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Abstract

To limit the risks of disclosures when releasing data to the public, it has been suggested that
statistical agencies release multiply imputed, synthetic microdata. For example, the released mi-
crodata can be fully synthetic, comprising random samples of units from the sampling frame with
simulated values of variables. Or, the released microdata can be partially synthetic, comprising
the units originally surveyed with some collected values, e.g. sensitive values at high risk of
disclosure or values of key identi�ers, replaced with multiple imputations. This article presents
inferential methods for synthetic data for multi-component estimands, in particular procedures for
Wald and likelihood ratio tests. The performance of the procedures is illustrated with simulation
studies.
c© 2004 Published by Elsevier B.V.
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1. Introduction

When releasing data to the public, statistical agencies seek to provide detailed data
while limiting disclosures of respondents’ information. Typical strategies for disclo-
sure limitation include recoding variables, swapping data, or adding random noise to
data values (Willenborg and de Waal, 2001). However, these methods can distort rela-
tionships among variables in the data set. They also complicate analyses for users: to
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analyze perturbed data properly, users should apply the likelihood-based methods de-
scribed by Little (1993) or the measurement error models described by Fuller (1993).
These are diCcult to use for non-standard estimands and may require analysts to learn
new statistical methods and specialized software programs.

An alternative approach is to release multiply imputed, synthetic microdata. This
approach was �rst suggested by Rubin (1993), who proposed that agencies (i) randomly
and independently sample units from the sampling frame to comprise each synthetic
data set, and (ii) impute unknown data values for units in the synthetic samples using
models �t with the original survey data. These are called fully synthetic data sets.
Inferences for scalar estimands from fully synthetic data sets can be made using the
methods developed by Raghunathan et al. (2003), whose rules for combining point and
variance estimates diFer from the rules for multiple imputation of missing data (Rubin,
1987). Other authors suggest releasing data sets comprising the units originally surveyed
with some collected values, such as sensitive values at high risk of disclosure or values
of key identi�ers, replaced with multiple imputations (Little, 1993; Kennickell, 1997;
Abowd and Woodcock, 2001; Liu and Little, 2002). These are called partially synthetic
data sets. Inferences for scalar estimands from partially synthetic data sets can be made
using the methods developed by Reiter (2003), whose rules for combining point and
variance estimates again diFer from those of Rubin (1987) and also from those of
Raghunathan et al. (2003). Other variants and discussions of synthetic data approaches
appear in Fienberg et al. (1996, 1998), Dandekar et al. (2002a, b), Franconi and Stander
(2002, 2003), Polettini et al. (2002), Polettini (2003), and Reiter (2002, 2004).

Releasing synthetic data is an appealing approach to disclosure limitation. It can pro-
tect con�dentiality, since identi�cation of units and their sensitive data can be diCcult
when some or all of the values in the released data are not actual, collected values.
And, with appropriate estimation methods based on the concepts of multiple imputation
(Rubin, 1987), it can allow data users to make valid inferences for a variety of esti-
mands using standard, complete-data statistical methods and software. Other attractive
features of synthetic data are described by Rubin (1993), Little (1993), Raghunathan
et al. (2003), and Reiter (2003, 2004).

This paper presents methods for testing hypotheses about multi-component esti-
mands from multiply imputed synthetic data, speci�cally procedures for performing
Wald and likelihood ratio tests of multi-component null hypotheses. This extends
the work of Raghunathan et al. (2003) and Reiter (2003), who develop inferential
methods for scalar estimands but do not consider multi-component hypothesis test-
ing. One particularly appealing feature of the likelihood ratio tests developed here is
that users can test multi-component hypotheses without estimated covariance matrices,
i.e. they just need to evaluate functions of the likelihood. This feature is lacking in
simple multivariate generalizations of the formulas of Raghunathan et al. (2003) and
Reiter (2003).

