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3.0 Linear Regression with Matrices

• Answer Questions

• Assumptions

• Maximum Likelihood Estimators

• A Second Proof of β̂

• Residuals

• Prediction and Confidence Intervals

• Bases and Projections

• More on the Hat Matrix
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3.1 Assumptions

Multiple linear regression assumes that:

• The vectors of explanatory variables xi ∈ IRp, i = 1, . . . , n, are not
random.

• Given xi, the response Yi is normally distributed.

• IE[Yi] = β0 + β1xi1 + · · ·+ βpxip.

• The variance of Yi, given xi, is σ2 (usually unknown, but the same
for all i).

• The Y1, . . . , Yn are independent given the x1, . . .xn.

The statistical model that satisfies these assumptions is called the
General Linear Model.
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In matrix notation, we write

y = Xβ + ϵ

where y is n× 1, X is n× (p+ 1), β is (p+ 1)× 1 and ϵ is n× 1.


y1

y2
...
yn

 =


1 x11 . . . x1p

1 x21 . . . x2p

... ... ...
1 xn1 . . . xnp




β0

β1

...
βp

+


ϵ1

ϵ2
...
ϵn



3



3.2 MLEs

In the general linear model, the distribution of the observations Yi has
density

f(yi) =
1

(2πσ2)1/2
exp

[
− 1

2σ2
(yi − β0 − β1xi1 − · · · − βpxip)

2

]
.

To see this, realize that the independence of the Yi values implies
their joint density is just the product of each density; i.e.,
f(y) =

∏n
i=1 f(yi), where each term in the product is normal with mean

β0 + β1xi1 + · · ·+ βpxip and common variance σ2.
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We want to find the maximum likelihood estimates of β0, . . . , βp.
Inspection of the joint density shows it is sufficient to find the estimates
that minimize the quadratic form

Q =
n∑

i=1

(yi − β0 − β1xi1 − · · · − βpxip)
2.

The values that minimize Q are sometimes called the Least Squares
Estimates, which here, but not in general, agree with the maximum
likelihood estimates.

To solve, find the partial derivatives ∂Q/∂βj for j = 0, . . . , p. Set these
partials to zero, giving p+ 1 equations in p+ 1 unknowns. Solving these
gives the estimates β̂0, . . . , β̂p.
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The Design Matrix is the n × (p + 1) matrix X whose ith row is
(1, xi1, . . . , xip) for i = 1, . . . n. The name comes from the fact that in
some multiple regressions, the experimenter gets to select the values of
the explanatory variables by design. When this is possible, one can learn
more efficiently about the relationship between the response variable and
the explanatory variables.

For now, assume that the set of p + 1 equations has a unique solution.
This implies the design matrix is full rank; i.e., has rank p+ 1.

The rank of an n×m matrix is

• the number of linearly independent rows, or

• the number of linearly independent columns, or

• the dimensions of the largest square submatrix that is invertible
(nonsingular).
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Some facts:

• Rank(AB) ≤ min{Rank(A),Rank(B)}.

• If A is n× n and has determinant equal to 0, then Rank(A) < n.

• If A is m× n, then A⊤ is the n×m transpose that turns the rows
into columns.

Let X denote the design matrix, β the true but unknown coefficients,
y the response vector, and β̂ the maximum likelihood estimates of the
coefficients. We shall show that

β̂ = (X⊤X)−1X⊤y.

Define the inverse A−1 as the square matrix such that
AA−1 = A−1A = I, the identity matrix that is symmetric with ones on
the diagonal and zeroes elsewhere.
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Proof: Write Q = (y −Xβ)⊤(y −Xβ). Then

∂Q

∂βk

= −2
n∑

i=1

xikyi + 2

p∑
j=0

βj

(
n∑

i=1

xikxij

)
.

Set the right-hand sides of the p+ 1 equations to zero, and then rewrite
the equations as X⊤Xβ = X⊤y. Because we assumed that X⊤X had
rank p+ 1, then from linear algebra we know it is invertible, and thus

β̂ = (X⊤X)−1X⊤y. ■

Let S2 =
∑n

i=1(yi − β̂0 − β̂1xi1 − · · · − β̂pxip)
2. Then one can show that

the maximum likelihood estimate of σ2 is σ̂2 = S2/n, but this is biased.
An unbiased estimate is σ̂2 = S2/(n− p− 1).
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Theorem: IE[β̂] = β.

