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MISA-package Multilevel Inference for SNP Association Studies
Description

The functions in this package focus on intermediate throughput case-control association
studies, where the outcome of interest is often a binary disease state and where the genetic
markers have been chosen to capture variation in a set of related genes, such as those in-
volved in a specific biochemical pathway. Given this data, we are interested in addressing
two questions: "To what extent does the data support an overall association between the
pathway and outcome of interest?” and "Which markers or genes are most likely to be driv-
ing this association?” To address both of these questions, this package performs a Bayesian
model search technique that utilizes Evolutionary Monte Carlo and searches over models
including main effects of all genetic markers and marker-specific genetic effects in a com-
putationally efficient manner. The package incorporates functions that perform a marginal
screen on the genetic markers, summarize the output of the model search algorithm, includ-
ing image plots of the models with the highest posterior probability, marginal summaries
of SNP and gene inclusion probabilities and Bayes Factors, and global summaries of the
posterior probability and Bayes Factor giving evidence of an association in the set of SNPs
of interest.

Details

Package:  MISA

Version: 2.6.5

Date: 2010-07-08

Depends: R (>= 2.10.0), BAS (>= 0.92)

License:  GPL-2

URL: http://www.stat.duke.edu/gbye/MISA .html
Author(s)

Melanie Wilson,
Maintainer: Gary Lipton <gl37@stat.duke.edu>
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References
Geyer C (1991). Markov chain Monte Carlo mazimum likelihood. Computing Science and
Statistics:156.

Holland J (1975). Adaptation in Natural and Artificial Systems. University of Michigan
Press.

Liang F, Wong W (2000). Ewolutionary Monte Carol:Applications to Cp Model Sampling
and Change Point Problem. Statistica Sinica 10:317.

See Also

bas

bfdassoc Bayes Factors for 8 Association Models: Marginal SNP Screen

Description

This function performs a marginal screen on the SNPs of interest by using Laplace ap-
proximations to estimate the marginal Bayes Factors (BFs) of each SNP. In particular,
we estimated the marginal likelihood of each of the three genetic models of association
(log-additive, dominant and recessive) and under the null model (model of no genetic asso-
ciation). The BF for a model of association is defined as the ratio of the marginal likelihood
of that model of association to the marginal likelihood of the null model. We can then use
a decision rule such as including only the SNPs with a maximum marginal Bayes factor for
each genetic model greater than 1.

Usage

bf4assoc(D, X = NULL, XS, Ns, Nx, snpsd, Prior, MinCount, MaxIt = 100,
RelTol = le-4, scoring = 1)

Arguments

D response vector coded (0=control, 1=case) of length N.

X numeric matrix of confounder/design variables of dimension N by Nx is
NULL if Nx==0.

Xs numeric matrix of SNP variables of dimension N by Ns coded (0 = com-
mon homozygote, 1 = heterozygote, 2 = rare homozygote, 3 = missing).

Ns number of SNPs in the input data set.

Nx number of design/confounder variables included in all models.

snpsd standard deviation of mean zero prior on the genetic effect parameter
when Prior==0 and scale when Prior==1.

Prior set to 0 to chose Normal prior and 1 to chose Cauchy prior.

MinCount count below which a genotype is treated as absent for a given SNP. Effect
is to reduce the number of unique genetic models that are discernable for
that SNP.

MaxIt maximum number of function evaluations per optimization.

RelTol relative tolerance.

scoring optimization algorithm; must be either scoring (scoring = 1) or Newton-

like (scoring = 0).
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Details

Use Laplace Approx to calculate Bayes factors in favor of 3 genetic models of association.
Features:(1) Laplace approximation based estimates. (2) Output log-ORs + SE(logOR)s.(3)
Option for Cauchy prior.

Value
This function outputs a matrix of the following values:

SNP SNP ID number.

N.geno number of genotypes with counts exceeding MinCount among both cases
and controls. If 1, the snp is treated as if it were monomorphic — no
models are fit; if 2, only the log-additive model is fit.

bfAtoN marginal likelihood ratio: Pr(Data|logadditive model)/Pr(Data|null model)
ie BF for log-additive model.

bfDtoN marginal likelihood ratio: Pr(Data|dominant model)/Pr(Data|null model)
or BF for dominant model.

bfRtoN marginal likelihood ratio: Pr(Data|recessive model)/Pr(Data|null model)
or BF for recessive model.