The procedures are based on the theory of signi�cance testing for multiple imputation
for missing data (Li, 1985; Raghunathan, 1987; Rubin, 1987; Li et al., 1991; Meng
and Rubin, 1992), but the test statistics and reference distributions for the synthetic
data procedures diFer from their multiple imputation counterparts. The procedures for
both fully and partially synthetic data are presented in Section 2 and derived in Section
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3. Section 4 describes results of simulation studies that illustrate how these procedures
can have near nominal signi�cance levels.

2. Signi�cance tests from synthetic data

In this paper, we index quantities for fully synthetic data with a subscript “f” and
quantities for partially synthetic data with a subscript “p.” Suppose m synthetic data
sets are released. It is assumed that imputations are drawn from appropriate poste-
rior predictive distributions, conditional on the observed data. Details on generating
fully and partially synthetic data are provided in Raghunathan et al. (2003) and Reiter
(2003), respectively.

Using these m data sets, some analyst seeks to test the null hypothesis Q = Q0 for
some k-component estimand Q, for example to test if k regression coeCcients equal
zero. In each synthetic data set di, for i = 1; : : : ; m, the analyst estimates Q with some
point estimator q and estimates the variance of q with some estimator v. It is assumed
that the analyst determines the q and v as if (i) for fully synthetic data, the di are
simple random samples from the sampling frame (Raghunathan et al., 2003), and (ii)
for partially synthetic data, the di are samples from the sampling frame taken by the
original sampling design (Reiter, 2003).

For i = 1; : : : ; m, let qi and vi be, respectively, the values of q and v in syn-
thetic data set di. The following multivariate quantities are needed for inferences for
multi-component Q:

Lqm =
m∑
i=1

qi=m; (1)

bm =
m∑
i=1

(qi − Lqm)(qi − Lqm)t =(m− 1); (2)

Lvm =
m∑
i=1

vi=m: (3)

The Lqm is the average of the synthetic point estimates; the bm is the covariance matrix
of these point estimates; and, the Lvm is the average across synthetic data sets of the
estimated covariance matrices. These quantities are needed for both fully and partially
synthetic data inferences.

2.1. Wald tests from synthetic data

When the entire k× k covariance matrix Lvm is available, analysts can use Wald-type
test statistics to test Q = Q0. The test statistics for fully and partially synthetic data
are, respectively,

Sf = ( Lqm − Q0)t Lv−1
m ( Lqm − Q0)=[k(rf − 1)]; (4)

Sp = ( Lqm − Q0)t Lv−1
m ( Lqm − Q0)=[k(1 + rp)]; (5)
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where

rf = (1 + 1=m) trace(bm Lv−1
m )=k; (6)

rp = (1=m) trace(bm Lv−1
m )=k: (7)

The test statistics in (4) and (5) have the familiar quadratic forms of Wald statistics,
but additionally there are correction factors rf − 1 or 1 + rp in the denominators. To
motivate the need for these correction factors, and to see why they diFer for the two
types of synthetic data, it is instructive to consider the case where Q is scalar (k = 1).
For fully synthetic data, Raghunathan et al. (2003) show that a reasonable estimate
of the posterior variance of scalar Q is Tf = (1 + 1=m)bm − Lvm. Hence, for scalar Q,
the rf − 1 = Tf = Lvm, so that rf − 1 estimates the increase in the variance of Q due to
using fully synthetic data, relative to Lvm. Similarly, for partially synthetic data, Reiter
(2003) shows that Tp = (1=m)bm + Lvm is a reasonable posterior variance estimate for
scalar Q, so that 1 + rp = Tp= Lvm. When Q is multivariate, the rf − 1 and 1 + rp can be
interpreted as the average relative increases in variance across the components of Q.
From these interpretations, we can see that the rf − 1 and 1 + rp adjust the quadratic
form in (4) and (5) so that the test statistic is based on an appropriate estimate of the
variance of Q.

