Clustering based on Dirichlet mixtures of attribute subsets

Peter D. Hoff *

April 19, 2005

Abstract

We discuss a model-based approach to identifying clusters of objects based on subsets of
attributes, so that the attributes that distinguish a cluster from the rest of the population may
depend on the cluster being considered. The method is based on a Pélya urn cluster model for
multivariate means and variances, resulting in a multivariate Dirichlet process mixture model.
This particular model-based approach accommodates outliers and allows for the incorporation
of application-specific data features into the clustering scheme. For example, in an analysis of
genetic CGH array data we are able to design a clustering method that accounts for spatial

dependence of chromosomal abnormalities.

Some key words: nonparametric Bayes, unsupervised learning, subspace clustering, variable

selection, COSA.

1 Introduction

In this paper we develop a model-based approach to clustering objects based on subsets of attributes.
The data we consider consist of m-dimensional attribute vectors y, measured on each member of
a population of objects i = 1,...,n. In a typical model-based cluster analysis, one tries to find

a value K < n such that the data are well approximated by a mixture of K multivariate normal
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distributions with means ), ..., p(gk) (see McLachlan and Basford 1988, or Fraley and Raftery
2002 for a review). Such procedures estimate the mean of each attribute separately for each cluster,
typically with fi) ; = Y(x),j, the sample mean of attribute j for observations in cluster k. In some
cases this may result in overfitting: Suppose the differences between two given clusters can be
summarized by a difference in only a subset of the attribute means, with the subset depending
on the pair of clusters being compared. For example, consider a bivariate population which is
a mixture of three groups having means (1(a1), i4(B1)), (A1), #(B2)) and (i a2), p(B2))- There is
variation in both of the attributes, but two of the three cluster pairs differ at only one attribute.

In many applications it is quite possible that only a small number of the attributes differentiate
groups of observations, and that among these attributes, only some will differ between any two
particular groups. This has lead Friedman and Meulman (2004) to develop the notion of “clustering
on subsets of attributes.” One version of their approach iteratively generates a dissimilarity between
each pair of objects based on weighted attribute differences, where the weights are object-specific.
Their clustering criteria and computational approaches are largely driven by heuristics, and their
methods do not provide estimates of the clusters memberships. Related methodologies include
subspace clustering algorithms, which search for clusters in subspaces of the attributes (see Parsons,
Haque and Liu 2004 for a review). These too are driven by heuristic criteria and search algorithms.
In contrast, Newton (2002) provides a model-based subspace clustering method for binary data
arising from genomic abnormalities, but does not allow the same attributes to be relevant in different
clusters.

The clustering approach developed in this paper is based on finding groups which differ from
each other in terms of their means and/or variances at one or more attributes. For example, in
the case where differences between attribute distributions are described by difference in means,
we are looking for a value K, a cluster membership function ¢ : {1,...,n} — {1,...,K} and K
m-dimensional means fu(y), ..., B(g) such that the within-cluster residual sums of squares is small.
However, we parameterize () = p+7 () X 0(r), with r(y € {0,1}"™, () € R™ and “x” indicating
element-wise multiplication. The vector 7 () X &) is then a vector of “mean shifts” for group k,
being potentially zero at many entries. A model for such a clustering approach can be obtained by
writing y; = g + r; X d; + €; and modeling the distribution of {(r;,d;) : i =1,...,n} with a Pélya
urn scheme. The resulting model for the y,’s is called a Dirichlet process mixture model (Antoniak

1974, MacEachern 1994). Such a model provides estimates of the cluster memberships and an



identification of which attributes are likely to be defining each cluster. Additionally, this model-
based approach allows for an assessment of uncertainty in the clustering and the incorporation of
known data features into the clustering algorithm, as is shown in an analysis of spatially dependent
genetic array data in Section 4.

For clarity, we begin with a detailed discussion of the approach in the simple case of subset
clustering of mean shifts. Section 2 introduces a model for this simple case, discusses parameter
estimation and model behavior, and provides a small simulation study. In this study the subset
clustering approach outperforms a more standard Dirichlet mixture model which assumes all at-
tributes are relevant for each cluster. The approach also outperforms COSA and the model-based
clustering routine Mclust of Fraley and Raftery (2002). Section 3 extends the approach to allow
for clusterings based on differences in means and variances, a goal similar to that of Friedman and
Meulman’s (2004) COSA procedure. The model-based procedure performs as well as COSA on
a 10,000-attribute simulated dataset considered in Friedman and Meulman’s article, and outper-
forms the COSA algorithm on a similar dataset. In Section 4 we apply a modified version of the
model to spatially correlated genetic array data in which we try to identify groups of tumor cells
having common patterns of chromosomal abnormalities. A discussion of the approach and some

generalizations follow in Section 5.

2 Clustering mean shifts with a Pdélya urn scheme

Given an « > 0 and a distribution fy on {0,1}™ x R™, the clustering procedure described in this

section is as follows:

f ~ Dirichlet(a, fo) (1)

{r1,61},...,{rn,5n} ~ iid. f

€1,...,€, ~ iid. multivariate normal (0,diag{c?,...,0%})
Y = B+Tix0dite.
The vectors 1 X071, ...,7, X8, are the “mean shifts” away from g described earlier, and f describes

their distribution. Modeling f as a Dirichlet process results in what is called a Dirichlet process mix-
ture model, as the density of y; can be written as the mixture p(y,|p, o?) = [ p(y;|p, 0%, 0)f(d6)

where @ = {r,d} and the mixing measure f is a Dirichlet process. Such models have a history



going back to Antoniak (1974), and have been put to practical use by MacEachern (1994), Escobar
and West (1995,1998), MacEachern and Miiller (1998), Neal (2000), Dahl (2003b) and others.
Model (1) provides the following:

(a) the possible values of f include all discrete distributions on R™ (f is estimated nonparamet-

rically);
(b) a sample of n mean shifts from f may have less than n unique values (the {r,d}’s “cluster”);

(c) the attributes j for which gy ; x dy); # 0 may depend on k (relevant attributes may be

cluster-specific).

