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1. Introduction

From early Bayesian approaches to factor volatility modeling (e.g. Aguilar et al., 1999; Pitt & Shep-
hard, 1999; Aguilar & West, 2000), there has been increasing interest in refined models based on their
practical benefits in financial studies, in particular (e.g. Quintana et al., 2003, 2010). Originally assuming
constant factor loadings and no time dependence of latent factors for financial returns series, recent ex-
tensions introduced short-term time series models for factor loadings (Lopes & Carvalho, 2007; Carvalho
et al., 2011). To date, little has been discussed about dependencies among factor processes, primarily
due to the adoption of identifying constraints under which independent factor processes are mandated.
With the increasing interest in sparse factor models– models in which multiple factor loadings are zero
over some periods of time– this changes: such models now allow for dependencies among latent factor
processes, and our main modeling goal here is to develop and exploit this in forecasting and portfolio
decisions.

We make these developments in analyses of dynamic factor models using latent thresholding, an idea
and methodology recently introduced and developed theoretically in Nakajima & West (2012a), with
application to dynamic regression and time-varying VAR models. A follow-up application in Nakajima &
West (2012b) adds dynamic sparsity to traditional factor models; the current paper extends this with the
development of dependent factor model structures, novel portfolio constructions and their embedding in
a complete analysis and forecasting system. In the applied studies of the paper, this is shown to be quite
substantially beneficial in terms of improved forecasting performance and portfolio decision outcomes,
as well as improved model fits on purely statistical criteria. We develop the applied examples using a
range of stylized Bayesian portfolio decision constructs, and as part of this introduce a novel strategy that
explicitly integrates a benchmark neutral strategy into more or less standard portfolio optimization. In
addition to demonstrating the ability of sparse, dependent factor models to outperform standard models
under this as well as other portfolio rules, this will be of interest to forecasting and financial decision
makers in other contexts.

This work contributes modeling, forecasting and decision analytic advances to the growing literature
on dynamic factor approaches in time series analysis. Beginning with earlier developments of dynamic
factor models in econometric time series (e.g. Stock & Watson, 1989) and Geweke & Zhou (1996), these
approaches have become popular in various macroeconomic applications (e.g. Forni et al., 2000; Stock
& Watson, 2002; Koop & Potter, 2004; Bai & Ng, 2006; Del Negro & Otrok, 2008; Aruoba et al., 2009;
Forni & Gambetti, 2010) as well as financial applications where multivariate volatility is represented in
factor structures and other forms (e.g., Harvey et al., 1994; Pitt & Shephard, 1999; Aguilar & West, 2000;
Han, 2005; Chib et al., 2006; Doz & Renault, 2006; Philipov & Glickman, 2006; Yu & Meyer, 2006; Asai
et al., 2006; Fan et al., 2008). Recent developments of time-varying factor loadings models that provide
part of the foundation for our work here have been particularly noted for the forecasting and statistical
improvements they can generate (e.g. Lopes & Carvalho, 2007; Del Negro & Otrok, 2008). Our work
builds on structural and dynamic model concepts from these areas, introducing dynamic, sparse factor
models with dependencies among latent factor processes that are shown to be able to provide additional,
substantial improvements in model fit, forecasting and portfolio decisions.

Section 2 summarizes the standard framework of dynamic factor models. Section 3 discusses model
identification, sparse dynamic factors and the key rationale for dependent factor models. Section 4
discusses the latent thresholding concept and its application to factor models. Section 5 summarizes
the new class of dynamic sparse factor models with time-varying volatility matrices allowing correlated
factors. Sections 6 and 7 discuss analysis, model comparison, forecasting, and portfolio decisions in two
case studies: of a 10-dimensional stock price index time series, and of a 20-dimensional FX time series.
Some summary comments appear in Section 8. An appendix briefly outlines the Bayesian Markov chain
Monte Carlo computational method for model fitting; this links to more extensive technical details in
prior publications as well as software for interested readers.
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Some notation:. We use the distributional notation y ∼ N(a,A), d ∼ U(a, b), p ∼ B(a, b), v ∼ G(a, b),
for the normal, uniform, beta, and gamma distributions, respectively. We use diag(a1, . . . , ak) to refer a
diagonal matrix whose diagonal elements are the arguments. We also use s : t to denote s, s + 1, . . . , t
when s < t, for succinct subscripting; e.g., y1:T denotes {y1, . . . ,yT }.

2. Basic setting and background: Traditional dynamic factor models

2.1. Basic model context
We begin with traditional dynamic factor models with time-varying factor loadings and volatility

components, as follows. The m× 1 vector response time series yt, (t = 1, 2, . . .), follows

yt = ct +Btf t + νt, νt ∼ N(0,Σt), (1)

f t = Gf t−1 + εt, εt ∼ N(0,Υt), (2)

where

• ct = (c1t, . . . , cmt)
′ is the m× 1 time-varying local mean at time t;

• f t = (f1t, . . . , fkt)
′ is a k × 1 vector of latent factors evolving according to a VAR(1) model with a

diagonal (k × k) AR coefficient matrix G = diag(γ1, . . . , γk);

• εt = (ε1t, . . . , εkt)
′ is a k× 1 vector of factor innovations with time-varying variance matrix Υt with

elements υijt;

• Bt is the m× k time-varying factor loadings matrix;

• νt = (ν1t, . . . , νmt)
′ is a m × 1 residual vector with a diagonal time-varying volatility matrix Σt =

diag(σ21t, . . . , σ
2
mt).

The εs and νt sequences are independent and mutually independent. Equations (1,2) define a broad class
of dynamic latent factor models, and variants are in routine application in financial time series. The AR
coefficient matrix G in the factor evolution model is assumed constant and diagonal; this could also be
relaxed for other applications in which a persistent but time-varying matrix may be of interest, although
the applications here do not suggest such an extension for the current analyses.

To ensure mathematical identification of factor models, and as a matter of modeling choice, we use
the traditional lower triangular constraint on the dynamic factor loadings matrix processBt (e.g. Geweke
& Zhou, 1996; Aguilar & West, 2000; Lopes & West, 2004). Noting that Bt is “tall and skinny” – that
is, the number of factors k will typically be far less than the number of series m– the upper triangular
elements are bijt = 0 for k ≥ j > i ≥ 1, and the main diagonal elements are biit = 1 for i = 1 : k.
Importantly, the traditional model has a diagonal factor innovations volatility matrix Υt, while admitting
volatility models for the diagonal elements.