Reference distributions for Sf and Sp are approximated by F-distributions, Fk;w(rf )

and Fk;w(rp), with

w(rf ) = 4 + (t − 4)(1 − (1 − 2=t)=rf )2; (8)

w(rp) = 4 + (t − 4)(1 + (1 − 2=t)=rp)2; (9)

where t = k(m − 1). The p-value for testing Q = Q0 in fully synthetic data is Pf =
Pr(Fk;w(rf ) ¿Sf ), and the p-value for testing Q = Q0 in partially synthetic data is
Pp = Pr(Fk;w(rp) ¿Sp). The w(rf ) and w(rp) diFer because of diFerences in the Taylor
series approximations used to derive the reference distributions.

2.2. Log-likelihood ratio tests from synthetic data

As observed by Meng and Rubin (1992), it may be cumbersome to work with Lvm for
large k, and some software packages do not make readily available covariance matrices
of parameter estimates. It is desirable to develop alternative signi�cance tests based on
the sets of log-likelihood ratio test statistics from the m synthetic data sets, which are
easily computed for common models like those from exponential families.

These tests are derived using the strategy of Meng and Rubin (1992), in which we
(i) �nd a statistic asymptotically equivalent to Sf based only on values of the Wald
statistics calculated in each synthetic data set; (ii) use the asymptotic equivalence of
Wald and likelihood ratio test statistics to de�ne the likelihood ratio test statistic; and,
(iii) use a reference F distribution like the one for the Wald tests. The key to this
strategy is to approximate Sf and Sp, as well as w(rf ) and w(rp), without using Lvm.
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Following the notation of Schafer (2000), let  be the vector of parameters in the
analyst’s model, and let  ̂ i be the maximum likelihood estimate of  obtained from
di. Suppose the user is interested in a k-dimensional function, Q( ), and forms the
hypothesis that Q( ) =Q0. Let  ̂ 0i be the maximum likelihood estimate of  obtained
from di subject to Q( ) = Q0. The log-likelihood ratio test statistic associated with di

is

li = 2 log f(di |  ̂ i) − 2 log f(di |  ̂ 0i) (10)

and their average is Ll =
∑m

i=1 li=m. Let the averages of the maximum likelihood esti-
mates be L =

∑m
i=1  ̂ i=m and L 0 =

∑m
i=1  ̂ 0i=m. Following Meng and Rubin (1992),

we also use the average of the log-likelihood ratio test statistics evaluated at L and
L 0:

LL = (1=m)
m∑
i=1

(2 log f(di | L ) − 2 log f(di | L 0)): (11)

The likelihood ratio test statistics for fully and partially synthetic data are

Ŝ f = LL=(k(r̂f − 1)); (12)

Ŝp = LL=(k(r̂p + 1)); (13)

where r̂f = ((m + 1)=t)( Ll− LL) and r̂p = (1=t)( Ll− LL).
In (12) and (13), the LL essentially is an asymptotically equivalent replacement for

the quadratic form in the Wald statistics in (4) and (5). The r̂f and r̂p replace rf and
rp, respectively, so that r̂f −1 and 1+ r̂p adjust for the relative increase in variance due
to using synthetic data. Importantly, these new quantities do not require knowledge of
Lvm to make the adjustments.

The reference distributions for Ŝ f and Ŝp are Fk;w(r̂f ) and Fk;w(r̂p), where the w(r̂f )
and w(r̂p) are de�ned as in (8) and (9) using r̂f and r̂p.

3. Derivation of the tests

This section shows derivations of the tests in Section 2. The derivations are based
on the theory for large sample signi�cance tests in multiple imputation for missing data
(Li, 1985; Raghunathan, 1987; Rubin, 1987; Li et al., 1991; Meng and Rubin, 1992).
For both fully and partially synthetic data settings, let dm = {d1; d2; : : : ; dm} represent
the collection of released synthetic data sets.