Samples from a Dirichlet process are discrete, and so f has support on a countable number of
{r,d}-values. This discreteness implies that a sample from f could have a number of ties, and thus
forms a clustering. That the Dirichlet process prior gives a simple and interpretable model for a
clustering process can be seen via the Pélya urn representation of a sample from a Dirichlet process,
which is described in Blackwell and MacQueen (1973): If f ~ Dirichlet(c, fo) and 64, ...,8,, are
i.i.d. samples from f, then unconditional on f the joint distribution of the 8;’s is equal to that of

an exchangeable sequence generated as follows:

1. sample 61 ~ fj ;

2. sample 05 ~ %5 fo + a+r1591(') :

a n—1 ¢
n. sample 6,, ~ a+n—1f0 + a+n—1fn—17

where dg (-) is a point-mass measure on 6, and fn_1 is the empirical distribution of 61, ...,6,_1.
The above process is called a Pdlya urn scheme with parameters a and f(. It is clear that, depending
on «, the sample 014, ...,60, may have been generated by fewer than n draws from fy and thus have
fewer than n unique values, achieving item (b) described above. We denote the number of draws
from fo as K, and the values of the draws as 0 y),...,0(x). The function mapping the unit
labels {1,...,n} to the independent draws {1,..., K} is denoted c¢. As can be seen, a determines
the distribution of K, whereas fy determines the distribution of the cluster-specific parameters
0(1).--,0(k). Note that under the Pélya urn model there is positive prior probability that a given
object is assigned to its own “singleton” cluster. This property allows for the identification of

outliers and reduces the possibility that they will hinder the detection of coherent clusters.



Rewriting in terms of the Pdlya urn representation, our full probability model can be alterna-

tively described by replacing the first two lines of (1) with

{7"17 51}7 cee {Tna 571} ~ Polya urn(a, fO)

A convenient choice for the baseline distribution fy is that of independent binary and normal

random variables,

Hblnary rj] ) x normal(d;0, 7; 2. (2)
7=1

In this case \; represents the prior log-odds that the mean of a given attribute within a cluster
differs from that of the other clusters. The parameter 7']-2 represents the average squared magnitude
of such a difference. For now we allow \; and 7]2 to vary among attributes, although in Section 2.3

we suggest a more parsimonious version of the model.

2.1 Model behavior

Key to understanding model behavior and parameter estimation is the probability of the data
within a cluster conditional on the clustering ¢ but marginal over the values of the cluster-specific
parameters 6 y),...,0 k), where 0y = {r), ) }. The marginal distribution for the data from
attribute j in cluster k can be obtained by summing and integrating:

1

. et
Py : c(i) = k}pj,07) = Z m/ H normal(y; j|p; + 15 % 65,03) ¢ fo(6;]77) d§
r;=0 w:c(i)=k
1 +e,\j+2\j(k)
- T X H normal(ymmj,ajz-)

i:e(i)=k
where \;(k) is given by

p({yi,j 2 (i) = k}tr; =1 ,LL],UJ, ]2)

Ni(k) = log 3
i ol 0 =3 =005 ?
multivariate normal (y g ;| ujl o; 1+ 7211’ )
= log — (4)
multivariate normal ( ]ujl 0% I)

= L Ml g, (5)
2 T + 02/71 2 I °8 2/ + 7'
where £;(k) is the average value of y; ; — 115, averaged over objects ¢ in group k. The value of S\J(k)

can be thought of as the adjustment to the log odds of 7, ; = 1, the existence of a mean shift in

attribute j for members of cluster k, having observed data from that cluster and given values of



15, 0]2- and sz. Alternatively, S\J(k) is a log Bayes factor for evaluating H : E(y; ;) # pj versus H¢
for data in group k.
Taking the product over all clusters k and attributes j gives

14 erithi
p(Y1, - Yple, o A, T?) HH HHnormal (Vi jlpi, o ]) . (6)

k=1j=1 1+€ i=1j5=1

Note that the second product on the right hand side does not depend on the clustering or the
parameters describing the distribution of the cluster-specific parameters, and so the conditional
distribution of the clustering ¢ given the data and the other parameters is proportional to its prior
times the first product. The k, jth term in this product is an increasing function of ;\](k) Taking
logs and using a Taylor series expansion of log(1 + e* +X (k)) about S\J(k) = 0, the log-likelihood as

J I\, j(k) plus a constant. This indicates that higher

a function of ¢ is approximately S5 S i1 1+ Y

posterior probability is given to clusterings for which ;\](k) is large across attributes, weighted by
e /(1+¢e%). Recall that ;\](k) is the log-ratio of two multivariate normal densities, the numerator
modeling the responses at attribute j within a cluster as having marginal correlation sz / (7'j2 + 0]2-),
the denominator modeling the responses as independent. As can be seen from (5), A;(k) is large if
éj(—k)2 is large compared to 0]2- /g, its expected value under the hypothesis of no mean shift.

It is also informative to look at the likelihood (6) as a function of u and o2, Taking the
derivative of the log-likelihood with respect to p;, the maximizer in p; is seen to satisfy
D ) 1 A L B

il - o)l T 14 e tN® T 4ol

Without the weight v;(k) the conditional maximizer would be ¢;, the sample mean over all clusters.