PrAgvnAssoc posterior probability of a log-additive genetic model given an association.

PrDgvnAssoc posterior probability of a dominant genetic model given an association.

PrRgvnAssoc posterior probability of a recessive genetic model given an association.

logOR.LogAdd modal estimate of log odds ratio under the log-additive model.
logOR.Dom modal estimate of log odds ratio under the dominant model.
logOR.Rec modal estimate of log odds ratio under the recessive model.

SE.10R.LogAdd estimate of the standard error for the modal estimate of the log odds ratio
for the SNP variable under the log-additive model.

SE.10R.Dom estimate of the standard error for the modal estimate of the log odds ratio
for the SNP variable under the dominant model.

SE.10R.Rec estimate of the standard error for the modal estimate of the log odds ratio
for the SNP variable under the recessive model.

Author(s)

Ed Iversen <iversen@stat.duke.edu>

Examples

## Load the data

data(dna.snp.full)

## Find the number of snps in the data set
p <~ (dim(dna.snp.full)[2] - 2)

## Calculate the Marginal BF's for the SNPs

marg.bf <- bfdassoc(D=dna.snp.full$case,
X=as.matrix(dna.snp.full$age),
XS=as.matrix(dna.snp.fulll,-c(1,2)]),
Ns=p, Nx=1, snpsd=0.25, Prior=0, MinCount=1.9,
MaxIt=1000, RelTol=1e-7)

## Calculate the Maximum BF for each SNP (LA, Dom, Rec)
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max.bf <- apply(marg.bf[,c(3:5)], 1, max)

## Screen the data based on max.bf > 1
dna.snp <- dna.snp.full[, c(TRUE, TRUE, max.bf > 1)]

combine.EMC Calculates Global and Marginal Summaries

Description
This function calculates the global and marginal posterior probabilities and Bayes Factors

that give the evidence of there being an association in the overall set of SNPs of interest,
the individual genes of interest and the individual SNPs of interest.

Usage

combine.EMC(emc.list)

Arguments

emc.list A list of output structures from Gene.EMC

Details

This function consolidates multiple outputs from Gene.EMC into a single structure.

Value

A structure of the form generated by Gene.EMC combining the results in emc.list.

Author(s)

Gary Lipton <gl37@stat.duke.edu>

Examples

data(emc.out.1)
data(emc.out.2)
combo.out <- combine.EMC(list(emc.out.1l, emc.out.2))
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converge.EMC Convergence Diagnostic Plots for Genetic EMC

Description
Takes the output of two independent runs of the Genetic EMC sampling algorithm and
creates plots to assess the convergence of the algorithm.

Usage
converge .EMC(emc.out, plot.type, bandwidth = 1000, a = 1, b = NULL,...)

Arguments

emc.out output from Gene.EMC

plot.type indicates the type of plot; options are "iter”, "gelman.rubin”,”bayes.factor”,
”snp.inc”, or "all”.

bandwidth If the "bayes.factor” plot.type is chosen, user must indicate the bandwidth
of iterations over which to calculate the global Bayes Factor over.

a If "bayes.factor” or ”snp.inc” plot.type is chosen, and the fitness function
used in the Genetic EMC algorithm is "AIC.BB” the user must specify
the value of a for the beta hyper-parameter.

b If "bayes.factor” or ”snp.inc” plot.type is chosen, and the fitness function
used in the Genetic EMC algorithm is "AIC.BB” the user must specify
the value of b for the beta hyper-parameter.
general parameters for plotting functions.

Details

The four plot types are described as follows:

iter: Plot of the cost values over each iteration for each of the independent runs. These
trace plots help to examine if a balanced has been reached between exploring the model
space and convergence rates. Make sure that the cost values are not sticking too much in
one area and are moving around freely to explore the space properly. If the trace plots do
show that the algorithm is tending to get stuck in on area this may be a sign that you need
to increase the max temperature or increase the number of parallel chains so that adjacent
chains can communicate better.

gelman.rubin: Plot of the gelman rubin convergance diagnostic (see Gleman, Rubin (1992))
of the cost values of the two independent chains.

bayes.factor: Plot of the global Bayes factor computed across iterations for each independent
chain. Since our global Bayes factor is a lower bound for the global Bayes factor computed
if we were able to enumerate all models the Bayes factor will increase for every new unique
model that we find at any of the iterations. Therefore, we are interested in seeing if the
Bayes factor begins to converge after a given number iterations and is no longer making
large jumps.

snp.inc: Plot of the Marginal Bayes factors for one independent run vs. another indepen-
dent run. This plot enables us to determine if the values of the marginal SNP inclusion
probabilities are consistent across two independent runs of the algorithm. If the plot does
not following the line y = x then this is an indication that the algorithm as not yet converged
and is still exploring the space.
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Value

This function plots four convergence diagnostics for the Genetic EMC algorithm.