3.1. Tests for fully synthetic data

It is helpful to conceive of the generation of each fully synthetic data set di as a
two step process, as done in Raghunathan et al. (2003). First, the imputer imputes
values for all units not in the original survey, thereby creating a completed-population
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Di. Then, the imputer takes a simple random sample from Di to obtain di. Let Qi be
the completed-population value of Q obtained from Di, and let

LQm =
m∑
i=1

Qi=m; (14)

Bm =
m∑
i=1

(Qi − LQm)(Qi − LQm)t =(m− 1): (15)

Extending the Bayesian theory of Raghunathan et al. (2003) for scalar Q to multivariate
Q, we obtain

(Q | LQm; Bm) ∼ tm−1( LQm; (1 + 1=m)Bm); (16)

( LQm |dm) ∼ N( Lqm; Lvm=m); (17)

((m− 1)bm(Bm + Lvm)−1 |dm) ∼ Wishartm−1: (18)

The data do not need to be multivariate normal for this theory to hold; rather, the pos-
terior distribution of the population estimand Q needs to be normal (for large m). This
is reasonable for many common estimands, including population means and regression
coeCcients, across a wide variety of data distributions.

Posterior inferences for multivariate (Q |dm) are derived by integrating the product
of (16)–(18) with respect to LQm and Bm. The integral can be simpli�ed considerably
by replacing (16) with

(Q | LQm; Bm) ∼ N( LQm; (1 + 1=m)Bm); (19)

so that

(Q |Bm; dm) ∼ N( Lqm; (1 + 1=m)Bm + Lvm=m): (20)

This simpli�cation should be reasonable for relatively large m.
Conditional on Bm, a p-value for a signi�cance test of Q = Q0 is obtained from the

Wald test statistic associated with (20) and a �2
k reference distribution. However, the

analyst does not know Bm and so must integrate the expression for the p-value, Pf ,
with respect to Bm. The resulting integral is

Pf =
∫

Pr(�2
k ¿ ( Lqm − Q0)t((1 + 1=m)Bm + Lvm=m)−1( Lqm − Q0))

×f(Bm |dm) dBm: (21)

where �2
k is a chi-squared random variable on k degrees of freedom. The integral in (21)

can be evaluated numerically, but it is desirable to have a closed-form approximation.
Following Rubin (1987) and Li et al. (1991), we assume that Bm is proportional to
Lvm, i.e. Bm = Rf Lvm where Rf is a scalar, so that

Pf =
∫

Pr(�2
k ¿ ( Lqm − Q0)t Lv−1

m ( Lqm − Q0)((1 + 1=m)(1 + Rf ) − 1)−1)

×f(Rf |dm) dRf : (22)
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The proportionality assumption may be reasonable in many fully synthetic data settings,
because all variables have 100% simulated values.

Using (18) and standard multivariate normal theory

(k(m− 1)(trace(bm Lv−1
m )=k)=(1 + Rf ) |dm) ∼ �2

k(m−1): (23)

Substituting (23) into (22), and using rf as de�ned in (6) and t = k(m− 1), we obtain

Pf = Pr(�2
k ¿ ( Lqm − Q0)t Lv−1

m ( Lqm − Q0)(rf t=�2
t − 1)−1) (24)

= Pr((�2
k =k)[(rf t=�2

t − 1)=(rf − 1)]¿Sf ): (25)

Following Li et al. (1991), we approximate the distribution of (�2
k =k)[(rf t=�2

t −1)=(rf−
1)] as a multiple of an F distribution, �Fk;w. The approximation matches the �rst
two moments of Fk;w with the �rst two moments of the Taylor series expansion of
(�2

k =k)[(rf t=�2
t − 1)=(rf − 1)]. The series is expanded in 1=�2

t around its expectation
1=(t − 2) as follows:

�Fk;w ≈ (�2
k =k)[(rf t=(t − 2) − 1)=(rf − 1)]

+ (�2
k =k)[rf t=(rf − 1)](1=�2

t − 1=(t − 2)); (26)

E(�Fk;w) = �w=(w − 2) ≈ (rf t=(t − 2) − 1)=(rf − 1); (27)

E(�2F2
k;w) = �2(w=k)2k(k + 2)=[(w − 2)(w − 4)]

≈ (k(k + 2)=k2)([(rf t=(t − 2) − 1)=(rf − 1)]2

+ [rf t=(rf − 1)]2(2=[(t − 2)2(t − 4)])): (28)

Solving, we obtain � = (1− 2=w)(rf t=(t− 2)− 1)=(rf − 1), and w = w(rf ) as de�ned in
(8). Setting � = 1, as it will be approximately for large t, results in Fk;w(rf ) of Section
2.