[y =

The weight has the effect of making the estimate of 1; predominantly based on data from clusters

k for which there is unlikely to be a mean shift, i.e. k& for which e)‘j"“j‘j(k)/(l + e>‘j+5‘j(k)) is small.

Similarly, the maximizer of the likelihood in 0]2-

o X ls5 ) + 5 (k) — [0 — v (k) (R)]}
: el = vs(K)]

where s%(k) = Diceliy=k Yij — yj(k)]?/ng and vi(k) = 1+ (07 /ng)/ (07 /g + 77). Although less

satisfies

transparent than the likelihood equation for j;, the behavior is analogous: For a group k with a
large probability of a mean shift (v;(k) large), [, (k) — p;]? is not a good estimate of 0]2- and so the
contribution to the estimate of 0]2- from group k is dominated by s?(/c) On the other hand, if it is

unlikely that group k has a mean shift (v;(k) small), then the contribution to the numerator from

group k is approximately nk(sf(k‘) + [7;(k) — py]?) = D ise(iy=k Yij — 1.



2.2 Parameter estimation

Inference can be made on {c, @, i, 0%} by constructing a relatively straightforward Markov chain
which converges to the posterior distribution p(c,a, u,o2|yy,...,y,). We suggest an algorithm
based on Gibbs sampling of the cluster membership function and the other parameters. This ap-
proach is the “standard” estimation technique for Dirichlet process mixture models, and is discussed
by MacEachern (1994) for mixtures of univariate normals, and in general by Neal (2000). Given a
current state of {c, a, pu, @}, one such algorithm iteratively sample new states for each quantity as

follows:

1. For i € {1,...,n} in random order, sample ¢(i) conditional on the data, u,o? and a but

marginal over the cluster-specific parameters;
2. For k € {1,..., K}, sample {ry,d;)} from its full conditional distribution;
3. For j € {1,...,m}, sample p; and aj2- from their full conditional distributions;
4. Sample « from its full conditional distribution.

These steps are outlined in more detail below.

Sampling c: Unconditional on the observed data, the conditional distribution of ¢(i) given
the other values of ¢ and « is computed as follows: Let K be the number of unique values of
{c(i) : i/ # i}, and relabel these values as 1,..., K if unit ¢ is currently in its own cluster. The

conditional distribution of ¢(7) is

N, —i ifk<K+1
«@ fk=K+1

Pr(c(i) = kle(i'), #i,a)

where ny _; is the number of objects in cluster £ not including unit 7. In other words, unit 7 is
placed into an existing cluster with probability proportional to the cluster’s size, and is placed into
a new cluster with probability proportional to . Conditional on the data and the other parameters

these probabilities are reweighted as
Ng,—; X wg, ifk<K+1

Pr(c(i) = kle(i),i #i,a,mu,0*, X\, 7%, yq,...,y,) X
a X WK1 ifk=K+1



where the weights are given by

™ 1+ exp{\; + ATk
we = P A k4
o T exp{h; + A7 ()}
71+ exp{); + ATH(K)}
WK+1 = j];[l 1+exp)\3 s

and X;”(k) , X;’(kz) are calculated as in (3) but including and excluding y; in cluster k for the
marginal probability calculation, respectively. Each weight w; represents the relative probability
of the data under ¢(i) = k.

With each resampling the number of clusters could increase by one, decrease by one, or remain
unchanged, allowing the Markov chain to move around the space of clusters. To improve mixing of
the Markov chain, we suggest including split-merge Metropolis-Hastings steps in the algorithm as
well. Details for the implementation of such steps can be found in Jain and Neal (2004) or Dahl

(2003a).

Sampling {r(k),(s(k)}: Under the prior distribution (2) and given the data, p,o? and c,
T(k),1s- - - » T'(k),m are conditionally independent binary random variables having log-odds A; + Xj(k)
If 74y; = 1, then §y,y; has a normal(gj,%f) distribution, with 7A'j2 = (nk/ajz + 1/7']-2)_1 and

Sj = 72-2(22-:0(2-):,6(%7]- — ,uj)/a?). Otherwise, d(;) ; is normal (O,sz).

Sampling «a: Fixed values of a and n provide a prior predictive distribution for the number of
clusters K which is generally concentrated on a small set of integers. More diffuse priors for K
can be obtained by putting a prior on « and including it as an unknown parameter in the MCMC
scheme. For example, a uniform prior on a/(« + 1) results in a prior distribution for K that is
monotonically decreasing from K = 1 but has a reasonably heavy tail out to K = n.

As shown in Antoniak (1974), the distribution of K as a function of « is proportional to
afT(a)/T'(a+n). This can be highly skewed in a € R* depending on K. Since K varies over the
MCMC sampling procedure, coming up with a fixed proposal distribution for « in a Metropolis-
Hastings update is problematic. Escobar and West (1998) provide a sampling approach based
on data augmentation if the prior for « is a gamma distribution. For arbitrary priors one can
reparameterize in terms of 7 = ;%5 € (0,1), which represents the probability that a given pair of

objects are in different clusters. Changing variables, we have

r \5 Llr/(1 —m)]
p(m|K) o p(m) X <1 —7r> I[r/(1—7)+n]
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Sampling from p(7|K) can be achieved by sampling from a grid on (0, 1).