2.2. AR models for dynamic parameter processes
Complete model specification requires specific structures for the time-varying parameter processes

ct,Bt and the diagonal Σt and Υt. The simplest and most widely used are basic AR(1) models for
univariate parameters, as follows.
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Factor loadings Bt. Univariate AR(1) models for univariate factor loadings are increasingly popular in
the literature (e.g. Lopes & Carvalho, 2007; Del Negro & Otrok, 2008). For each i = 2 : m and j < i,
denote by βijt the loading relating series (row) i to factor (column) j inBt, recalling that the upper right
triangle elements are zero and the diagonals are unity. The AR(1) models are

βijt = µβij + φβij(βij,t−1 − µβij) + ηβijt, ηβijt ∼ N(0, vβij), (3)

with |φβij | < 1. Each βijt follows a (typically highly persistent) autoregressive process, allowing for time
variation that may be substantial for some loadings, but close to constant for others.

Residual volatility matrix Σt. We use standard stochastic volatility models (e.g. Jacquier et al., 1994;
Kim et al., 1998; Aguilar & West, 2000; Omori et al., 2007; Prado & West, 2010, chap. 7) for the set
of univariate residual variances in the diagonal matrix Σt. With δit = log σ2it, this assumes a stationary
AR(1) model for each i, given by

δit = µδi + φδi(δi,t−1 − µδi) + ηδit, ηδit ∼ N(0, vδi), (4)

with |φδi| < 1 for each i = 1 : m.

Factor innovations volatility matrix Υt. In this standard model, Υt ≡ Ψt = diag(ψ2
1t, . . . , ψ

2
kt), a

diagonal matrix of latent factor volatilities. For these, we use the same, standard univariate stochastic
volatility models as for the σ2it. That is, with λit = logψ2

it we have

λit = µλi + φλi(λi,t−1 − µλi) + ηλit, ηλit ∼ N(0, vλi), (5)

with |φλi| < 1 for each i = 1 : k.

Level process ct. This may be modeled in different ways, with opportunity for short-term prediction
based on chosen independent variables and/or direct intervention. In model comparison and assess-
ment here, we are interested in relative fit and forecasting performance of various models that differ in
assumptions about the nature of the latent factor process, so we do not develop more customized compo-
nents for ct. We simply adopt a framework in which this term is also represented via a set of stationary,
independent AR(1) processes,

cit = µci + φci(ci,t−1 − µci) + ηcit, ηcit ∼ N(0, vci), (6)

with |φci| < 1 for each i = 1 : m.

3. Sparse factor loadings and dependent factors

For larger numbers of time series m, it becomes more and more important to induce additional parsi-
mony via some zeros in the (lower triangular entries of the) factor loadings matrices. This embodies the
view that, while several latent factors underlie covariation in the response series, each factor will typically
influence only a subset of the responses. It becomes increasingly untenable to link each response series
to each factor for larger m, k; the more zeros appearing in Bt– that is, the sparser Bt is– the more stable
and efficient should be resulting inferences, and the more easily interpretable will be the model.

Sparsity inducing priors for parameter matrices are increasingly adopted in dynamic modeling (e.g.
Carvalho & West, 2007; George et al., 2008; Korobilis, 2012; Wang, 2010), and the application to factor
loadings matrices natural translates from developments in sparse factor models in other areas (West,
2003; Carvalho et al., 2008; Yoshida & West, 2010). Below we discuss the specific approach to inducing
time-varying patterns of sparsity based on latent threshold mechanisms. First, we discuss how this leads
naturally to an interest in dependent factor processes– one of the key contributions of this paper.
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The standard factor model of Section 2 is mathematically identified based on the assumed lower
triangular form ofBt together with diagonal Υt = Ψt. For example, rotating the factors viaBtf t = B

∗
tf
∗
t

where B∗t = BtLt and f∗t = L−1t f t for any non-singular k × k matrix Lt, destroys the lower triangular
structure: B∗t will be a full matrix, in general. However, taking Lt to be lower triangular with diagonal
elements of unity means that B∗t still has zeros above the diagonal and unit diagonal entries, so we have
an identification problem unless we impose further constraints; assuming the factors to be uncorrelated,
with Υt = Ψt, diagonal, is the traditional, default constraint. Otherwise, there is a continuum of models
defined by arbitrary patterns of factor dependencies– choices of Lt– that yield the same model.

A key point in this paper is to recognize that moving to sparse models releases this constraint; it allows
for non-diagonal Υt, i.e., dependent factors. See this as follows. WithBt sparse below the diagonal,BtLt–
for any (non-diagonal) k× k lower triangular, unit diagonal matrix Lt– is less sparse than Bt and, indeed
often is full. Any non-degenerate Lt at least changes the pattern of zeros in mapping from Bt to B∗t ,
if not removing all zeros. Hence, a model with a specific pattern of zeros cannot be subjected to such
a factor rotation without changing or losing the pattern of zeros; that is, zeros in the lower part of Bt

define additional identifying constraints. As a result, with any zeros in the lower part of Bt, the factor
process can have a non-diagonal variance matrix Υt that cannot be rotated without changing the model.

Reversing the above argument shows that correlated factor models can lead to higher degrees of
sparsity– and hence increased parsimony in terms of fewer non-zero, time-varying parameters in the
factor loadings matrices. A model with loadings matrix B∗t that has few zeros can often be column-
rotated to Bt = B∗tL

−1
t where Lt is a lower triangular matrix with diagonals of unity, and resulting in a

Bt that is much sparser. The effects can be profound with larger m, when the reduction of the number
of non-zero entries in the m × k matrix Bt relative to B∗t can quickly become much larger than the
additional k(k − 1)/2 non-zeros in the lower triangular Lt.

This has been unrecognized and unexploited, to date; as we show below, moving to a dependent
dynamic factor model this way can be exploited to yield substantial improvements in forecasting and de-
cisions. The above discussion is quite general. Any application requires specific models for the parameter
processes Bt incorporating sparsity, and the corresponding Υt. Latent thresholding to do this is now
summarized.

4. Latent thresholding of parameter processes

4.1. Latent threshold model concept and background
We now discuss how latent thresholding ideas apply to induce (possibly many) data-respected zeros

in Bt, and to allow the patterns of zeros to vary over time while estimating time-varying non-zero val-
ues. This extends prior work of Nakajima & West (2012a) who introduced the general idea, theory and
methodology of latent thresholding for a range of dynamic models, with dynamic regression and time-
varying VAR models as examples. Nakajima & West (2012b) applied the idea to the above traditional
factor models with assumed diagonal forms for Υt. Below we extend this to apply to the non-diagonal
Υt representing time-varying dependencies among latent factors.

