Links: Course Outline, Lecture Notes, Homework, Free Software |
STA 294: Special Topics Belief Networks Instructor: Mark PeotMWF, 9:10AM- 10:00 in Old Chemistry, Room 025. |
|
Synopsis : Belief networks[ are an increasingly popular tool for representing uncertainty in artificial intelligence, statistics, and engineering. Belief networks are finding application in many products that people use everyday, for example, Microsoft has developed belief network-driven applications for several products, including the Answer Wizard of Office 95, the Office Assistant (the bouncy paperclip guy) of Office 97, and over 30 Technical Support Troubleshooters. Belief networks have found application in a number of domains, including:
|
|
The belief network representation and inference algorithms subsume many special purpose algorithms; including, for example, those used for prediction, estimation, and smoothing in linear statistical models (including Kalman filters and mixture models). STA 294 is designed to introduce the student to the theory and application of belief networks and other graphical models for joint probability distributions. Topics discussed include:
Grading: Homework (50%) and a course project (50%).Prerequisites: Probability, including Bayes Law, multinomial and normal distributions and basic statistics.Text: (Required) Castillo, Gutierrez, and Hadi, Expert Systems and Probabilistic Network Models, Springer-Verlag, 1997. (Required) STA 294 Course Reader (Recommended) Laurtizen, Graphical Models, Oxford University Press, 1996. Links |
Copyright 1999, Mark Alan Peot