Sampling p,02:  The full conditional distribution of {u s 0']2-} depends on the data only through
observations from attribute j. It is relatively straightforward to update these parameters for
each j = 1,...,m using a Gibbs step in the case of conjugate prior distributions: Given ¢ and
{r@), 0w}, k=1,..., K we calculate €; ; = yij — 7(c(s)),j X O(c(i)),j- Lhese “residuals” at attribute
j from all clusters {e; j,i = 1,...,n} are conditionally i.i.d. normal(yu;, sz). The full conditionals

of pj and a? are then normal and inverse-gamma respectively if conjugate priors are used:

[~ normal(ﬂjﬁ?) , where &? = (n/ajz- +1/v)7L, 4 = 6]2(2?:1 EZ'J'/O'? +m/v)

1/0% ~ gammalvy +n/2, v + 30 (g0 — 115)*) /2],

where m, v,y and vy parameterize the priors of p; and 0]2-.

2.3 Estimating hyperparameters

The types of clusters identified by the above modeling strategy are determined in part by the prior
fo for the mean shifts, which in turn depends on the parameters X and 72. Ideally, one has a good
idea of what types of clusters are of interest and is able to specify fixed values or informative prior
distributions for some or all of these parameters. Alternatively, in many data analysis situations
the attribute measurements may be of a common type. In this case it might be appropriate to
model the relevance indicators r; and mean shifts ; as depending on some parameters that are
shared across attributes, and then estimating these parameters from the data. For example, one
possibility is to model fjy as follows:

m A

fo(r,0) = H binary(rj]H—e)\) X normal(5j]0,7j2 =n X 0]2-), (7)

j=1
and then include estimation of A and 7 in the MCMC algorithm. In the above model, 7']-2 has been
parameterized as sz = 7]0]2-, and so 7 relates the magnitude of the mean shifts at an attribute to the
variance of the attribute, or alternatively, n/(n+1) is the marginal correlation at relevant attributes
among observations in the same cluster. A prior distribution on A and 7 amounts to modeling the
elements of the relevance vectors r and d/o as marginally exchangeable but dependent. Such an
exchangeable prior allows for differences across attributes of the cluster-specific parameters, but

generally provides estimates with lower variability than if they were modeled as a priori independent.



Even if the attributes represent measurements of very different types, it still might be desirable to
use such an exchangeable prior, as it establishes a common criteria for relevance across attributes.

Standard conjugate priors for these hyperparameters are are beta (ay,by) for e*/(1 + e*) and
inverse-gamma. (a,, b,) for . Estimation of these parameters can be incorporated into the Markov

chain described above by including Gibbs sampling steps for these parameters:
K K
o sample e*/(1 + ) ~beta{ay + D p_y Y50 T(kygs On + Dpmy doger (1 =7y 3) )5
o sample 1) ~ inverse-gamma{a, + snkK, b, + 135, Py 5(2k) j/ajz-}.

One additional modification to the MCMC algorithm required by model (7) is that, conditional on

n, the mean shifts give information about o?. As a result, the Gibbs sampling step for o2 becomes

e sample 0]2- ~ inverse-gamma{a + 3 (n + K),b+ $(31 1 (ei; — pij)? + Zszl 5(2k)’j/77)}.

2.4 Simulation Study

We expect the accuracy of the clustering procedure to be high if the number of relevant attributes
is large (large A) and/or the magnitude of the mean shifts relative to the error variance is large
(large ). We investigate these claims empirically with a simulation study. Eighteen datasets were

generated as follows:
L. For k=1,...,K = 10, generate {r ), d()} via
® T(k)1---sT(k)m ~ iid. binary(e*/(1 + ¢)), and
® S(k),1 -5 O(k),m ~ 1i.d. normal(0,n).
2. Fori=1,...,n, sample c(i) uniformly from {1,..., K} and set {r;, d;} = {r(c())> (@) }-
3. For i =1,...,n sample y,; ~ multivariate normal(r; x ;,1).

This data generating mechanism is the same as the model described by (1) and (7), except that the
cluster memberships for the simulated data are not generated with a Pdlya urn scheme. Eigh-
teen datasets were generated in this manner, one for each combination of A € {-3,—2,—1},
n € {1/2,1,2} and n € {50,100}. These parameter values provide datasets exhibiting varying
degrees of information about the clustering, from small mean shifts at roughly 5% of the attributes
(n = 1/2, X = —3) to large mean shifts at roughly 25% of the attributes (n = 2, A = —1). To increase

comparability across simulations, the same clustering was used for each of the nine datasets for a
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given sample size, and the clustering for the n = 50 datasets was a subclustering of the n = 100
clustering.

We used the model described by (1) and (7) to analyze the simulated data, with “unit informa-
tion” priors (Kass and Wasserman 1995) for p and o whereby a priori we have p1; ~ normal(y. j, s?)
and a? ~ inverse gamma(1/2, 35/2). The prior on a/(a+ 1) was taken to be uniform(0,1), and the
priors for e*/(1+¢*) and n were uniform(0,1) and inverse-gamma(1/2,1/2) respectively. A Markov
chain of length 10,000 was run for each dataset, each starting with all » units in the same cluster.
Convergence of the chains appeared to be rapid, typically occurring in the first few tens of scans
and always occurring within the first half of the chain.

Figure 1 gives some indication of the mixing of the chains for three of the simulated datasets.
The figure plots the Jaccard index of similarity (Jaccard 1912, Milligan, Soon and Sokal 1983)
between sampled clusterings ¢ and the clustering ¢y which generated the data for every tenth
scan of the Markov chain. The Jaccard index is defined as J(c, co) = Ny.s/Ny|s, With N;.s being the
number of pairs of objects in the same group under both clusterings, and N, the number of pairs in
the same group under at least one clustering. With ¢y being the true clustering, this index measures
how well a clustering c identifies pairs of objects that should be in the same group, but penalizes ¢
if it puts too many objects in the same group. We also assess posterior mean performance of the
method using the Jaccard index. The average values of J(c, cq), averaged over sampled clusterings
from the second halves of the Markov chains, are shown in Table 1. As conjectured, the ability to
accurately identify clusters increases with the number of relevant attributes (A) and the magnitude

of the mean shifts (7).