Likelihood ratio tests can be derived using the strategy in Meng and Rubin (1992),
namely (i) �nd a statistic asymptotically equivalent to Sf based only on values of the
Wald statistics from each synthetic data set; (ii) use the asymptotic equivalence of
Wald and likelihood ratio test statistics to de�ne the likelihood ratio test statistic; and,
(iii) use a reference F distribution like the one for the Wald tests.

To take the �rst step, we require two diFerent averages of the synthetic data Wald
statistics

Lw = (1=m)
m∑
i=1

(qi − Q0)tv−1
i (qi − Q0); (29)

LW = (1=m)
m∑
i=1

( Lqm − Q0)tv−1
i ( Lqm − Q0): (30)

Using arguments like those in Rubin (1987, pp. 99–100), a statistic asymptotically
equivalent to Sf is

( Lw=k − rf (m− 1)=(m + 1))=(rf − 1): (31)
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To verify this, we assume without loss of generality (Rubin, 1987, p. 100) that Q0 = 0
and Lv−1

m is a k × k identity matrix. Then,

Sf = (rf − 1)−1 Lqm Lqt
m=k (32)

and

Lw =
m∑
i=1

qiqt
i =m = Lqm Lqt

m +
m∑
i=1

(qi − Lqm)(qi − Lqm)t =m

= Lqm Lqt
m + (m− 1)trace(Bm)=m

= Lqm Lqt
m + (m− 1)krf =(m + 1): (33)

Substituting (33) for Lw into (31) obtains (32).
The rf de�ned in (6) requires trace(bm Lv−1

m ), which we do not want to use when
deriving these tests. An expression for rf that relies only on Wald statistics is obtained
by setting (31) equal to (4), resulting in

r̃f = (m + 1)(1=t)( Lw − LW ): (34)

Here, LW is used to approximate ( Lqm −Q0)t Lv−1
m ( Lqm −Q0) in (4). Using LW and r̃f , we

can re-express Sf as the asymptotically equivalent

S̃ f = LW=k(r̃f − 1): (35)

Taking step 2 of the Meng and Rubin (1992) strategy, we use the asymptotic equiva-
lence of Wald and likelihood ratio test statistics to replace Lw with Ll and LW with LL in
(34) and (35). The resulting test statistic is Ŝ f as de�ned in (12). Since Fk;w(rf ) is the
reference distribution for the Wald statistic, we use Fk;w(r̂f ) as the reference distribution
for the asymptotically equivalent Ŝ f .

3.2. Tests for partially synthetic data

The derivations for partially synthetic data follow similarly and hence are presented
with less detail. Extending the results in Reiter (2003) for scalar Q to multi-component
Q,

(Q |dm; B) ∼ N( Lqm; B=m + Lvm); (36)

((m− 1)bmB−1 |dm) ∼ Wishartm−1; (37)

where B = Var(qi |D). The data need not be multivariate normal; only the posterior
distribution of Q need be. Posterior inferences for (Q |dm) are obtained by integrating
the product of (36) and (37) over B.

Assuming that B = Rp Lvm, where Rp is a scalar, the closed-form approximation for
the p-value for the Wald test of Q = Q0 is

Pp =
∫

Pr(�2
k ¿ ( Lqm − Q0)t Lv−1

m ( Lqm − Q0)(Rp=m + 1)−1)f(Rp |dm) dRp: (38)

Using (37) and the assumption B = Rp Lvm,

(mrpt=Rp |dm) ∼ �2
t ; (39)
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where rp is as de�ned in (7), so that (38) becomes

Pp = Pr(�2
k ¿ ( Lqm − Q0)t Lv−1

m ( Lqm − Q0)(rpt=�2
t + 1)−1) (40)

= Pr((�2
k =k)[(rpt=�2

t + 1)=(rp + 1)]¿Sp): (41)

The reference distribution is obtained as in the fully synthetic data Wald test by match-
ing the �rst two moments of (�2

k =k)[(rpt=�2
t + 1)=(rp + 1)] to a multiple of an Fk;w

distribution. The resulting value for w is given in (9). The likelihood ratio test can be
derived using the methods outlined in Section 3.1.

