q YALE CENTER FOR
‘ Health & Learning Games

Evaluating Character
Differences in the Top and
Bottom Performing Students
with a Custom Score

Aryan, Joey, Lina

Methodology

How can we compare players?

What can we learn about the

1228
7 1167
players?
500
allenges
262
193
96 115

N 6 I | 7

event_category

e Survey results not clear

e Large number of extraneous
player logs

e Player information hidden

1. Process Aspirational Avatar logs
for player information

2. ldentify sequence of events

3. Log average time spent on

Areas of Interest minigames and completion

e “All about me” responses
e Play speed and completion

People Sense

Modeling and Evaluation

weeks = 0 weeks = 3
6000 %
4000
L0
2000 1
k<] []
[BN
.I
0 e (11 esceee ° eedtee
2 3 4 2 3 4
S5_mean S5_mean

Top 20: Which of these do you agree with the most?

uentyfere ene e somete fagendend _
Make the world a better place! -
You have to fight for your rights. -

Live and let live.

10 12

o
N
~
o
©

count

4

weeks = 6 weeks = 12 weeks = 24
L]
L]
L]
[] = Y -
(] -+
o0 (111 [] e 0 0 000
3 4 2 3 4 2 3
S5_mean S5_mean S5_mean

Cubic Model Metrics

RELATIONSHIP BETWEEN AVATAR CREATION
AND GAME COMPLETION

0.5

RA2 Score RMSE Social Media 5

Reflection

Found a meaningful way to compare
players

Much left to analyze within data

Major Takeaways

e Students in the higher and lower ranks had slight differences in

goals and priorities
e As time went on survey results shifted to the left and showing that

the students were better at refusing drugs

Appendix

Score Calculation

1 minigame results = results['avg_refusal'] + results['avg_people'] + results['avg_priority'] + results['avg_know']
results['avg_minigame'] = minigame results / 4
results['score'] = (11 - results['max_stack_id']) * 500 + results['avg_minigame']
results['score'] = results['score'].rank(method="min")

21

Linear Regression

mydf
from
from
from
from

co
co
mydf
pr
X =
y

X.tr

prin
prin

from
poly
poly
pr

_final = pd.read_csv('final_data_nums.csv')

sklearn.model_selection import train_test_split
sklearn. linear_model import LinearRegression
sklearn.metrics import mean_squared_error
sklearn.metrics import r2_score

untdata = mydf_final.copy()
untdata['playtime'] = traindatal'playtime']

_final = mydf_final.fillna(@).head(50)

int(mydf_final.shape)
mydf_final.values
results['score']l.head(50).values

ain, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30)
t_X_test = X
t_y test =y

sklearn.preprocessing import PolynomialFeatures
_data = PolynomialFeatures(3, include_bias=False).fit_transform(X_train)
_data_test = PolynomialFeatures(3, include_bias=False).fit_transform(X_test
int(poly_datal[0:3])

cubic_model = LinearRegression()
cubic_model.fit(X=poly_data, y=y_train)

test

_predict = cubic_model.predict(poly_data_test)

Scatterplot

1 unique_users = data['player_id'].unique()
new_columns = [“Challenge Stack", "People Sense", "Knowledge Minigame", "Priority Sense", "Refuse Power
for column in new_columns:
s5_scores[column] = [0]%s5_scores.shape[0]

for user in unique_users:
one_user = data.loc[data['player_id'] == user]
date_conversion = one_user.loc[one_user['player_id'] == user, "date"l.array
d@ = datetime.strptime(date_conversion[0], "&Y-%m-%d")

time_ranges = []

for week in s5_scores.loc[s5_scores['player_id'] == user]["weeks"]:
d2 = do + timedelta(days=weekx7)
time_ranges.append(d2)

if not time_ranges:
continue

Convert the date to datetime64
one_user['date'] = pd.to_datetime(one_user['date'], format='%Y-%m-%d"')

for t in range(1, len(time_ranges)):
Filter data between two dates
start_date = time_ranges[t-1]
end_date = time_ranges [t]
filtered_df = one_user.loc[(one_ user['date'] >= start_date) & (one_user['date'] < end_date)]
result = filtered_df["event_category"].value_counts(
if result. empty
continu
week = ((end date - de)/7).days

for index, value in result.items():
if not value:
continue

for index, value in result.items():
s5_scores.loc[(s5_scores['player_id'] == user) & (s5_scores['weeks'] == week), index] = val

#each week has the total values for challenge stack and the score for s5_scores
#make scatterplot
kmeans = KMeans(n_clusters=3, random_state=0)

s5_scores['cluster'] = kmeans.fit_predict(s5_scores[['Attack', 'Defense'l])
#

sns.relplot(data=s5_scores, x="S5_mean", y="Challenge Stack", col="weeks", height=3)
sns.relplot(data=s5_scores, 'S5_mean', y="People Sense", col="weeks", height=3)

sns.relplot(data=s5_scores, 'S5_mean", Knowledge Mlnlgame ol_“weeks , height=3)
sns.relplot(data=s5_scores, x="S5_mean", Priority Sense", col— 'weeks", height=3)