Ui n
n = 50 1/2 1 2 n = 100 1/2 1 2
-3 | 0.07,0.02 0.07,0.02 0.15, 0.04 -3 1 0.08,0.01 0.08,0.02 0.36, 0.05
A -2 10.12,0.08 0.52,0.34 0.87,0.68 A -2 10.16,0.08 0.67,0.31 0.99, 0.88
-1 10.28,0.27 0.75,0.72 0.91, 0.83 -1 10.76, 0.60 0.90, 0.90 0.97, 0.95

Table 1: Results of the simulation study: Numbers are the the Jaccard indices of similarity averaged
over sampled clusterings from each of the Markov chains. The first number is the average index using
the subspace clustering method, the second using a standard Dirichlet mixture model, clustering

on all attributes.
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Figure 1: Plots of the Jaccard index of similarity between c¢¢ and every 10th sampled value of ¢ for

the three datasets n € {1/2,1,2} with n = 50 and A = —2.

If the posterior distribution of ¢ indicates a strong clustering then it may be of interest to
identify the attributes which contribute substantially to the between-group differences. One way
to do this is to obtain posterior estimates of 7(y),...,7(x) and d(y), ..., d k) conditional on a single
estimate of the clustering. We give an example of this for the n = 50, A = —2, 7 = 2 dataset. The
estimated modal clustering ¢ (the value of ¢ that was sampled the most number of times) had a
Jaccard index of J(cp,¢) = 0.88, placing 48 observations into 10 groups which were “pure” except
for one misplaced object. The remaining two objects were not grouped within these ten clusters or
with each other. The MCMC algorithm was run as above but with ¢ fixed at é. To summarize the
conditional posterior distribution of r(y),...,7 (k) and 8(1),...,8(k), we categorize an attribute j
as relevant for a given cluster k if r(;) ; = 1 for more than half of the saved scans. Figure 2 plots
the MCMC sample mean of r ;) ; X ) ; at these attributes for the three largest clusters. As can be
seen, such a criterion gives good estimates of the larger mean shifts but misses some of the smaller
mean shifts.

An appropriate model to compare to the subset clustering approach is a Dirichlet process
mixture model assuming all attributes are relevant to all clusters, i.e. a “standard” clustering
method. This model can be viewed as a submodel of the one developed in this paper with A = cc.
Results for this model applied to the 18 simulated datasets are also presented in Table 1. The
subset clustering model outperformed this submodel for all simulated datasets, although as we

would expect, the improvement decreases as the number of relevant attributes increases.
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Figure 2: Data and estimated mean shifts from the three largest clusters from the n = 50,n =

2, A = —2 dataset.

We also clustered the data using two other approaches: the model based clustering algorithm
Mclust (Fraley and Raftery, 2002) as implemented in the R computing environment, and the COSA
algorithm of Friedman and Meulman. The routine Mclust did not identify any clusters for any of
the 18 simulated datasets (i.e. the preferred number of groups was K = 1 for each dataset). We
speculate that this is due to the fact Mclust fits an m-dimensional mean vector for each group and
that it uses BIC to penalize model complexity. For these simulated data the actual number of mean
parameters required to differentiate between groups is much less than m, and so the improvement
in fit obtained by adding a cluster is small relative to the BIC complexity penalty of order m.

In contrast to Mclust, the goal of the COSA algorithm is to find clusters based on subsets of
relevant attributes. The COSA algorithm generates a set of distances between objects which one

can then input into a distance-based clustering method. We computed COSA distances for only
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Height

the dataset with the strongest evidence of clustering (n = 100, \ = —1,7 = 2). An average-linkage
dendrogram of the COSA distances is shown in Figure 3, along with the group labels used to
generate the data. As can be seen, the COSA distances are only weakly related to the true group
labels. Additionally, the shape of the dendrogram does not reflect the strong clustering of the data.
In contrast, the proposed model-based method produced a posterior mode clustering for these data
that identified the 10 clusters and correctly grouped 99 of the 100 objects. This lack of performance
by COSA is partly due to the fact that COSA distances are largely based on attributes that have
low variances within a group, as opposed to attributes where the within-group mean differs from

that of the other groups. This is discussed further in Section 3.2 .

0.3 O|4 O|5 O|6 O|7
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Figure 3: Average linkage dendrogram using COSA distances for the n = 100, = 2,A = —1

dataset. Plotting characters are the true group labels.

3 Clustering shifts in mean and variance

In many cases it is desirable to form groups of objects based on differences in means and variances.
For example, one notion of subspace clustering is that the responses at relevant attributes within
a cluster are all very similar (having a common mean and a small variance), whereas the responses
at irrelevant attributes vary widely (having a high variance). This is the notion of clustering that
Friedman and Meulman (2004) consider with their COSA algorithm. In other applications we might
want to allow for a positive mean-variance relationship, such as with skewed data or in biostatistical
applications for which biological activity may be marked by increases in mean and variance.