Author(s)

Melanie Wilson <maw27@stat.duke.edu>

References

Gelman A, Rubin D (1992). Inference from iterative simulation using multiple sequences.
Statistical Science 7:457.

Examples

##Load the emc.out files for two independent runs of the dna.snp data
data(emc.out.1)

p <- dim(emc.out.1$which)[2] - 1

data(emc.out.2)

emc.out <- list(emc.out.l, emc.out.2)

##Look at all of the convergence plots for the dna.snp data
converge.EMC(emc.out,plot.type="all", bandwidth=100 ,b=p, a=1)

crossover EMC: Crossover Step

Description
This function takes the current state of the population in the Genetic EMC algorithm and
performs the crossover step.

Usage

crossover(pop, pop.fit, cross.a, force, data, fitness, t,
impute = impute, b = NULL, a = 1, rec.mdl,
cores = cores)

Arguments

pop matrix specifying the current status of each chain (or model) of the pop-
ulation.

pop.fit vector of fitness values for each of the models specified in the current
population.

cross.a current number of accepted crossover steps.

force character vector specify the variables to force in the models

data data frame of the same form in Gene.EMC

fitness character string specifying the fitness function to use in the algorithm.

t temperature vector specifying the temperature value for each chain in the
population.

impute number of imputed data sets.
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b If the fitness function is "AIC.BB”, the user must specify the value for the
beta hyper-parameter b.

a If the fitness function is "AIC.BB”, the user must specify the value for the
beta hyper-parameter a.

rec.mdl indicator vector that indicates which SNPs should not have a recessive
parameter since the power is too weak.

cores number of cores to use; i.e. the maximum number of processes to spawn.

Details
In the crossover step, one of the top current models from the population is chosen to mate
with another random model and two new models are formed by some composition of the
two parental models.

Value

This function outputs a list of the following values:

pop current status of the population.
pop.fit vector of fitness values for each of the models specified in the current
population.
cross.a current number of accepted crossover steps.
Author(s)

Melanie Wilson <maw?27@stat.duke.edu>

References
Geyer C (1991). Markov chain Monte Carlo mazimum likelihood. Computing Science and
Statistics:156.

Holland J (1975). Adaptation in Natural and Artificial Systems. University of Michigan
Press.

Liang F, Wong W (2000). Ewolutionary Monte Carlo:Applications to Cp Model Sampling
and Change Point Problem. Statistica Sinica 10:317.

dna.snp Stmulated Example SNP data set.

Description

Simulated data set of 26 SNP variables in the DNA repair pathway. The first column
represents the disease status of the individual, the second column the forced variable of
age and in the remaining columns we have the log-additive parameterizations of the SNP
variable. This is the subset data set of dna.snp.full once the marginal Bayes factor screen
was performed.

Usage

data(dna.snp)



dna.snp.full 9

Format

A data frame with 1197 observations on the following 19 variables (case, age, snp.la).

Details

The simulated samples comprised a binary outcome and genetic data on 399 cases and 798
controls where the genetic data was simulated at the same 60 tag SNPs as genotyped in a
particular study of interest on the DNA repair pathway. We simulated the genotypes in two
stages. First, for each of the 6 genes represented in the data set, we phased the NCOCS
control SNP genotype data and estimated recombination rates using PHASE (Stephens et
al., 2001). Second, given a model of association, we generated case-control data at these
tags using HAPGEN (Marchini and Su, 2006). For this simulation, we assumed that a
randomly chosen subset of 2 genes were associated and that, within the associated genes,
a single, randomly chosen tag was the source of the association. One of the associated
tags SNPs were accorded an odds ratio (OR) of 1.75 and an assumed genetic log-additive
genetic parametrization and one an OR of 1.25 and a dominate genetic parametrization. To
facilitate the mixing of the Genetic EMC algorithm and ease computation time we screened
the SNPs in each full simulation to the final subset of SNPs seen in this data set with a
marginal Bayes factor estimated to be 1.0 or above by a procedure described in bf4assoc.
Information on the SNPs in this simulation can be found in the data set sim.info.