The latent thresholding idea is simple: a parameter process, such as the AR(1) process βijt in equa-
tion (3), may be practically significant for some periods of times, but close to zero and, in terms of its
practical impact on the model inferences and predictions, insignificant at others. A model with many
small, practically insignificant parameters suffers from lack of robustness and increased noise in infer-
ences due to estimation uncertainty for what are effectively zero terms. Parsimonious modeling will
shrink such terms to zero when possible. The simple latent thresholding idea captures this through pa-
rameter process-specific thresholds; for example, the effective contribution to the model of βijt is set to
zero so long as |βijt| exceeds a threshold, while it maintains non-zero, time-varying values defined by
equation (3) otherwise.

Latent thresholding is thus a strategy to simplify the traditional model to reduce parameter dimension,
especially in larger models, via a natural approach to time-varying sparsity. Model fitting now defines
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data-driven inferences on thresholds as well as sparsity patterns, and evaluation of the resulting impact
of this implied dynamic parameter dimension reduction– when indicated by the data– on predictions.
More detailed theoretical and methodological discussion, and examples, can be found in Nakajima &
West (2012a).

4.2. Latent thresholding of factor loadings matrices
The basic AR(1) processes for the entries of Bt, above, is modified as follows. Change the notation

so that bijt is now the (i, j) element of Bt. Then, the AR(1) forms of equation (3) (for i = 2 : m and
j < i, j = 1 : k), define underlying, latent processes with the actual loadings given by

bijt = βijtsijt with sijt = I(|βijt| ≥ dij), (7)

for some thresholds dij . Hence the underlying βijt appear as non-zero, time-varying loadings in the
observation equation (1) only when statistically relevant, with “practical significance” defined by the
thresholds. Otherwise, a loading is shrunk fully to zero, embodying sparsity and parameter reduction in
the factor loadings matrix. This leads to parsimonious structure in the factor model, strictly constraining
some loadings to zero for periods of time, while allowing them to take time-varying, non-zero values else-
where. The practical operation of the implicit switching mechanisms underlying this “dynamic sparsity”
is of course guided by the data analysis and model fitting. Note also, importantly, that this allows for any
one of the loadings to be non-zero for all time, as well as for full shrinkage of some entries to zero for all
time.

5. Dependencies in sparse dynamic factor models

5.1. Dynamic models for factor innovations matrices
As discussed above, we now recognize that the diagonal limitation is overly restrictive when there

is any sparsity in Bt and that allowing for factor dependencies can lead to sparser, more parsimonious
models. Now, Υt is in general a non-diagonal time-varying variance matrix. We use the triangular
reductionAtΥtA

′
t = Ψt, whereAt is a lower triangular matrix with diagonal elements equal to one, and

Ψt is diagonal. That is,

At =


1 0 · · · 0

a21,t
. . . . . .

...
...

. . . . . . 0
am1,t · · · am,m−1,t 1

 (8)

and Ψt = diag(ψ2
1t, . . . , ψ

2
kt). Note that, up to scalings by the ψit, (A′t)

−1 is the Cholesky component of Υt.
This decomposition of a volatility matrix is being increasingly used in related time series contexts (e.g.
Pinheiro & Bates, 1996; Smith & Kohn, 2002; Cogly & Sargent, 2005; Primiceri, 2005; Lopes et al., 2010;
Nakajima & West, 2012a). Our use of this parametrization here– for volatility matrices of innovations in
dynamic latent factor processes– is novel, but of course builds on this prior literature.

Extending the traditional use of AR(1) parameter processes to the scalar elements of At gives a pop-
ular model for short-term dependent volatility matrices. Let αt = (a21,t, . . . , am,m−1,t)

′ = (α1t, . . . , αqt)
′

be the vector stack of the free elements in At, noting that q = k(k − 1)/2. The underlying latent AR(1)
dynamics are

αijt = µαij + φαij(αij,t−1 − µαij) + ηαijt, ηαijt ∼ N(0, vαij), (9)

with |φαij | < 1.
For the univariate ψ2

it, we maintain the same, standard univariate stochastic volatility models of equa-
tion (5).
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5.2. Aspects of prior specification and additional comments
Analysis is based on standard forms of priors for hyperparameters {µ∗, φ∗, v∗}, where ∗ ranges over

the model components {ci, βij, αij, δi, λi}. Specifically, we adopt normal or log-gamma priors for the µ∗,
truncated normal or shifted beta priors for the φ∗, and inverse gamma priors for the v∗. We rarely have
information for dependence of these parameters, so we assume prior independence. We also assume in-
dependent, truncated normal or shifted beta priors for each diagonal element of the factor AR coefficients
γi.

A key component concerns structured priors for the latent threshold parameters dij . Evidently, we
need to consider the scales of variation of the non-thresholded processes as part of the prior setup.
Consider any one of the βijt AR(1) processes in equation (3). The stationary margin isN(µβij , uβij) where
uβij = vβij/(1− φ2βij). If a threshold is large with respect to this distribution, then βijt will be zeroed out
more often; if the threshold is small with respect to this distribution, βijt will more persistently beat the
threshold and so contribute more significantly to the model. Following Nakajima & West (2012a) we use
priors dij ∼ U(0, |µβij |+Ku

1/2
βij ) with K = 3; this conditional prior– conditional on the hyperparameters

defining the natural range of variation of the AR(1) process– spans the range of the process so allowing
for smaller or larger thresholds and being otherwise diffuse to allow for adaptation to the data. Some
interesting examples of posteriors on thresholds in other classes of models are given in Nakajima & West
(2012a). Here we use this prior form for dij .

Some general comments on prior specification related to the AR model components are in order.
As in other areas of multi-parameter modeling, while models are mathematically identifiable, some of
the parameters, and parameter processes, may be only “weakly identified” in a practical sense. That is,
there may be limited information on some parameter subsets and the posteriors, though proper, rather
diffuse. In our models here, both the dynamic factors and factor loadings– in their non-zero phases–
are time-varying latent variables; there is thus potential for fluctuations in loadings to explain observed
data volatility when coupled with very low levels of variation in factors themselves. Informative priors
over the autoregressive parameters for the factor loadings processes provide the necessary control to
constrain their variability. We build these models with a strong prior view that the loadings parameters
will vary over time, but really very slowly, consistent with low variation and high autocorrelation in the
AR models, relative to the factors. This mandates the use of priors that concentrate close to one on the
AR parameters while strongly favoring small innovations variances vβij . The same general point applies
to prior specification for the hyperparameters of the AR processes αit in the novel dependency model
here.