Recall that the modeling approach discussed in the previous section identifies clusters by mod-
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eling the variance and covariance at a relevant attribute j within a cluster, unconditional on the

mean shift, as

2
N
2 2 )
TS+ 03 n+1

Var(yij) = 05 + 77, Cov(yiy jr Ying) = 715 Cor(Yi j» Vinj) =

where the last equality holds under the parameterization in (7). A model extension allowing for

cluster-specific variance at relevant attributes can be parameterized as

2
.
2 2 ’
T+ 03 n+1

Var(y;,;) = w(zk),j(o'jz' + Tj2)a Cov(¥irj» Yin.j) = w(zk),jszv Cor(yiy j» Yin.j) =

where w(zk) ; represents the shift in variance at attribute j within cluster k. This can be written as

the following modification to model (1):

f ~ Dirichlet(a, fo) (8)

{r1,61,wi}, ... {rp, 0,2} ~ iid. f

€1,...,€, ~ iid. multivariate normal (0,diag{c?,...,02,})
.
Vig = M+ TG X 0wy X Wy W) X €

where now the cluster-specific parameters are 0y = {r(k),é(k),w%k)}. A simple conjugate base
measure is given by
m A
fo(r,d,w?) = H binary(rjlli—e)\) X normal(5j]0,7j2 = 770]2-) X inverse gamma(wf—\aw, by).  (9)
j=1
The values of a,, and b,, determine what types of variance shifts the model will detect. For example,
to detect COSA-like clusterings where the variance at relevant attributes is lower than the back-
ground variance we might fix a,, > b, + 1 so that w(zk)vj is less that one on average. Alternatively

we could put a prior on (a, b, ) along with the other hyperparameters as discussed in Section 2.3.

3.1 Parameter Estimation

Posterior calculations for the model given by (8) and (9) can be made using the algorithm outlined
in Section 2.2 and 2.3 with the modification that the numerator of S\J(k) in (3) now must be obtained
by integrating out the cluster specific values of w(zk% ; in addition to those of 7y ; and 4 ;. The
within-cluster distribution of the data at a relevant attribute, marginal over w(Qk)J. and o) 4, is a

multivariate t-distribution with density
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" 7-2 ) —(aw+nk/2)
bw-i-—k (k2 - — 1 ek . 10

The quantity ;\](k) is given by ;\](k) = log[p({yi j : c(i) = k}|r; = 1)/p({yi; : c(i) = k}|r; = 0)] as
before, and is used to perform Gibbs sampling of the cluster function ¢ and the relevance vectors
T(1),---,T(k) as described in Section 2.2. Gibbs sampling of the other model parameters also
proceeds as in Section 2.2, with the modification that quantities at relevant attributes are rescaled
by the shifts in standard deviation wy),...,w k). Details of the rescaling are straightforward, and
the procedure is implemented in R-code available at the author’s website. In order to perform
the rescaling, conditional samples of ""%1)7 . ,w%K) are required, and can be sampled as w(2k)7j ~
inverse-gamma (ay, + ng/2, by, + %gl(k),jzjf(k),j) if r(ry,; = 1, where &gy ; = {vij — pj : (i) = k}

and ¥, = O’?I + szll’, and w?k)’j ~ inverse-gamma (ay, by) if 7() ; = 0.

3.2 Comparison to COSA

We evaluate the model given by (8) and (9) with two simulated datasets, one considered by Friedman
and Meulman (2004) and one similar to it. The dataset considered by Friedman and Meulman
consists of 10,000 attributes measured on 100 objects, in which the responses from all but 150 of
the attributes were generated from a standard normal distribution. For one cluster of 85 objects,
these 150 attributes are also standard normal, but for a second cluster of 15 objects these attributes
were sampled from a normal distribution with mean 1.5 and standard deviation of 0.2. Thus the
two groups differ in both mean and variance at 150 out of 10,000 attributes. As shown in the
article, the COSA algorithm does a good job of distinguishing the two groups. To examine the
ability of COSA to detect mean shifts in the absence of variance reductions, Hoff (2004) applied the
COSA algorithm to a dataset similar to the one described above, having the mean shift of 1.5 but
lacking any change in variance. As shown in Hoff (2004), COSA was unable to detect the clusters,
indicating that the algorithm may be insensitive to group differences based on means alone.

We evaluated the Dirichlet mixture model given by (8) and (9) on these two 10,000 attribute
datasets. Prior distributions for all parameters were as in the simulation study in Section 2.4, and
the hyperparameters (a,,, b,) were fixed at (3,2). This gives a relatively diffuse prior for the w?’s,

having a prior mean of 1 and a prior mode of 1/2. This prior favors clusterings having a decrease in
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variance at relevant attributes, but allows for no change in variance and even the possibility of an
increase in variance. Two Markov chains of length 1000 were run, one for each of the two simulated
datasets. In the case of the data having both a mean and variance shift, all sampled clusterings
after scan 222 were equal to the true clustering. For the data with just a mean shift, all scans
after scan 90 were equal to the true clustering. This indicates that the true clustering is a very
strong mode of the posterior distributions for both datasets. This should not be too surprising,
as the class of models described by (8) includes the distributions which generated both datasets.
However, it seems important to note that the COSA procedure fails to identify the clusters in the
second dataset, a dataset having a relatively simple cluster structure that is apparently easy to

identify with a correct model class.

4 A model extension for chromosomal abnormalities

A model for the cellular evolution of cancer within an individual is that an accumulation of genetic
abnormalities in certain chromosomal regions of a cell lineage eventually results in tumorigenesis.
In particular, abnormalities may take the form of chromosomal gain or loss. A normal cell has
two copies of each chromosome, whereas cells having undergone errors in duplication may have
lost or replicated certain regions of chromosomes, potentially resulting in one copy of chromosomal
material at a given location (deletion) or more than two copies (amplification). If a cell lineage
undergoes tumorigenesis, then such copy number changes are passed on to the descendant cells
that eventually make up a tumor. If tumors from different, unrelated individuals all have the same
types of deletion or amplification events at a combination of locations, then this is some evidence
that these locations play a role in tumorigenesis. This reasoning has been applied to several studies,
including Hemminki (1997), Roylance et al. (1999), and is discussed in Gray and Collins (2000).
Newton (2002) uses this idea to develop a clustering model for binary chromosomal abnormality
data used to identify mechanisms of tumorigenesis.