References

Stephens M, Smith N, Donnelly P (2001). A New Statistical Method for Haplotype Recon-
struction from Population Data. The American Journal of Human Genetics 68:978-989.

Marchini J, Su Z (2006). HAPGEN, a C++ program for simulating case and control SNP
haplotypes.

Examples

data(dna.snp)

dna.snp.full Simulated Example SNP data set.

Description

Simulated data set of 60 SNP variables in the DNA repair pathway. The first column
represents the disease status of the individual, the second column the forced variable of age,
and the remaining columns the log-additive parametrizations of each SNP variable. This is
the full simulated data set before the marginal screen was performed.

Usage

data(dna.snp)

Format

A data frame with 1197 observations on the following 60 variables (case, age, snp.la).
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Details

The simulated samples comprised a binary outcome and genetic data on 399 cases and 798
controls where the genetic data was simulated at the same 60 tag SNPs as genotyped in a
particular study of interest on the DNA repair pathway. We simulated the genotypes in two
stages. First, for each of the 6 genes represented in the data set, we phased the NCOCS
control SNP genotype data and estimated recombination rates using PHASE (Stephens et
al., 2001). Second, given a model of association, we generated case-control data at these
tags using HAPGEN (Marchini and Su, 2006). For this simulation, we assumed that a
randomly chosen subset of 2 genes were associated and that, within the associated genes,
a single, randomly chosen tag was the source of the association. One of the associated
tags SNPs were accorded an odds ratio (OR) of 1.75 and an assumed genetic log-additive
genetic parametrization and one an OR of 1.25 and a dominate genetic parametrization.
Information on the SNPs in the simulation can found in the data set sim.info.

References

Stephens M, Smith N, Donnelly P (2001). A New Statistical Method for Haplotype Recon-
struction from Population Data. The American Journal of Human Genetics 68:978-989.

Marchini J, Su Z (2006). HAPGEN, a C++ program for simulating case and control SNP
haplo- types.

Examples

data(dna.snp.full)

emc.out.1 Example Output I from the Genetic EMC' algorithm

Description

Output from the first independent run of the Genetic EMC algorithm for the dna.snp data
set. The algorithm was run for approximately 500,000 iterations. The assumed fitness
function was "AIC.BB” where we assumed a Beta-Binomial prior on the size of the models
sampled with hyper-parameters on the beta distribution, a=1 and b=p (p=82).

Usage

data(emc.out.1)

Format
Output from the function Gene.EMC that is a list of the following values:
which: Matrix where each row corresponds to a model specification vector for the unique
models visited and the value of the fitness function for the model.
data: Data frame of the same form as the imputed data frame.

iter.aic: The value of the fitness function for each of the models visited at each of the
iterations.

iter: The total number of iterations run.

iter.unique: Vector indicating the number of the iteration in which each of the unique
models was found.
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force: Character vector indicating the names of the forced variables.

fitness: Character string indicating the fitness function used for the algorithm.

Examples

data(emc.out.1)

emc.out.2 Example Output II from the Genetic EMC algorithm

Description

Output from the second independent run of the Genetic EMC algorithm for the dna.snp
data set. The algorithm was run for approximately 500,000 iterations. The assumed fitness
function was "AIC.BB” where we assumed a Beta-Binomial prior on the size of the models
sampled with hyper-parameters on the beta distribution, a=1 and b=p (p==82).

Usage

data(emc.out.2)

Format

Output from the function Gene.EMC that is a list of the following values:

which: Matrix where each row corresponds to a model specification vector for the unique
models visited and the value of the fitness function for the model.

data: Data frame of the same form as the imputed data frame.

iter.aic: The value of the fitness function for each of the models visited at each of the
iterations.

iter: The total number of iterations run.

iter.unique: Vector indicating the number of the iteration in which each of the unique
models was found.

force: Character vector indicating the names of the forced variables.

fitness: Character string indicating the fitness function used for the algorithm.