5.3. Bayesian model fitting and forecasting via Markov chain Monte Carlo
Implementing Bayesian analysis uses Markov chain Monte Carlo (MCMC) methods, building on

straightforward extensions of MCMC sampling scheme previously developed and in standard use for
traditional latent factor models (Aguilar & West, 2000; Lopes & West, 2004), for latent threshold mod-
els (Nakajima & West, 2012a,b), and for univariate stochastic volatility models (Shephard & Pitt, 1997;
Kim et al., 1998; Watanabe & Omori, 2004; Omori et al., 2007). The Appendix to this paper briefly out-
lines the overall MCMC strategy and its components, and indicates availability of efficient code used in
the following applications. All aspects of posterior inference on model parameters and latent processes,
and of forecast distributions to define predictions and feed into portfolio decisions, are based on large
MCMC samples from posteriors based on historical data. In particular, out-of-sample/step-ahead fore-
casting over a time period from a baseline time point is trivially done in these models when the “current”
posterior for model hyperparameters and historical trajectories of all latent processes components of the
model are available as MCMC samples.

One obvious point is that, while the ensuing Bayesian analysis for model fitting provides inferences
on– among other things– the full trajectories of the underlying processes βijt over time, their values are
only relevant when they are non-zero.
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6. A study of stock price index return series

6.1. Data and model setup
This section provides a first empirical study on daily stock index returns. The analysis uses m = 10

series of S&P Global 1200 sector index funds, listed in Table 1, over a time period of T = 1,251 business
days beginning in November 2006 and ending in October 2011. The returns are computed as yit =
100(pit/pi,t−1 − 1), where pit denotes the daily closing price.

1 RXI Consumer Discretionary 6 EXI Industrials
2 KXI Consumer Staples 7 MXI Materials
3 IXC Energy 8 IXN Technology
4 IXG Financials 9 IXP Telecommunications
5 IXJ Healthcare 10 JXI Utilities

Table 1: Stock price indices: 10 sectors from S&P Global 1200 Index.

The following priors are used: 1/vci ∼ G(40, 0.005), 1/vβij ∼ G(20, 0.01), 1/vαij ∼ G(40, 0.005),
1/vδi ∼ G(2, 0.001), 1/vλi ∼ G(2, 0.001); (φ∗ + 1)/2 ∼ B(20, 1.5) for all AR process components; (γi +
1)/2 ∼ B(1, 1); µci ∼ N(0, 1); and µ∗ij ∼ N(0, 1) for each ∗ ∈ {β, α}; and, finally, exp(−µ∗i) ∼ G(3, 10)
for each ∗ ∈ {δ, λ}. These priors follow the preceding literature to some extent, and also reflect the
discussion of Section 5.2. The Bayesian MCMC analysis (see Appendix discussion) was run for a burn-in
period of 20,000 samples prior to saving the following MCMC sample of size J = 100,000 for summary
posterior inferences.

For the number of factors k, we examined analysis across models with up to k = 4. While model fitting
using k = 3 suggests 3 clearly relevant factors, moving to k = 4 yields a fourth factor that is basically
insignificant across the full time period, so indicating we may cut back; we therefore report summaries of
posterior inference and portfolio study based on k = 3 factors. The selected ordering of the response time
series in yt, as listed in Table 1, leads to loosely “naming” the 3 factors as the RXI, KXI and IXC factors
in order. The estimated patterns over time in the factors relate to major market events and structured
changes in correlations among stock returns that can be plausibly understood in connection with these
names. The structure is also such that we should expect strong dependencies among the factors: the
three sectors represented by these first three indices are clearly strongly related so that, as they are used
to name/define the three factors in that order, it is natural to expect strong factor dependencies as a
result.

6.2. Summaries of posterior inferences
Figure 1 plots posterior estimates of the trajectories of underlying components of factor stochastic

volatilities ψit and the posterior mean of the first factor f1t. Recall that the ψit measure the instantaneous
standard deviations of “structural” shocks underlying the dependent volatility and co-volatility patterns
in the factors; their trajectories show marked differences. We see that ψ1t traces global dynamics across
the factors, exhibiting high volatility in the fourth quarter of 2008 reflecting the financial crisis as well
as a hike in mid-2011 due to market turbulence triggered by Greece’s debt crisis. In contrast, ψ2t shows
different and relatively lower levels of impact, but again keys out raised volatilities in the same time
periods. Further, ψ3t interestingly captures an early rise of volatility before the major onset of the financial
crisis in 2008, presumably capturing industrial slowdown impacting the energy sector and presaging stock
price collapse related heavily to the real estate industry. The estimated trajectory of the first factor f1t
itself shows well-identified common fluctuations among the sector stock indexes, exhibiting major events
such as severely high volatility periods in the 2008 crisis onset and then again in the European sovereign
debt crisis from 2010 to 2011.

To revisit the question of the number of factors, Figure 2 displays posterior estimates of the ψ·t tra-
jectories from analysis using k = 4 factors. We see that the levels of the fourth component are really
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Figure 1: Analysis of stock return data with k = 3 : Posterior means (solid) and ±2 standard deviation credible intervals (dotted)
of factor stochastic volatilities ψit = exp(λit/2) for i = 1 : 3, and posterior mean trajectory of the first factor f1t.

practically negligible for most of the time period, indicating the irrelevance of this dimension, albeit with
a minor uptick at the end. In addition, the posterior very strongly indicates that all of the time-varying
loadings associated with a fourth factor are shrunk to zero across the time period via the latent threshold
structure; this implies the analysis practically favours k = 3 factors.

From the k = 3 factor model, Figure 3 graphs estimated trajectories of correlations computed from
the MCMC draws of Υt = A−1t Ψt(A

′
t)
−1. The factors are evidently correlated and exhibit interesting

time variation through the sample period. Factor1 (RXI-leading) and Factor2 (KXI-leading) are very
naturally highly correlated; the posteriors support values of correlations at or around 0.8 over all time,
indicating the expected strong relationships as these two factors are primary drivers of consumer eco-
nomics; however, they clearly also separately and individually represent other dynamics that are specific
to the consumer discretionary (RXI) and staples (KXI) sectors. Correlations between Factor1 and Factor3
(IXC-leading), as well as between Factor2 and Factor3, show a marked drop during the second and third
quarters of 2008, indicating diversification of stock price fluctuations across the industry-leading factors.
We also note an additional temporal shift downwards in correlations around 2011 related to market tur-
bulence in the European debt crisis. The right panels show the difference in posterior means between
factors which confirm that, while the first two factors are highly dependent, they differ in practically
measurable ways, especially during the recessionary period.

Figure 4 plots posterior probabilities of sit = 0 for the factor loadings, showing considerable sparsity
in the loadings matrix. The sparsity structure is clearly rather stable over the sample period. Note that
the third series, IXC energy, relates strongly to the first two factors as well as defining, and indicating
the need for, the third. A further notable point is the high degree of sparsity; the posterior indicates
more than 50% sparsity and that this is quite stable over time. In the context of the high levels of
factor dependencies inferred, this underscores the theoretical discussion of Section 3; repeat analysis
constraining to independent factors– or simply directly transforming by rotation of the factors at each
time– will yield a basically full factor loadings matrix. This is a nice illustration of the parsimony of the
dependent sparse factor model: the identified model has about 12-13 effective non-zero parameters (3
aijt terms in At and around 9-10 effectively non-zero βijt in Bt); in contrast, the traditional full model
with independent factors has 24 factor loadings to infer, so we have achieved around a 50% reduction.
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Figure 2: Analysis of stock return data with k = 4 : Posterior means (solid) and ±2 standard deviation credible intervals (dotted)
of volatilities ψit = exp(λit/2), for i = 1 : 4.