Proof: IE[β̂] = (X⊤X)−1X⊤IE[y] = (X⊤X)−1X⊤(Xβ) = β.

Theorem: Var[β̂] = (X⊤X)−1σ2.

Proof: Recall, from linear algebra, that if A = BC, then A⊤ = C⊤B⊤.

Var[β̂] = Var[(X⊤X)−1X⊤y]

= (X⊤X)−1X⊤Var[y][(X⊤X)−1X⊤]⊤

= (X⊤X)−1X⊤σ2IX(X⊤X)−1

= (X⊤X)−1σ2.

This uses the linear algebra fact that X⊤X is symmetric, so its inverse
is symmetric, so the transpose of the inverse is itself.
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3.3 A Proof of β̂

Some facts:

• If y = Ax, then ∂y
∂x = A.

• If A is symmetric and y = x⊤Ax, then ∂y
∂x = 2x⊤A.

• If A is symmetric, the derivative of the transpose is the transpose of
the derivative.

• (AB)⊤ = B⊤A⊤.

The rules for differentiating vectors and matrices look very much like the
usual calculus for univariate quantities.
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Theorem: If X has rank p+ 1, then β̂ = (X⊤X)−1X⊤y.

Proof: Recall that Q = (y − Xβ)⊤(y − Xβ). Thus
Q = y⊤y − y⊤Xβ − β⊤X⊤y + β⊤X⊤Xβ. Taking the derivative of Q
with respect to β and using the facts shows that the derivative of the
first term is zero, the second term goes to y⊤X, the third term goes to
(X⊤y)⊤ = y⊤X, and the last term has derivative β⊤X⊤X.

Set the derivative to zero and solve. One gets 0 = −2y⊤X + 2β⊤X⊤X

so β⊤(X⊤X) = y⊤X. Take the transpose of both sides to get
X⊤Xβ =X⊤y. Since X has rank p+ 1, then X⊤X is invertible, and so
β̂ = (X⊤X)−1X⊤y. ■
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3.4 Residuals

What else can we do with matrix algebra in regression?

• Derive properties of regression diagnostics, such as residuals.

• Calculate prediction intervals for outcomes at a new value x.

• Interpret the MLEs geometrically.

The ith residual ϵ̂i is the difference between the actual value of yi in the
training sample and the predicted value x⊤

i β̂. In matrix notation, this is

ϵ̂ = y − ŷ

= y −X(X⊤X)−1X⊤y

= (I −X(X⊤X)−1X⊤)y.
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Theorem: IE[ϵ̂] = 0.

Proof: ϵ̂ = (I −X(X⊤X)−1X⊤)y so

IE[ϵ̂] = IE[(I −X(X⊤X)−1X⊤)y]

= (I −X(X⊤X)−1X⊤)IE[y]
= (I −X(X⊤X)−1X⊤)Xβ

= Xβ −X(X⊤X)−1X⊤ ∗Xβ

= Xβ −Xβ

= 0. ■

Of course, this is completely unsurprising.
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Consider a random vector y ∈ IRn with mean µ. Its covariance matrix,
Cov(y), is Σ where

Σ = IE[(y − µ)(y − µ)⊤].

This definition does not require multivariate normality.

Here Σ is n × n and symmetric; i.e., Σ = Σ⊤. Its diagonal entries are
the the variances of the i random variable yi. The (i, j)th entry is the
covariance between the random variables yi and yj.

Theorem: Σ = IE[y y⊤]− µµ⊤.

The proof is an easy exercise. The logic is exactly like the corresponding
univariate case, with Var[X] = IE[X2]− (IE[X])2.
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If A is not random, it is pretty clear that IE[Ay] = AIE[y] = Aµ. For
the covariance of a matrix product, it is a little more interesting.

Theorem: Cov(Ay) = AΣA⊤.

Proof: Use the definition.

Cov(Ay) = IE[Ayy⊤A⊤]− IE[Ay](IE[Ay])⊤

= AIE[yy⊤]A⊤ −AIE[y]IE[y]⊤A⊤

= A
(
IE[yy⊤]− IE[y]IE[y]⊤

)
A⊤

= ACov(y)A⊤. ■

Note that in the second line we used the fact that (AB)⊤ = B⊤A⊤.
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Some facts: The inverse of a symmetric matrix is symmetric. And X⊤X

is symmetric, since its transpose equals itself.

Let H = X(X⊤X)−1X⊤. This called the hat matrix since ŷ = Hy.