Examples

data(emc.out.2)
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exchange EMC: Exchange Step

Description
This function takes the current state of the population in the Genetic EMC algorithm and
performs the exchange step between each neighboring chain.

Usage

exchange (pop, pop.fit, exc.a, temp)

Arguments
pop matrix specifying the current status of each chain (or model) of the pop-
ulation.
pop.fit vector of fitness values for each of the models specified in the current
population.
exc.a current number of accepted crossover steps.
temp temperature vector specifying the temperature value for each chain in the
population.
Details

This step corresponds to the normal parallel tempering exchange step, where we allow the
models, or current states of the chains to move up and down the temperature ladder.

Value

This function outputs a list of the following values:

pop current status of the population.
pop.fit vector of fitness values for each of the models specified in the current
population.
exc.a current number of accepted exchange steps.
Author(s)

Melanie Wilson <maw?27@stat.duke.edu>

References
Geyer C (1991). Markov chain Monte Carlo mazimum likelihood. Computing Science and
Statistics:156.

Holland J (1975). Adaptation in Natural and Artificial Systems. University of Michigan
Press.

Liang F, Wong W (2000). FEwvolutionary Monte Carol:Applications to Cp Model Sampling
and Change Point Problem. Statistica Sinica 10:317.



expand.data.snp 13

expand.data.snp Data: Genetic Parametrization

Description

This function takes the data set with log-additive parameterization for each SNP and makes
a data set with log-additive, dominant, and recessive parameterization.

Usage

expand.data.snp(data.snp, ind.info, force, subset)

Arguments
data.snp (n x p) matrix of log-additive SNP genotypes for each individual where 0
is the hom. common, 1 het. and 2 hom. rare genotype.
ind.info (n x (q+1)) matrix of information on each individual where q is the num-
ber of forced variables in the study. The first column must represent the
case/control status followed by a column for each of the forced variables.
force vector of variable names that you wish to force into the final model. These
variables must be found in the ind.info matrix.
subset vector of TRUE/FALSE indicating the individuals you want to include in
the study
Value

This function outputs a data frame where the first column is the case/control variable, the
next columns are the forced variables and the last columns are the SNP.la, SNP.dom and
SNP.rec variables, respectively.

Author(s)

Melanie Wilson <maw?27Q@stat.duke.edu>

fit.EMC EMC: Fitness Function

Description

This function takes one of the models in the population (or a current state of a chain) and
calculates the fitness/cost value of the model.

Usage

fit.EMC(samp, force = NULL, data, fitness = "AIC", impute = impute, b =
NULL, a = 1, rec.mdl)
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Arguments

samp

force
data
fitness
impute

b

rec.mdl

Details

Gene.EMC

vector specifying the current value of one of the chains of the population:
or a model specification vector.

character vector specify the variables to force in the model.

data frame of the same form in Gene.EMC.

character string specifying the fitness function to use in the algorithm.
number of imputed data sets.

If the fitness function is "AIC.BB”, this specifies the hyper-parameter in
the beta distribution on the model prior.

If the fitness function is "AIC.BB”, this specifies the hyper-parameter in
the beta distribution on the model prior.

Indicator vector that indicates which SNPs should not have a recessive
parameter since the power is too weak.

The different options for the fitness function are "AIC”, "BIC”, or "AIC.BB” where we add
in a penalty to each of the models that corresponds to a beta-binomial prior on the model
size with a and b chosen by the user.

Value

The function returns the cost value (-1/2*fitness value) of the model corresponding to the
model specification vector given in samp.

Author(s)

Melanie Wilson <maw7@stat.duke.edu>

References

Geyer C (1991). Markov chain Monte Carlo mazimum likelihood. Computing Science and

Statistics:156.

Holland J (1975). Adaptation in Natural and Artificial Systems. University of Michigan

Press.

Liang F, Wong W (2000). Ewolutionary Monte Carol:Applications to Cp Model Sampling
and Change Point Problem. Statistica Sinica 10:317.

Gene.EMC

Bayesian Model Search Algorithm for Case-Control Genetic As-
sociation Studies
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Description
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This function performs a sampling algorithm that is based on Evolutionary Monte Carlo
(EMC) (Liang and Wong, 2000) which is a combination of parallel tempering (Geyer, 1991)
and the genetic algorithm (Holland, 1975). The basic idea behind the genetic algorithm
is taken from evolution in that individuals in a population compete and mate in order to
produce increasingly stronger individuals. Here, the individuals correspond to models of
SNP data and the population corresponds to a set of models of interest. The strength
of each model is determined by the user specified fitness function and we are therefore
interested in sampling the strongest models on basis of the given fitness function.

