206 4 9 7 6 600 440 1 207 3 7 7 9 510 480 1 208 4 8 8 7 630 500 0 209 3 8 10 9 470 410 0 210 6 10 10 10 750 760 0 211 5 7 8 4 710 500 0 212 5 8 9 8 550 510 1 213 3 6 5 7 586 697 0 214 5 9 9 10 586 670 0 215 5 9 8 7 700 500 0 216 4 7 7 5 550 570 0 217 4 7 9 7 356 350 1 218 5 5 4 7 630 470 1 219 4 6 6 8 505 518 0 220 5 8 6 8 630 470 1 221 3 5 7 7 515 285 0 222 5 10 10 9 774 688 0 223 4 9 8 9 559 488 1 224 5 9 8 7 491 391 0