Theorem: Cov(r) = σ2(I −H).

Proof: Since r = (I −H)y, then

Cov(r) = (I −H)Cov(y)(I −H)⊤

= (I −H)σ2I(I −H)⊤

= σ2(I −H)(I⊤ −H⊤)

= σ2(II⊤ − IH⊤ −HI⊤ +HH⊤).

Note that I⊤ = I and that HH⊤ = X(X⊤X)−1X⊤[X(X⊤X)−1X⊤]⊤

which simplifies to H . ■
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One implication of the theorem is that the variance of the ith residual is
(1 − hii)σ

2, which would by estimated by (1 − hii)σ̂
2, where σ̂2 is the

unbiased estimator

σ̂2 =
1

n− p− 1

n∑
i=1

(yi − ŷi)
2.

The standardized residual is (yi − ŷi)/
√
(1− hii)σ̂. This follows a t

distribution with n− p− 1 degrees of freedom.

For example, one could use the standardized residual to decide whether
an observation might be an outlier.
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3.5 Confidence and Prediction Intervals

Suppose we want to predict the response Y for a new vector of covariates
xnew. The point estimate is easy: x⊤newβ̂.

The variance depends upon whether we want to estimate the average
response for an observation with the value xnew (i.e., the location of
response on the estimated hyperflat) or the value of an individual with
xnew.

This is the distinction we saw previously for simple linear regression
between setting a confidence interval on the response β̂0 + β̂1x and a
prediction interval on an individual that has explanatory variable x.

The variance for the prediction interval should be larger, since the
individual is unlikely to have the average value.
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For the average response at xnew we can calculate

Var(x⊤newβ̂) = x⊤newVar(β̂)(x⊤new)⊤

= x⊤newσ2(X⊤X)−1(x⊤new)⊤

= σ2x⊤new(X⊤X)−1xnew.

For σ2, we use the usual estimate

σ̂2 =
1

n− p− 1

n∑
i=1

(yi − ŷi)
2.

The two-sided (1− α)100% confidence interval is just

U,L = x⊤newβ̂ ± σ̂

√
x⊤new(X⊤X)−1xnew × tn−p−1,α/2.
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For predictions on individuals, there are two sources that contribute to
the variance:

• the variance due to estimating the average response

• the variance of an individual’s value around the average response.

The prediction interval must combine both:

Var(ŷnew,ind) = Var(ŷnew + ϵnew)

= Var(ŷnew) + Var(ϵnew)

= σ2x⊤new(X⊤X)−1xnew + σ2

= σ2(x⊤new(X⊤X)−1xnew + 1).

This uses the fact that ŷnew and ϵnew are independent.

20



The ŷnew and ϵnew are independent since

• ϵnew was not used in fitting the model and

• the general linear model assumes that the errors (ϵs) are independent.

Therefore the two-sided (1− α)100% prediction interval is just

U,L = x⊤newβ̂ ± σ̂

√
1 + x⊤new(X⊤X)−1xnew × tn−p−1,α/2.

For the case of simple linear regression, with one explanatory variable, it
is easy to show that the confidence interval formula and the prediction
interval formula agree with the formulae given in Lecture 2. It just takes
some algebra.
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3.6 Bases and Projections

A basis of a vector space IRp is a set of vectors x1, . . . ,xp such that any
vector v ∈ IRp can be expressed as v =

∑p
i=1 aixi but none of the xi is a

linear combination of the other basis vectors.

For example, a standard choice of basis is (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0),
(0, 0, 1, . . . , 0) up to (0, 0, 0, . . . , 1). In fact, this is an orthonormal basis
since each member is orthogonal to the others (i.e., had dot product
equal to zero) and is normalized (has unit length).

A subspace of IRp is IRq for q < p. Any vector in IRq can be written as a
linear combination of q basis vectors.

22



A projection matrix P is a square matrix such that P 2 = P . For
example, the projection matrix

P =

 0 1

0 1


projects IR2 onto the subspace IR1 corresponding to the line x1 = x2,
since P (x1, x2)

⊤ = (x2, x2)
⊤.

Note: The line x1 = x2 is a proper subspace of IR2. It contains 0, and
(1, 1)⊤ is a basis element.

Note: It makes sense that P 2 = P since if one applies the same
projection twice, nothing changes.
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A projection matrix is symmetric if and only if the vector space
projection is orthogonal. In an orthogonal projection of IRp onto IRq

for q < p, any vector v can be written as v = v1 + v2 where v1 = Pv

and v2 = (I − P )v.