In this section we consider a first step in such an analysis: determining the extent to which a
population of tumors can be divided into groups having similar patterns of chromosomal abnor-
malities. In a study using comparative genomic hybridization (CGH) array data from 44 breast
cancer tumors (detailed in Loo et al. 2004), y; ; is the log base 2 relative hybridization level of DNA
samples from tumor ¢ at genome location j compared to the hybridization level of a normal cell’s

DNA at that location. Large negative or positive values of y; ; suggest deletion or amplification ab-

17



normalities for tumor i at location j. The researchers provided data on chromosomes 1, 6, 16, and
17 for statistical analysis. Hybridization levels were measured at 345, 183, 150, and 133 locations
on these four chromosomes respectively, for a total of m = 811 observations for each of the n = 44

tumors. Figure 4 shows hybridization data from chromosome 1 for three tumors. The three tumors
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Figure 4: Hybridization ratio data from chromosome 1 for three tumors. The gap is the centromere.

show a similar profile along the first part of chromosome 1, whereas only two of the three show
an amplified response along the second part of the chromosome, suggesting a potential clustering
based on subsets of genome locations. Additionally, there is some indication that the amplified
responses are accompanied by increases in variance. Finally, the figure suggests that abnormalities
occur at contiguous regions of the chromosome, so that the presence of abnormalities along the

chromosome is a spatially dependent process.

4.1 Modeling spatial genetic events

To analyze these data we use the model for shifts in means and variances as outlined by (8) and
(9), but modify fy to account for the spatial nature of the abnormalities. This is done by modeling

the vector r as a binary Markov sequence, parameterized as

7 +2rj—1  if locations j and j — 1 are physically next to each other;
log odds(rj = 1|rj_1) =
Y1 otherwise.

Two consecutively numbered locations may not be physically next to each other if they are on

different chromosomes or on different arms of the same chromosome. This model can also be
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written in exponential family form,
m m
Jor(r) = kA1, A2) " exp{D_ Agrj + Y Aagryri-i} (11)
j=1 =2

where A1 j = 71 + log(1 + €) — log(1 + € 7225) and Ay ; = 7 if locations j and j — 1 are next
to each other and Ay ; = 0 otherwise. Alternatively we could model the dependence between
measurements at j and j — 1 as a function of the genetic distance between them. We do not pursue
this model complication, as the measurement locations are approximately evenly spaced along the
four chromosomes. One additional model modification we do make is to constrain u = 0, as we are
interested in detecting common regions of chromosomal gain or loss rather than deviations from an
average amount of gain or loss.

The full probability model for all data and unknown quantities is:

Sampling model: y,; ~ multivariate normal (r; x §; x w;,diag{o? x (w?)Ti}).

Prior for variances :

— 02,...,02% ~1iid. inverse gamma (v1,15) .

— (log v1,log va) ~ multivariate normal (0,100 x I).

Clustering model: {ry,81,w?}, ..., {rm, 0., w2} ~ Pélya urn(a, fo).

Prior for a: ;%5 ~ uniform(0,1) .

el e1t72
14e1 > 14+e71 +v2

~ independent uniform (0,1);
— n ~ inverse gamma (1/2,1/2);
— (loga,logb) ~ multivariate normal (0,100 x I).

The prior on the variances o2, ...,02, is an exchangeable prior, in that unconditional on (1, vs)

the variances are dependent but exchangeable. This has the effect of reducing the variability of the
ajz’s, and is justifiable in the sense that each attribute measurement is of a similar type (CGH array
data), so that knowledge of the variance at one attribute gives some information about the variance
at another. The prior distribution on the parameters in the base measure fq are proper but diffuse.
These can also be viewed as generating a prior for the cluster-specific parameters {r,§,w?} which

is exchangeable across attributes.
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4.2 Parameter estimation

Parameter estimation for this more complicated model is only slightly more difficult than that
for the model described in Section 3. As before, a useful quantity for estimation is the marginal

probability of the data in a cluster given the parameters and clustering:

K 2 m
p<{yi:c<i>=k}>={H“(A;&fg;”}x [T TI mormaltyes o)

k=1 Jj=li:c(i)=k

where (k) = {A1(k), ..., Am(k)} is as defined by (3) and (10).

Gibbs sampling of the cluster memberships proceeds as in Section 2.2 but with the following

modification to the weights w1, ..., wy:
w, = " +A (), %) k< K41,
K(A1 +>\ (k),Aa)
e AT (),
(A1, Ag)

Conditional on the clustering and the other parameters, r ) can be sampled from the (ex-
ponentially parameterized) Markov model (11) with parameters {A; + A(k), A2}. The remaining
parameters in the model can be updated by sampling either from full conditionals as described in

Sections 2 and 3 or Metropolis-Hastings steps for v, v, a, and b.

4.3 Posterior Inference

Four Markov chains of length 25,000 scans each were generated as described above. One chain was
begun with K = 1, one with K = 44, and the two remaining chains were given randomly sampled
starting values for the clustering function. The Markov chains arrived at similar regions of the
parameter space after a few hundred scans. After dropping the first 1000 scans from each Markov
chain, the modal clustering ¢ (the clustering that was sampled the most number of times) placed
the 44 tumors into three groups of sizes 14, 11 and 9, and put 10 tumors into their own “outlier”
groups. Examination of the Markov chains indicated good mixing and that cluster composition
was fairly similar to that of ¢ across MCMC scans and chains. Some aspects of this are presented
in Figure 5. The first panel gives the cumulative sample sizes of the largest cluster, second largest
cluster and third largest cluster for every 100th scan of one of the Markov chains The second panel
gives the Jaccard index of similarity between ¢ and each 100th sampled value of ¢. Results for the

other Markov chains are similar.
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Figure 5: Summaries of the posterior distributions of the clustering. Panel 1 plots the cumulative
sample sizes of the three largest groups for every 100th scan of the Markov chain. Panel 2 plots

the Jaccard index between ¢ and every 100th sampled value of c.