Figure 3: Analysis of stock return data with k = 3 : Posterior means and ±1 standard deviation credible intervals (dotted) of
factor innovation correlations from Υt (left), and difference of posterior means between factors (right).

9



The following section now explores the resulting implications for out-of-sample prediction and decisions
based on those predictions.

6.3. Out-of-sample forecasting and portfolio analysis
A main goal of the work in this paper is improve forecasting performance of dynamic factor models

by inducing sparse, parsimonious models through dependent factor structures and latent thresholding.
To explore this in the stock index study, we consider dynamic portfolio allocations and make direct
comparisons with the traditional models. The portfolio analysis uses sequential portfolio decisions based
on short-term forecasts; we stress the exercise here involves wholly out-of-sample prediction for honest
evaluation and comparison. We follow the prior literature (e.g., Quintana, 1992; Putnum & Quintana,
1994; Quintana & Putnum, 1996; Aguilar & West, 2000; Carvalho & West, 2007; Carvalho et al., 2011;
Wang & West, 2009; Quintana et al., 2003, 2010) in utilizing Bayesian decision theory via Markowitz
portfolio optimization.

A first study looks at one-day ahead forecasting and decisions. We use the same data set as in the
previous subsection, then applying sequential portfolio reallocation analysis for an additional period of

Figure 4: Analysis of stock return data with k = 3 : Posterior probabilities of sit = 0 for factor loadings (implying full shrinkage
to zero and hence a zero effective factor loading at those times).
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100 business days. Specifically, we first fit the model based on the first T1 = 1, 151 observations, y1:T1 ,
and compute the mean vector and covariance matrix of the implied one-step ahead forecast distribution
p(yT1+1|y1:T1); this is easily done from the MCMC outputs. Then, we move ahead one business day to
add the next observation yT2 (T2 = T1 + 1); we then rerun the entire MCMC based on the full updated
data set y1:T2 , generating the next one-day-ahead forecast of yT2+1 for portfolio reallocation analysis. We
repeat these sequential re-analyses for 100 business days.

At any time t− 1, the one-step ahead forecast mean vector and variance matrix of yt are denoted by
gt and Qt, respectively. The total sum invested on each business day is restricted by w′t1 = 1, where wt

denotes the vector of portfolio weights allocated across the 10 stock price indices. Traditional Bayesian
optimization (Markowitz, 1959) is utilized subject to specific constraints for forecast portfolio meanw′tyt
and variance w′tQtwt. We examine three variations of allocation rules, namely:

1. Efficient Frontier: optimize portfolio weights by minimizing a weighted average of expected return
and variance; specifically, minimize w′tQtwt −κtw′tyt for some risk tolerance ratio κt > 0.

2. Target return, minimum risk: given a predetermined daily return target rt, optimize the portfo-
lio weights by minimizing the one-step ahead portfolio variance, w′tQtwt, among the restricted
portfolios whose one-step ahead expectation is w′tgt = rt;

3. Target risk, maximum return: given a predetermined tolerance level for portfolio variance ξ2t , op-
timize the portfolio weights by maximizing the one-step ahead expected portfolio return among
restricted portfolios with that risk, i.e., maximize w′tgt subject to w′tQtwt = ξ2t ;

These portfolio allocation rules are often used in practically relevant strategies. The efficient frontier
rule addresses risk aversion preferences of investors; the target return, minimum risk rule allows for
a range of increasingly aggressive strategies while quantifying implied risk; the target risk, maximum
return strategy aims to elucidate investor risk preferences in advance, and then helps to understand how
to advise on resulting return expectations. It is well-known that, while the strategies are mathematically
reconcilable, they offer psychologically and typically practically different ways of exploring the formal
decision problem.

We analyze and compare the latent threshold factor model with correlated factor innovations (LTC)
and the standard model with independent factor innovations (LT), i.e., At = I. Table 2 reports cumu-
lative returns of the portfolios resulting from the sequential investment over 100 business days, from
several analyses that vary the degree of risk aversion tolerance κt, daily target returns rt, and daily target
risk tolerance ξt. We consider the chosen values as plausible levels for practical portfolio implementation
selected based on statistics from the stock return data set. It is evident that the use of correlated fac-
tors remarkably dominates the uncorrelated factor model, across the range of portfolio allocation rules.
The improvement of the forecasts is dramatic; based on the efficient frontier rule, the LTC model yields
more than double the returns for κt = 0.5, and even close to quadruple for κt = 5.0; we see similarly
significant results for the other two portfolio rules. In addition, we computed the sample variance of the
realized returns; under the same level of variance, the LTC model tends to yield about double the realized
returns compared to the LT model. We consider that these findings are natural because the correlations
between factors reported above are considerably high throughout the sample period, therefore the struc-
ture of independent factor innovations loses much information that will otherwise impact on short-term

(1) Efficient Frontier (2) Minimum Variance (3) Maximum Return
LT LTC LT LTC LT LTC

κt = 0.5 8.53 17.78 rt = 0.2 15.25 20.14 ξt = 1.58 8.24 29.91
1.0 8.43 19.16 0.3 12.92 23.29 2.00 7.83 34.86
5.0 7.67 30.19 0.4 10.60 26.43 2.35 7.72 37.85

Table 2: Analysis of stock return data in a 3-factor model: Cumulative returns (%) for the latent threshold factor models
with independent factor innovations (LT) and correlated factor innovations (LTC) based on portfolio implementation over 100
business days.
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Figure 5: Analysis of stock return data in a 3-factor model: Cumulative returns (%) over 100 business days based on the efficient
frontier portfolio for κt = 1.0 .

forecasting. Figure 5 plots the trajectories of cumulative returns based on the efficient frontier portfolio
algorithm of κt = 1.0 for each model, showing how the LTC model obviously dominates the LT model
uniformly during the trial period of 100 business days. From parallel analyses, we have found that these
results are robust across ranges of values of the key parameters vβij and vαij , while we stress the need
for maintaining informative priors consistent with the discussion in Section 5.2. Readers interested in
exploring these models may download the code provided, which allows experimentation and evaluation
of the impacts of changes in prior specifications as well as other modeling choices.