Usage

Gene.EMC(data, force = NULL, fitness = "AIC.BB", b

Arguments

data

force

fitness

impute

NULL, a =1,
impute = 1, snp.subset = NULL, start.snps = NULL,
n.iter = 10000, N = 5, tmax = 1, tlone = 0, gm = 0.25,
display.acc = FALSE, display.acc.ex = FALSE,

status.out = NULL, chkpt.out = "chkpt.rda",

save.iter = 10000, burnin = 1, cores = 1, log = TRUE,
pb = FALSE)

a data frame (or a list of data frames for multiple imputed data sets)
where the first column corresponds to the response variable of interest
(disease status), the next nF columns are the forced variables of inter-
est, and the final p columns are the SNPs of interest with a log-additive

parameterization:
[,1] case multiple Response (0[1)
[,2] covariate.l  numeric Forced variable

numeric  Forced variable

. numeric  Forced variable

[[p+1] covariatenF numeric Forced variable
[nF+2] SNP_1 numeric  Copy number (0]1|2)
numeric  Copy number (0]1|2)
. numeric  Copy number (0]1]2)
[nF+p+2] SNP_p numeric ~ Copy number (0]1]2)

”Case” may be presented as a numeric, factor, or logical variable. All
values will be converted to numeric. For factors, the log file will report
the correspondence between factor levels and numeric values.

a character vector of variable names to be forced into the sampled models.
These variable names should correspond to the column headers for these
variables in data.

a character string that specifies the fitness function to be used. Options
are "AIC”,”"BIC”,”AIC.BB”.

the Beta hyper-parameter b, when the fitness function is "AIC.BB”.
the Beta hyper-parameter a, when the fitness function is "AIC.BB”.

the number of data sets on which to run the algorithm when data is a list
of data frames for multiple imputed data sets.
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snp.subset a logical vector that indicates which SNPs (in the same order as the data
frame) to run the algorithm on. This variable can be useful for searching
through only a number of SNPs that have passed a set screen.

start.snps a logical vector of the SNPs that will be in the initial model as a log-
additive parameterization. If NULL the algorithm initializes with 5 ran-
dom SNPs with the log-additive parametrization.

n.iter the number of iterations to run the algorithm.

N the number of parallel chains.

tmax the maximum temperature value of the chains. Default is to set tmax=1
so that there is a constant temperature ladder.

tlone the number of chains that the user wants to run at a temperature value
less than zero.

qm the probability of the mutation update.

display.acc logical flag indicating whether to output the acceptance rates of the mu-

tation and crossover steps at each iteration.

display.acc.ex
logical flag indicating whether to output the acceptance rates of the ex-
changes between each parallel chain for each iteration. Helps identify
whether the chains are too far apart and the temperature scheme needs
to be changed.

status.out character string giving the pathname of the file to write the status of the
algorithm and the acceptance rates to, instead of stdout.

chkpt.out character string giving the pathname of the checkpoint file to save the
output of the algorithm to.

save.iter the number of iterations between each checkpoint. A checkpoint file is
written every save.iter iterations.

burnin integer indicating the length of the burnin.

cores the number of cores to use; i.e. the maximum number of processes to
spawn.

log logical flag indicating whether to write warnings and errors to a time-
stamped log file.

pb display X11 progress bar.

Details

The algorithm is run for a chosen number of iterations where we update the population via
the mutation, crossover, and exchange steps of the genetic algorithm. For each iteration
the algorithm runs the mutation operator with probability qm and the crossover operator
with probability (1-qm) and then performs the exchange step with all adjacent chains. The
user must specify a the population size, N, the maximum and minimum temperature for the
ladder T'. (We make the assumption that the jumps in the temperature ladder have the form
tj-ti = exp(tj/ti) where ti = 1 for some value i in the ladder). These parameters are chosen
so that the algorithm converges at a fast rate and can normally be determined in test runs
of the algorithm by examining overall acceptance rates of the mutation and crossover rates
and acceptance rates of exchanges between adjacent chains. Low exchange rates between
chains indicates that the temperature values are too far apart for adjacent chains and either
the max temp. should be decreased or the number of parallel chains should be increased.
Also, convergence of the algorithm can be determined by running two independent runs of
the algorithm with different starting values and examining the convergence plots produced
in emc.converge.
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Value