4. Simulation studies

This section illustrates the performance of these signi�cance tests using simulation
studies. Section 4.1 describes a study in which the imputer generates fully synthetic
data, and the analyst uses Sf as the test statistic. Section 4.2 describes a study in which
the imputer generates partially synthetic data for all values of one survey variable,
leaving the others at their observed values, and the analyst uses Ŝp as the test statistic.
For illustrations, the simulations use arti�cial data and correct posterior distributions
for imputations. Of course, in real settings the correct imputation model typically is
not known and must be estimated using the observed data and subject-matter expertise.
For all simulations, the population sizes are considered in�nite so that �nite population
correction factors are ignored.

4.1. Fully synthetic data

Each observed data set, D, comprises n = 1000 multivariate observations drawn
randomly from X ∼ N(0; "k), where X =(X0; X1; : : : ; Xk) and "k equals a (k+1)×(k+1)
identity matrix. The simulation uses three dimension scenarios, k ∈ (2; 10; 20), and three
imputation scenarios, m∈ (5; 10; 20). All di comprise 1000 fully synthetic units, with
values drawn from the standard Bayesian posterior predictive distribution, f(X |D),
using Sat priors (see Gelman et al., 1995, Chapter 3).

For each D and attached synthetic data dm, we �t the regression of X0 on (X1; : : : ; Xk).
We then test the null hypotheses that all k predictors in the regression have coeCcients
equal to zero, using the p-values for the signi�cance test based on Sf and Fk;w(rf ) as
described in Section 2. The simulation is repeated independently 10,000 times for each
of the nine combinations of k and m. Table 1 displays the percentages of simulated
p-values less than # = 0:10, 0.05, and 0.01. The procedures are well calibrated, with
most simulated levels within 1% of their corresponding # levels. The procedure is
least eFective when k = 2 and m = 5. This suggests it may be possible to improve
the procedures by developing reference distributions that do not rely on the normal
approximations used in (19) and (20). This is an area for further research.
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Table 1
Simulated signi�cance levels for fully synthetic data

Scenario # = 0:10 # = 0:05 # = 0:01

m = 5
k = 2 0.118 0.072 0.025
k = 10 0.098 0.044 0.006
k = 20 0.098 0.047 0.006

m = 10
k = 2 0.115 0.065 0.019
k = 10 0.097 0.045 0.007
k = 20 0.102 0.051 0.009

m = 20
k = 2 0.108 0.056 0.010
k = 10 0.102 0.048 0.010
k = 20 0.101 0.055 0.010

Each simulated level is based on 10,000 independent simulation runs.

4.2. Partially synthetic data

Each observed data set, D, comprises n= 1000 values of three categorical variables,
(Y1; Y2; Y3), generated from the following distributions:

Pr(Y1 = y) = 0:25; y∈{1; 2; 3; 4}; (42)

Pr(Y2 = 1) = e−1+0:5Y1=(1 + e−1+0:5Y1 ); Pr(Y2 = 0) = 1 − Pr(Y2 = 1); (43)

Pr(Y3 = 1) = eg(Y1 ;Y2)=(1 + eg(Y1 ;Y2)); Pr(Y3 = 0) = 1 − Pr(Y3 = 1); (44)

where g(Y1; Y2) = I(Y1 = 1) + 0:5I(Y1 = 2) − 0:5I(Y1 = 3) − I(Y1 = 4) − 0:5I(Y2 = 0) +
0:5I(Y2 = 1), and the notation I(: : :) represents an indicator variable that equals one
when the expression in (: : :) is true and equals zero otherwise. We plan to test the
null hypothesis that the coeCcients of the interactions between the levels of Y1 and Y2

equal zero, which is true in this simulation design, and to test the null hypothesis that
the coeCcients of Y1 equal zero, which is not true in this simulation design.