7. A study of a 20-dimensional FX return series

This study concerns m = 20 series of daily foreign exchange (FX) rate returns. Analysis follows the
same themes as in the previous section. Here, however, we focus more on dissecting the dynamic sparsity
of the latent threshold mechanism, and evaluate and compare models under additional, practically very
relevant portfolio strategies. As noted, part of this introduces a novel and practically important bench-
mark neutral portfolio construction, along with other more traditional constructions. We make compar-
isons with standard models across a range of portfolio studies, using both raw returns and risk-adjusted
summaries, as well as in terms of predictive marginal likelihood measures.

1 GBP British Pound Sterling 11 RUB Russian Ruble
2 EUR Euro 12 IDR Indonesian Rupiah
3 JPY Japanese Yen 13 PHP Philippine Peso
4 INR Indian Rupee 14 SGD Singapore Dollar
5 CAD Canadian Dollar 15 KRW South Korean Won
6 AUD Australian Dollar 16 TWD Taiwanese Dollar
7 NZD New Zealand Dollar 17 THB Thai Baht
8 CHF Swiss Franc 18 ZAR South African Rand
9 NOK Norwegian Krone 19 BRL Brazilian Real

10 SEK Swedish Krona 20 CLP Chilean Peso

Table 3: FX return data: 20 international currencies.
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7.1. Data
We use 20 international currency exchange rates relative to US dollar, as listed in Table 3. The

time period is T = 1,043 business days beginning in January 2008 and ending in December 2011. The
returns are computed as the log difference of daily closing spot rates. For the number of factors and
ordering of the variable in the yt, our pre-analysis suggests k = 4 factors (using the same general ideas
as in the previous section), and an appropriate choice of the first four series in yt as (GBP, EUR, JPY,
INR). Due to the triangular form of identification in the loadings matrix, the first four series associate
with the factors; Factor1 measures overall FX movement across countries against US dollar led by the
global proxy UK Pound; Factor2 essentially captures flows in European countries; Factor3 is led by JPY,
which was regarded as a relatively less risky currency during the sample period and is also the natural
primary proxy for measuring relative strength of the US dollar outside the EU; Factor4 is the INR-leading
factor reflecting FX markets in emerging countries. For posterior computation, we use the same prior
specifications as in the stock return analyses, with minor modifications on a few elements to adjust for
scales, namely 1/vδi ∼ G(2, 0.01), and exp(−µ∗i) ∼ G(3, 0.03) for ∗ ∈ {δ, λ}.

7.2. Summaries of posterior inferences
Figure 6 shows estimates of posterior mean trajectories of the factors as well as the posterior estimates

and credible intervals for trajectories of volatilities; the latter show both the underlying independent
components of factor volatilities (the ψit) and the resulting factor innovation volatilities (the square-
roots of diagonal elements of Υt). The factors show a high volatility period in late of 2008 tracing major
turbulent fluctuations of the financial crisis triggered by the Lehman brothers shock. Focusing further
around mid-2008, Factor1 (GBP-leading) and Factor2 (EUR-leading) imply seemingly correlated declines
in the levels of the factors, which implies considerable appreciation of US dollar. During this period,
Factor4 (INR-leading) exhibits almost negligible fluctuation. Another marked period is around the mid-
2010 related to the European sovereign debt crisis; stochastic volatility component ψ1t shows a sudden

Figure 6: Analysis of FX return data: Left column: posterior means of trajectories of factors fit. Central column: posterior means
(solid) and ±2 standard deviation credible intervals (dotted) of trajectories of factor stochastic volatilities, i.e, the square-roots
of the diagonal elements of Υt over time t. Right column: Similar plots for factor volatilities ψit = exp(λit/2).
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Figure 7: Analysis of FX return data: Posterior means and ±1 standard deviation credible intervals (dotted) of trajectories of
several correlations from Υt. Factors are labeled by leading currency.

hike, and all the factors including Factor4 exhibit higher fluctuations in their estimated trajectories. It is
natural that the levels of marginal stochastic volatility are in decreasing order from Factor1 to Factor4 by
construction and the identify of factors based on chosen order of returns series.

Figure 7 graphs estimated of trajectories of some of the factor correlations. That between GBP and
EUR is substantially high in the beginning of the sample period and rises to levels very close to one. This
is consistent with the role of Factor2 diminishing in the later stages of the sample period, where Factor1
essentially plays a more and more dominant role. For the other correlations, sudden change is observed
around the financial crisis period, which implies a marked shift in factor relations across the currencies
during these unprecedented initial events in world financial markets.

Figure 8 displays posterior estimates of the trajectories of the latent time-varying factor loadings, as
well as the posterior shrinkage probabilities of sit = 0 for selected loadings. Recall that sit = 0 implies
that the corresponding factor loading is fully shrunk to zero at that time, and so there is no effective
relationship between the corresponding response series and factor for periods when sit = 0. The panels
evidently show both local and global shrinkage patterns in the factor loadings. The NZD-Factor1 loading
takes relevant positive values in 2008 and 2009, while turns out to be irrelevant after the beginning of
2010; the posterior distribution of βit declines toward zero and the corresponding shrinkage probability
significantly rises up. Meanwhile, the other loadings for NZD are estimated to be relevant during the
sample period. The NZD-Factor3 loading is estimated to be negative, which implies the NZD fluctuates
inversely to the JPY-leading factor. This negative loading associated with the JPY-leading factor is typically
observed across other several countries; the JPY exchange rate was regarded as a relatively less risky
asset, along with CHF, during the recent crisis times.

For the RUB series, the loadings of Factor1 and Factor3 are basically shrunk to zero for entire range
of the sample period, while the RUB-Factor2 loading has a significant role in describing fluctuations of
RUB returns. The RUB-Factor4 loading shows an interesting behavior; the shrinkage probability is high
around the financial crisis of 2008, while the loading turns out to be primarily positive with almost no
shrinkage after 2009. In contrast, the BRL-Factor4 shows higher sparsity probabilities in the second half

14



Figure 8: Analysis of FX return data: Posterior means (solid) and ±2 standard deviation credible intervals (dotted) of trajectories
of selected time-varying factor loadings. The dashed lines show posterior means of the corresponding latent thresholds. Posterior
probabilities of sit = 0 (implying full shrinkage to zero and hence a zero effective factor loading at those times) are plotted
below each trajectory.

of the sample period, which indicates a shift in some relationships between the INR-related market and
those series.