On average over all scans and chains, the sample sizes of the three largest groups were 13.5, 10.4,
and 7.2 respectively, making up 31.1 (71%) of the 44 tumors. The ten tumors that were placed into
their own outlier groups under ¢ were also typically outliers across scans of the Markov chains. The
fraction of scans in which these ten tumors were outliers were .97,.96,.93,.92,.91, .89, .86, .84, .74
and .38. Of the remaining 34 tumors, one had a 14% posterior probability of being an outlier and
the rest had probabilities of less than 3%. On average across scans and Markov chains, 8.7 tumors
(20%) were placed in their own outlier groups.

Data from the three largest groups under ¢ are shown in Figures 6, 7 and 8. Hybridization ratios
within these groups are generally characterized by having high variances relative to o2 and having
some common regions of over or under expression. The main features of the largest group include
large, consistent amplification of genetic material on the second arm of chromosome 1, moderate
amplification on the first arm of chromosome 16, and deletion on the second arm of chromosome
16. The second largest group also exhibits some amplification on chromosome 1, but has higher
variances than the first group and lacks a pattern of gain and loss on chromosome 16. The third
largest group exhibited a similar pattern to that of the largest group, but with a smaller shift on
the second arm of chromosome 1 and an indication of deletion on the first arm of chromosome 17.

For comparison, data from one of the outlier tumors is shown in Figure 9. This tumor was
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Figure 7: Data from the second largest cluster.

identified as an outlier in 97% of the saved scans of the Markov chains, which seems like a desirable
classification: This tumor distinguishes itself from the others by exhibiting no sign of amplification
or deletion anywhere on chromosomes 1, 6 or 16, but has a very clear abnormality pattern on 17,
one that is unlike that of the other tumors.

As can be seen from these plots, the data are quite noisy even within a cluster. However, for
each of these clusters there exist many regions of the chromosomes in which the hybridization ratios
are all either above zero or all below zero. As a quick ad-hoc check, for each of the three groups
under ¢ we counted the number of locations at which the measurements were either all above zero or

all below zero, and compared these counts to the expected number of such locations from randomly
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Figure 8: Data from the third largest cluster.

sampled subsets of tumors, the subsets having sizes of ny € {14,11,9}. The ratios of observed to
expected counts were 2.4, 1.2, and 1.5 for the clusters of size 14,11 and 9 respectively (or “p-values”
of < .0001, .142 and .02). In contrast, when taken together, the set of 10 outliers had an observed
to expected ratio of 0.7 (or a “p-value” of .96). This simply checks that the clustering procedure

grouped together tumors having similar patterns of over and under expression.
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Figure 9: Data from an “outlier”.
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5 Discussion

This paper has developed a model-based method of finding clusters based on subsets of attributes.
The types of clusterings this method is designed to identify include, but are not limited to, cluster-
ings where all attributes differ among groups and where a fixed subset of attributes all differ among
groups, and so this approach is more general than a variable selection procedure. The method
also has the feature (shared by all Dirichlet process mixture models) that an object can potentially
be put into a group by itself if its attribute pattern is not minimally similar to those of other
objects. Depending on the application, this could be a desirable feature: Outlying observations
can be identified and will not influence the features of the groups. Additionally, the basic method
presented here for identifying clusterings based on attribute subsets is extendable to more general
data analysis situations. For example, non-normal data can be modeled with exponential family
distributions, using p ) = p + r(x) X 81 to represent the canonical parameters.

The method described in this article is based on a nonparametric mixture of sequences of
independent normal random variables. As a result, the estimated clustering has the task of rep-
resenting any bivariate correlation of the attributes as well as higher-order dependence patterns.
If the attributes are highly correlated then the number of components required by the mixture
model to fit the data might be large. A quick, ad-hoc solution to this is to perform the subspace
clustering on the principal components of the data. Alternatively, one can estimate parameters
in the model y, = p + 7() X d() + € with Cov(e;) = ¥ being an arbitrary covariance matrix.
Posterior calculations for this model are made difficult by the fact that the marginal distribution
of the data within a cluster, unconditional on the cluster parameters 7, and 4§, is given by the
sum Er(k)e{o,l}m p(ra)r({y; : ¢ = k}[ry)) where, as a function of v, p({y; : ¢ = k}|r())
is proportional to [V|'/2exp{—0V~10/2} with V = Ry X' Regy + 721, Ry = diag(ry)) and
0 is a function of V, ¥, and {y; : c(i) = k}. Computing this sum over ;) is impractical for
any realistic number of attributes m, and so sampling values of ¢(i) from its full conditional is not
possible. However, one can construct an approximate full conditional for ¢(i) by replacing 3 with
its diagonal and using the proposal distribution of Section 2.2. Having sampled a proposed value
of 7 to go along with the proposed c¢(i), the new values can be accepted or rejected with the appro-
priate probability. Model-based subspace clustering of such correlated data, with the possibility of
cluster-specific correlation matrices, is a current research area of the author.

Computer code in the R-language and example analyses are available at the author’s website
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www.stat.washington.edu/hoff/research.html.
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