This function outputs a list of the following values to the file write.out if this file is specified
for every save.iter number of iterations:

which Matrix where each row corresponds to a model specification vector for the
unique models visited and the value of the fitness function for the model.

data Data frame used to run the algorithm of the same form as the imputed
data frame.
iter.aic The value of the cost function for each of the models visited at each of

the iterations.
iter The total number of iterations run.

iter.unique Vector indicating the number of the iteration in which each of the unique
models were found.

force Character vector indicating the names of the forced variables.
fitness Character string indicating the fitness function used for the algorithm.
Author(s)

Melanie Wilson <maw?27@stat.duke.edu>

References

Geyer C (1991). Markov chain Monte Carlo mazimum likelihood. Computing Science and
Statistics:156.

Holland J (1975). Adaptation in Natural and Artificial Systems. University of Michigan
Press.

Liang F, Wong W (2000). Ewvolutionary Monte Carol:Applications to Cp Model Sampling
and Change Point Problem. Statistica Sinica 10:317.

Examples

## Load the data

data(dna.snp)

## Find the number of snps in the data set
p <- (dim(dna.snp)[2] - 2)

## Set the algorithm to start with SNPS 3,7, and 21.
start.snp <- rep(FALSE, p)
start.snp[c(3, 7)] <- TRUE

## Run algorithm for 100 iterations and save output to emc.out.

emc.out <- Gene.EMC(data=dna.snp, force=c("age"), fitness="AIC.BB",
b=p, a=1, start.snps=start.snp, n.iter=100, N=5,
tmax=5, tlone=1, gm=.25, display.acc=TRUE,
display.acc.ex=TRUE, cores=1)
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model.inc Image Plots for top SNP and Gene Inclusions

Description

This function allows the user to create image plots of the top SNPs and top Genes included
in the top models. For the SNP inclusion plots, the color of the inclusion block signifies
genetic mode of inheritance for the specified SNP in each of the modes with: Purple =
Log-Add., Red= Dom., Blue = Rec. SNPs and Genes are ordered based on marginal SNP
inclusion probabilities which are plotted on the right axis. The width of the inclusion blocks
are proportional to the posterior model probability that the SNP or Gene is included in.

Usage
model.inc(prob.out, num.models = 100, num.snps = 20, num.genes = 20,
inc.typ = "s", hide.name = FALSE, ...)
Arguments
prob.out output list from post.prob.
num.models the number of the top models to place on the x-axis.
num. snps If inc.type="s", the number of the top SNPs to place on the y-axis.
num. genes If inc.type="g”,the number of the top genes to place on the y-axis.
inc.typ specifies if we want to plot the SNP inclusion (”s”) or gene inclusion (7g”)
hide.name logical indicator determining if we should hide the specific gene and SNP
names.
General parameters for plotting functions
Author(s)

Melanie Wilson <maw27@stat.duke.edu>

Examples

## Load the emc.out files for one run of the dna.snp data (100,000
## iterations)

data(emc.out.1)

data(sim.info)

p <- dim(emc.out.1$which) [2]-1

## Calculate posterior summaries for the output of the Genetic EMC algorithm
post.prob.out <- post.prob(emc.out.l, sim.info, b=p)

## Plot the SNP Inclusions in the top 100 models for the top 20 SNPs
model.inc(post.prob.out, num.models=100, num.snps=20, inc.typ="s")

## Plot the Gene Inclusions in the top 100 models for the top 20 Genes
model.inc(post.prob.out,num.models=100,num.genes=6,inc.typ="g")
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mutation EMC: Mutation Step

Description
This function takes a current state of one of the chains of the population in the Genetic
EMC algorithm and performs the mutation step.