7.3. Multi-period, out-of-sample forecasting performance
We evaluate the contribution of the latent threshold mechanism and correlated factor components

based on forecasting performance. Out-of-sample forecasts are obtained over 50 business days using
the 20-dimensional FX times series data as in the previous section. First, we fit the model based on the
first T1 = 1,201 observations, y1:T1 , and produce resulting out-of-sample predictive distribution over the
following 5 business days t = T1 + 1, . . . , T1 + 5. Then, the analysis moves ahead one business day to
observe the next observation yT2 (T2 = T1 + 1), and reruns the MCMC based on the updated data y1:T2 ,
generating forecasts of the next 5 business days t = T2+1, . . . , T2+5. This is repeated until we obtain 50
sets of daily 5-step ahead forecasts. We compare the LTC model to the NT model– the standard dynamic
factor model with no thresholding and independent factor innovations, i.e., At = I.

Out-of-sample predictive fit can be explored with log predictive density ratios (LPDRs). For forecasting
h days ahead from day t and comparing models M1 and M2, this is

LPDRt(h) = log{pM1(yt+h|y1:t)/pM0(yt+h|y1:t)

where pM (yt+h|y1:t) is the predictive density under model M . Relative forecasting accuracy is repre-
sented by this evaluated at the observed data. In the context of Bayesian model comparison (e.g., West
& Harrison, 1997, Chapters 10 & 12), cumulative sums of LPDRt(1), defining log model marginal likeli-
hoods, formally evaluate evidence of the proposed model versus standard factor models. The LPDRt(h)
for h > 1 provide further insights into relative forecasting ability at longer horizons.

Figure 9 shows the log predictive density ratio for LTC over NT model from out-of-sample forecasts
over 50 business days, plotted for each horizon. The LPDR values are all positive, indicating higher
predictive density for LTC model at each horizon, h = 1, . . . , 5. The remarkably high values per quarter
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imply strong support for LTC over NT. Cumulating values over the 50 days with h = 1, the log Bayes
factor is 1969.0 for LTC/NT; this indicates most substantial formal evidence in favor of the LTC model.

7.4. Portfolio analysis
We discuss portfolio studies following similar themes to those of the stock index studies of the previous

section, while now using more realistic and structured portfolio strategies extending the target return,
minimum variance portfolio. We again fix the total sum of investment by restricting w′t1 = 1, where wt

here denotes a vector of portfolio weights allocated for 20 currencies.
Suppose that an investor is faced with a certain benchmark investment along with allocating re-

sources to the 20 currencies. The benchmark can be any asset– a stock price index, oil price, or another
currency excluding those analyzed. The investor deals with the portfolio of the currencies under two
condition; (i) ex-ante forecast return attains some additional margin over the benchmark; and (ii) the
implemented portfolio has zero correlation with the benchmark. We assume that the investor pursues a
profit dominating the benchmark, and importantly, is unconcerned with fluctuations of the benchmark
asset. This decoupling strategy more heavily emphasizes forecast accuracy of this higher-dimensional se-
ries than does the standard portfolio allocation; see works related to the idea of this decoupling strategy
in financial markets (e.g., Gulko, 2002; Frauendorfer et al., 2007), and related studies of decoupling of
liquid Treasury returns from equity returns during periods of crisis (Harper, 2003), for example. From
the viewpoint of hedge-fund managers and investment advisors, decoupling strategies that emphasize
(and can achieve) returns above a benchmark and that are uncorrelated with that benchmark are key
and critical in defining a competitive market position.

We derive an explicit form for the optimized weights for the decoupling strategy. Define zt as the
return of the benchmark asset at time t, and write the mean and covariance structure of yt and zt jointly
as follows:

E

(
yt
zt

)
=

(
gt
xt

)
, V

(
yt
zt

)
=

(
Qt qt
q′t γt

)
,

Figure 9: Log predictive density ratios LPDRt(h) for LTC model over the NT model at horizons h = 1 : 5 in analysis of FX
returns.
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with a m× 1 vector of covariances qt = Cov(yt, zt) between asset returns and the benchmark under our
“current” forecast distribution. At time t, we minimize the ex-ante portfolio variance w′tQtwt, subject to
(i) w′tgt = xt + rt, (ii) Cov(w′tyt, zt) = 0, and (iii) w′t1 = 1, where rt is the expected margin gained
over the forecast mean of the baseline asset. This quadratic optimization yields an explicit solution
wt = KtC

′
t(CtKtC

′
t)
−1at, where Kt = Q−1t , Ct = [gt; qt;1]

′, and at = (rt, 0, 1)
′. We implicitly assume

that there are no transaction costs to reallocate the resources to arbitrary long or short positions across
the currencies, or that they are costs that will be similar, and negligible in their impact on resulting
cumulative returns, across different models using the same decision strategy.

For the baseline asset, we use the S&P500 index from the US stock market. To obtain the covariance
structure between the 20 currencies and the baseline asset, we reanalyze the factor models fit to the
m = 21 vector (zt,y

′
t)
′. We find that analysis indicates k = 5 factors and the ordering of the first

five variables in yt as (US-stock, GBP, EUR, JPY, INR), a natural extension of the earlier FX 4-factor
model. Prior specifications and MCMC simulation details are as in the previous analysis and detailed in
Section 7.1. In addition to the restricted condition, w′t1 = 1, we examine an unrestricted allocation that
ignores this sum-to-one condition; that is, a strategy simulating an investor able to borrow or short to
unrestricted levels with no cost (i.e., a major investment bank). The study uses a range of daily target
margins of rt = 0.02%, 0.04%, and 0.06%, corresponding to monthly (about 20 business days) returns of
approximately 0.4%, 0.8% and 1.2%, respectively. We regard these settings as well in the realm of realistic
investor behavior. Beyond this, we have rerun the analyses using far more aggressive, and riskier, settings;
they do indeed yield results that confirm– in fact more strongly– our general conclusions below on the
uniform dominance of the LTC model over the NT model.

(1) Cumulative returns
NT LTC

(i) Restricted allocation
Target margin: rt = 0.02 −1.676 1.551

0.04 −1.851 1.441
0.06 −2.027 1.330

(ii) Unrestricted allocation
rt = 0.02 −2.828 −0.110

0.04 −2.974 −0.106
0.06 −3.121 −0.101

(2) Sharpe ratio
NT LTC

(i) Restricted allocation
rt = 0.02 1.661 5.058

0.04 1.437 5.066
0.06 1.203 5.061

(ii) Unrestricted allocation
rt = 0.02 0.118 4.104

0.04 −0.125 4.276
0.06 −0.371 4.442

Table 4: Analysis of FX returns with benchmark: (1) Cumulative returns (%) and (2) Sharpe ratio for (i) restricted (w′t1 = 1)
and (ii) unrestricted allocations over 50 business days.

Table 4 reports realized cumulative returns of the portfolio allocation from the sequential investment
over 50 business days based on daily out-of-sample one-day-ahead forecasts. The table shows Sharpe
ratios (Sharpe, 1994), here defined as a cumulative sum of risk-adjusted portfolio returns divided by their
standard deviation; the risk-adjusted portfolio return is the portfolio return minus an equally-weighted
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Figure 10: Analysis of FX returns with benchmark: Cumulative returns (%) over 50 business days for target margin rt = 0.06%
with restricted (top) and unrestricted (bottom) allocations.