We generate partially synthetic data to replace all of Y3, leaving Y1 and Y2 at their
observed values. To generate synthetic data, we use the posterior predictive distribution
f(Y3 |Y1; Y2) which is determined as follows. Let ij index the units with Y1 = i and
Y2=j; let nij be the number of units in category ij; and, let cij be the number of units in
category ij with Y3 =1. For all ij, assume (cij | *ij) ∼ Bin(nij; *ij), and *ij ∼ Beta(1; 1).
To draw Y3,

1. For all ij, draw *ij from its posterior distribution, *ij ∼ Beta(cij + 1; nij − cij + 1).
2. Draw Y3 for each unit in category ij from Bernoulli(*ij).
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Table 2
Simulated signi�cance levels for saturated versus independence models

Scenario # = 0:10 # = 0:05 # = 0:01

m = 5 0.081 0.038 0.007
m = 10 0.085 0.040 0.008
m = 20 0.079 0.039 0.006

Each simulated level is based on 10,000 independent simulation runs.

The simulation includes three imputation scenarios, m∈{5; 10; 20}, and 10,000 in-
dependent D are simulated for each scenario.

For each D and associated dm, we �t three logistic regressions using Y3 as the
outcome and functions of Y1 and Y2 as predictors. The saturated model includes all
main eFects and interactions of Y1 and Y2. The independence model includes only the
main eFects of Y1 and Y2. The third model includes only the main eFect of Y2. Using
likelihood ratio tests, we compare the saturated model to the independence model,
and the independence model to the model with Y2 only. Based on (42)–(44), the
independence model should �t the data well, and the model with Y2 only should be
rejected in favor of the independence model. The likelihood ratio tests are performed
using the test statistic in (13), with the reference distribution F3;w(rp).

All synthetic and observed data p-values for the test of the independence model
versus the model with Y2 only are extremely small (on the order of 10−6), correctly
indicating that the model with Y2 only does not �t the data well relative to the indepen-
dence model. For the test of the saturated versus independence models, the percentages
of simulated p-values less than #=0:10, #=0:05, and #=0:01 are displayed in Table 2.
Once again, the procedures are reasonably well calibrated, with most simulated levels
within 2% of their corresponding # levels. The departures from the nominal # levels
arise primarily because the assumption of Bm = Rp Lvm is only approximately true.

5. Concluding remarks

In the simulation of Section 4.2, the likelihood ratio test had nearly 100% power for
rejecting the Y2 only model in favor of the correct model. Of course, power depends on
many characteristics of the data setting, and extremely high power cannot be expected
to exist generally. To get a sense of the power properties of the tests presented here,
we can turn to the results of Li et al. (1991), who examined the power properties of
large sample signi�cance tests for multiple imputation. Their tests are very similar to
those presented here, and they are derived from similar assumptions and approxima-
tions. Based on extensive simulation studies, Li et al. (1991) report that power curves
for their tests are similar to the power curves for Wald tests based on the observed
data. The greatest losses in power occur when the data deviate substantially from the
proportionality assumption, which recall in our setting is Bm =Rf Lvm or Bm =Rp Lvm. The
losses are largest when m is small, and mostly disappear for large m.
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To conclude, this paper adds signi�cance testing for multi-component estimands to
the inferential methods available for synthetic data, thereby increasing the utility of
synthetic data approaches. Such approaches oFer great promise to guard con�dentiality
and provide acceptable data utility. Indeed, given current trends in restriction of public
access to microdata, it is not inconceivable that simulated data sets may become the
only form of releasable, usable microdata. Of course, the key to the success of synthetic
data approaches is good-�tting imputation models, and research on speci�cation of such
models would complement recent theoretical advances.
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