Usage

mutation(chain, pop, pop.fit, force, data, fitness, t , impute = impute,
b = NULL, a = 1, rec.mdl, burnin = TRUE)

Arguments

chain integer specifying which chain (or model) of the population to perform
the mutation on.

pop matrix specifying the current status of each chain of the population.

pop-fit vector of fitness values for each of the models specified in the current
population.

force character vector specify the variables to force in the models.

data data frame of the same form in Gene.EMC

fitness character string specifying the fitness function to use in the algorithm.

t temperature vector specifying the temperature value for each chain in the
population.

impute number of imputed data sets.

b If the fitness function is "AIC.BB”, the user must specify the value for the
beta hyper-parameter b.

a If the fitness function is "AIC.BB”, the user must specify the value for the
beta hyper-parameter a.

rec.mdl indicator vector that indicates which SNPs should not have a recessive
parameter since the power is too weak.

burnin integer indicating the length of the burnin.

Details

In the mutation step we are performing a Metropolis update on the population by choosing
a model, or current value of one of the chains and taking one of the SNP indicators and
mutating its state in the chosen model.

Value
This function outputs a list of the following values:
samp current status of the chain of the current population.

samp.fit fitness value for the model specified in the chain of the current population

mut.a indicator if the mutation proposal was accpeted.
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Author(s)

Melanie Wilson <maw?27@stat.duke.edu>

References
Geyer C (1991). Markov chain Monte Carlo mazimum likelihood. Computing Science and
Statistics:156.

Holland J (1975). Adaptation in Natural and Artificial Systems. University of Michigan
Press.

Liang F, Wong W (2000). Ewolutionary Monte Carol:Applications to Cp Model Sampling
and Change Point Problem. Statistica Sinica 10:317.

post.prob Calculates Global and Marginal Summaries

Description

This function calculates the global and marginal posterior probabilities and Bayes Factors
that give the evidence of there being an association in the overall set of SNPs of interest,
the individual genes of interest and the individual SNPs of interest.

Usage

post.prob(emc.out, sim.info, b = NULL, a = 1)

Arguments
emc.out Output from Gene.EMC
sim.info Vector of character strings giving the names of the genes for each of the
SNPs in the model, or a data frame that includes a column labeled "SNP”
and a column labeled "Gene”. This data frame may contain all SNPs in
the data, not just the ones in the model. SNPs must appear in the same
order that they appear in the input data frame for Gene. EMC.
b If the fitness function used in the Genetic EMC algorithm is "AIC.BB”
the user must specify the value of b for the beta hyper-parameter.
a If the fitness function used in the Genetic EMC algorithm is "AIC.BB”
the user must specify the value of a for the beta hyper-parameter.
Details

Global and marginal summaries are computed based on calculating the posterior prob-
abilities of each of the unique models that were visited in the Genetic EMC algorithm.
The global summaries included a posterior probability of association in the overall set of
SNPs and Bayes Factor for the hypothesis that there is an association in the overall set.
The marginal summaries are calculated at the gene and the SNP level. At the gene level,
posterior probabilities and Bayes Factors are computed for the overall evidence of at least
one of the SNPs within the gene of interest being associated. At the SNP level, posterior
probabilities and Bayes Factors are computed for the evidence of an association within the
given SNP and posterior probabilities of the most likely genetic mode of inheritance of the
SNP given that it is associated is computed (for the log-additive, dominant, and recessive
models).
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Value

The output of the function is a list of the following values:
Post.Model the posterior probability of each of the unique models visited by the Ge-
netic EMC algorithm

BF.Assoc matrix with the global posterior probability and Bayes Factor of an overall
association and prior odds of HO:Ha

Post.SNP matrix where each row gives the gene name, inclusion probability, proba-
bility of log-additive, dominate, and recessive genetic mode of inheritance
respectively, and the Bayes Factor for association for a given SNP.

Post.Gene matrix where each row gives the inclusion probability and Bayes Factor
for the evidence of an association for a given gene

Author(s)

Melanie Wilson <maw27@stat.duke.edu>

Examples

## Combine emc.out.l and emc.out.2 to get results from both rums.
data(emc.out.1, emc.out.2)
emc.out <- combine.EMC(list(emc.out.l, emc.out.2))

data(sim.info)
p <- dim(emc.out.1$which) [2] - 1

##Calculate Posterior Quantities
post.prob.out <- post.prob(emc.out, sim.info, b=p)

sim.info Associated Tag SNPs for Simulation

Description

Matrix giving the information on the 60 SNPs in the dna.snp.full data set, giving the
SNP rs number, the gene of the SNP, the assumed odds ratio of the SNP, the minor allele
frequency of the SNP and the assumed genetic model of the SNP.

Usage

data(sim.info)

Examples

data(sim.info)
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