Figure 11: Analysis of FX returns with benchmark: (i) One-day returns from decoupling portfolio in LTC model (solid) and
S&P500 baseline asset (dotted). (ii) Cumulative returns from LTC model with standard portfolio (dashed) and decoupling
portfolio (solid). The target margin is rt = 0.06%.

portfolio return as a baseline portfolio. The use of correlated factor innovations and the latent threshold
structure evidently and uniformly dominates the other models regardless of the target margins. Figure
10 shows the cumulative returns across time periods using a target margin of rt = 0.06%. The LTC
model performs better than the NT model, which implies the correlated factor innovation and the latent
threshold mechanism contribute to forecasting accuracy in the portfolio allocation experiment.

To assess the role of decoupling portfolio rules, Figure 11(i) plots return trajectories from portfolios
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using the LTC model and the S&P500 index as the benchmark. The decoupling portfolio primarily realizes
less volatile returns than the benchmark asset due to the offset strategy for correlation between them;
the standard deviation of the returns is 1.60% for the decoupling portfolio and 0.54% for the baseline
asset. This evidently provides a beneficially, more stable portfolio. We also compute portfolios based
on the standard portfolio allocation, which excludes the constraint related to the benchmark asset (i.e.,
setting xt = 0 and qt = 0). Figure 11(ii) shows cumulative returns of the decoupling and standard
portfolios from the LTC model. It is obvious that the decoupling portfolio yields better performance
across the experimental period. The final resulting portfolio performance is returns of 1.33% for the
decoupling portfolio and −0.09% for the standard. The benchmark asset is considerably volatile, while it
leads to a higher target return imposing the decoupling portfolio for some times; this mechanism boosts
the decoupling portfolio to the higher returns.

8. Concluding remarks

Our substantive examples in short-term forecasting and portfolio decisions for financial return time
series illustrates a number of important aspects of dynamic latent factor modeling: in particular, we
can identify naturally emerging patterns of remarkably correlated dynamics in factors, coupled with
dynamic shrinkage in factor loadings. Dynamic sparsity patterns induced by the latent threshold structure
underlie plausible parameter estimates for complicated flow and dynamics in the stock price index and
FX returns, and improved short-term prediction accuracy in the realistic portfolio allocation analysis.
From careful examination using various portfolio allocation rules reflecting practically relevant strategies,
improvements in forecasting performance and resulting portfolio investments are evident, they are robust
regardless of the portfolio allocation strategies, and they can be practically very substantial.

There are several methodological and computational areas for further investigation. Developing anal-
ysis techniques for sequential particle filtering and particle learning (e.g. Carvalho et al., 2010) is a possi-
ble future step towards a real-time, forward/sequential implementation of these models, while there are
openings and opportunities for correlated dynamic factor models in areas of macroeconomic time series
as well as high-dimensional microeconomic panel data, as well as multiple other areas of finance. We are
also interested in computational implementations, and the need for fast, efficient and effective modular
code to utilize for these models and potential future extensions. We note the current status on our code
used for the current paper at the end of the following appendix.

Appendix: Bayesian computation

Bayesian computations via Markov chain Monte Carlo (MCMC) extend prior strategies in technically
direct ways. The initial MCMC sampling scheme for latent threshold models (Nakajima & West, 2012a,b)
is extended to this new class of correlated dynamic factor volatility models with additional MCMC com-
ponents that, in terms of modern applications of Bayesian methods, are relatively routine to implement.
We here summarize the several components of the MCMC computation to define posterior samples for all
model hyperparameters and historical values of the trajectories of the several latent processes, based on
observed data y1:T .

First, each of the latent variable processes c0:T , f0:T , and α0:T has a conditional posterior distribu-
tional form emerging from the theory of linear, Gaussian state space models. This enables us to directly
utilize the standard forward filtering, backward sampling (FFBS) strategy for state space models (e.g.
Prado & West, 2010). As often discussed in the literature, the FFBS method is an efficient algorithm that
regenerates full trajectories of the latent variables over whole a data period t = 0 : T at each iterate of the
overall MCMC. This is applied to each of the above component series, conditional on all other variables
and latent processes, sequentially within each of the MCMC iterates.

The second component concerns the latent threshold factor loadings processes b1:T and the latent
threshold parameters d ≡ {dij}. Conditional on thresholds d and all other quantities as well as the
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data, we apply the extension of a Metropolis Hastings algorithm of Nakajima & West (2012a) to generate
sample of βijt according to the observational eqn. (1) and the state eqn. (3). Note that, due to the
diagonal structure of Σt, we can jointly sample βijt’s in each row of the loadings matrix. Write βjt
for the vector of βijt’s in the jth row of the loadings matrix. The conditional posterior distribution of
βjt given βj,−t = βj,0:T \βj,t and other parameters can then be assessed by the Metropolis-within-Gibbs
sampling strategy with a proposal drawn from the underlying non-threshold model. The latter is a trivially
computed normal distribution (see Nakajima & West, 2012a, Section 2.3). The procedure sequences
through this sampling scheme over t = 0 : T to obtain the entire sequence βj,0:T , applied separately
for j = 1 : m. Sampling the latent threshold parameters in d from their conditional posteriors uses
another simple Metropolis Hastings algorithm; the candidate is drawn from its uniform prior distribution
developed above, as described in Nakajima & West (2012a).

Fourth, for the volatility sequences {δi,1:T }i=1:m and {λj,1:T }j=1:k, we apply the standard MCMC tech-
nique for univariate stochastic volatility models (Shephard & Pitt, 1997; Kim et al., 1998; Watanabe &
Omori, 2004; Omori et al., 2007). We separately generate these process across i = 1 : m and j = 1 : k in
parallel, developing efficient resampling of full trajectories of each volatility process over t = 1 : T .

Fifth, for all AR parameters {µ∗, φ∗, v∗}, we generate samples from their conditional posterior dis-
tributions using Metropolis Hasting algorithms separately across ∗; see Appendix of Nakajima & West
(2012a) for details.

The final component is the set of AR(1) coefficients γ1:k defining the diagonal factor VAR coefficient
matrix G. Under the independent shifted-beta prior for each γi, we generate a sample from its condi-
tional posterior distribution using a Metropolis Hastings algorithm. A truncated normal prior reduces the
generation to a direct draw from the normal posterior distribution.

Software implementing these computations is freely available from the authors to interested readers.
All the results reported here were produced in analysis using custom code in Ox (Doornik, 2006).
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