This implies that the dot product v⊤
1 v2 = 0.

Consider the projection matrix

P̃ =

 1 0

0 0

 .

This is symmetric and projects (x1, x2)
⊤ onto (x1, 0)

⊤. And it is an
orthogonal projection since

(x1, x2)
⊤ = P̃ (x1, x2)

⊤ + (I − P̃ )(x1, x2)
⊤ = (x1, 0)

⊤ + (0, x2)
⊤

with < (x1, 0), (0, x2) >= 0.
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In contrast, P is not an orthogonal projection since

P (x1, x2)
⊤ + (I − P )(x1, x2)

⊤ = (x2, x2)
⊤ + (x1 − x2, 0)

⊤

and < (X2, x2), (x1 − x2, 0 > ̸= 0.

The orthogonal projection of the hat matrix minimizes the sum of the
squared vertical distances onto the subspace. Recall that in multiple
linear regression we assume the explanatory variables are measured
without error, and thus we want to minimize the sum of the squared
vertical distances.

The hat matrix is a projection.

H2 = X(X⊤X)−1X⊤ ×X(X⊤X)−1X⊤ = X(X⊤X)−1X⊤ = H .

But to what subspace does it project? To the column space of X.
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The column space C(A) is the space spanned by the columns of A. It
is formed by taking all possible linear combinations of the columns of A.
One views the columns of A as the basis elements of the space. If A has
rank n, then the column space has dimension n.

The null space of an m× n matrix A is the space of vectors in IRn such
that Ax = 0. If A is invertible, then the null space is just 0. For

P =

 0 1

0 1

 ,

the null space is {(x1, 0)
⊤}.

The row space R(A) is the space formed by taking all possible linear
combinations of the rows of A. If A has rank m, then the row space has
dimension m.
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Some properties of orthogonal projections H :

• v1 = Hv, v2 = (I −H)v and v = v1 + v2.

• v1 is orthogonal to v2, so their dot product is zero. We write this as
v1 ⊥ v2.

• H and I −H are symmetric, and their squares equal themselves.

• In the hat matrix, if X is n× (p+ 1) of rank p+ 1, then H has rank
p+ 1.

• In the hat matrix, the eigenvalues of H consist of p + 1 ones and
n− p− 1 zeroes.

• HX = X, (I - H) X = 0.

• For the hat matrix, the trace of H equals the rank of X.
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This image uses the notation ⊥ v to denote the component of u that
is orthogonal to the orthogonal projection of u onto the subspace
containing v. In this class, we shall usually denote this by v⊥.
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More results from linear algebra:

Theorem: A vector that is orthogonal to the column space of an n×m

matrix X lies in the null space of X⊤.

Proof: Let u be orthogonal to the column space of an n ×m matrix
X. So for any vector v in the column space of X, v⊤u = 0. Let
x1,x2, . . . ,xm be the columns of X. Each xi is in the column space of
X, so x⊤

i u = 0 ∀i. Since the rows of X⊤ are the columns of X, then u

lies in the null space of X⊤. ■
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Theorem: A vector in the column space of an n ×m matrix X is
orthogonal to a vector in the null space of X⊤.

Proof: Let v be in the column space of X and u be in the null space of
X⊤. Let x1,x2, . . . ,xm be the columns of X. Since v the columns of X
are a basis for the column space, then there exists a such that

v =
m∑
i=1

aixi = Xa.

So the inner product u⊤v = uXa = (X⊤u)a which is zero since we
previously showed that u is in the null space of X⊤. ■.

Note: Thus β̂ is obtained by projecting y onto the column space of X.
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3.7 More on the Hat Matrix

The hat matrix projects y ∈ IRn onto the column space of X, which has
dimension p + 1. That imposes p + 1 linear constraints on what the
response can be, accounting for the loss of p+ 1 degrees of freedom.

The diagonal entry of the hat matrix lies in [0, 1] since H2 = H . A
diagonal element of H is hii. The corresponding diagonal element of H2

is h⊤
i hi =

∑
h2
ij = h2

ii +
∑

i ̸=j h
2
ij. Thus h2

ii ≤ hii so 0 ≤ hii ≤ 1.

An eigenvalue of H satisfies Hx = λx. Since H2x = Hx = λHx =

λ2x, it follows that λ = λ2. An eigenvalue of a projection matrix is zero
or one.
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