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APPLICATIONS

RANK LIKELIHOOD ESTIMATION FOR
CONTINUOUS AND DISCRETE DATA

Peter Hoff
hoff@stat.washington.edu

Consider the semiparametric regression model

zi = βTxi + εi

yi = g(zi),

where β is a vector of regression coefficients and
g is an unknown non-decreasing function. In
many situations, interest lies in the association
between y and x (represented by β), but not in
the measurement scale of y (represented by g).
A rank likelihood is a type of semiparametric
marginal likelihood function that is useful for
these situations, as it depends on β only and
not on the nuisance parameter g. While proce-
dures for obtaining MLEs based on the rank like-
lihood are complicated, it turns out that the as-
sociated Markov chain Monte Carlo procedures
for Bayesian inference are extremely simple, of-
ten requiring just a few additional lines of R-code
beyond those required by ordinary methods. In
this short article I motivate the rank likelihood in
the context of regression and copula estimation,
illustrate the methodology with an example and
provide computer code to implement the neces-
sary MCMC algorithm.

Motivation

While the normal model serves us well when de-
scribing the variability of the sample mean, many
of us find it lacking as a realistic sampling model
for much else. I became acutely aware of this the
first time I taught estimation for normal popula-
tions to a group of social science graduate stu-
dents. It must have taken me the better part of
a day to find an interesting example of a real-
life social science dataset that included a variable
anywhere close to being normally distributed,
and in the end it still needed a log transforma-
tion.

The students in my class were used to working
with survey data that included variables such as
sex, education level, attitudes and income: vari-
ables that we may consider binary, ordinal and

continuous. Often the scale on which these vari-
ables are measured is arbitrary - income, age and
attitude variables are often binned into ordered
categories, the number of which varies from sur-
vey to survey. Furthermore, interest in these
variables typically lies not in their univariate
marginal distributions, but rather in their multi-
variate associations: Is the relationship between
two variables increasing, decreasing or zero? Is
the relationship monotonic or quadratic? What
happens if we “account” for a third variable?

Transformation models

Most model-based approaches to answering such
questions have one of two undesirable features:
either they rely on the observed data being nor-
mally distributed, or they require a lot of effort
to simultaneously estimate the marginal distribu-
tions along with the association parameters. For-
tunately, an interesting alternative to these ap-
proaches exists: Consider the following regres-
sion model for the conditional distribution of
y1, . . . , yn given x1, . . . , xn:

ε1, . . . , εn ∼ i.i.d. normal(0,1)
zi = βTxi + εi

yi = g(zi)

The unknown parameters in this system are β
and g, the latter of which can be assumed to
be a nondecreasing function that describes the
marginal distribution of y. If y is discrete with
a finite number of levels then the above model is
an ordered probit model and g is determined by
its points of discontinuity. If y is continuous then
g is some unknown increasing function. In either
case, a full Bayesian analysis would require prior
distributions for β and g, even if only β is of in-
terest. However, there is information in the data
about β that doesn’t depend on the nuisance pa-
rameter g: We don’t observe the zi’s directly, but
since g is monotone we do know the order of the
zi’s. In particular, we know that z lies in the set

R(y) = {z ∈ Rn : zi < z j if yi < y j}. (1)

Note that since the distribution of z doesn’t de-
pend on g, the probability that z ∈ R(y) for a
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given y also doesn’t depend on the nuisance pa-
rameter g:

p(z ∈ R(y)|β, g) =
Z

R(y)

n

∏
i=1

φ(zi − βTxi) dzi

= p(z ∈ R(y)|β)

For continuous data, p(z ∈ R(y)|β) is the same as
the probability of the observed ranks. Taken as a
function of β, this forms the “rank likelihood,”
introduced in the regression context by Pettitt
[1982]. The rank likelihood is a type of marginal
likelihood that depends on the parameter of in-
terest β and not on the nuisance parameter. Dok-
sum [1987] has studied this type of likelihood for
general transformation models, which includes
the proportional hazards model as a special case,
and Bickel and Ritov [1997] study the asymptotic
properties of the rank likelihood estimator of β.
For discrete data, the information contained in
{z ∈ R(y)} is less than that contained in the ranks,
because the former does not contain information
about ties. However, p(z ∈ R(y)|β) still provides
a marginal likelihood for β which doesn’t de-
pend on the nuisance parameter g.

Rank likelihood estimation

Given the observed value yobs of y, the rank like-
lihood estimate of β is obtained by maximiz-
ing p(z ∈ R(yobs)|β) as a function of β. The fact
that the likelihood involves a complicated inte-
gral makes obtaining the MLE very difficult, and
existing estimation methods offer only approxi-
mate MLEs. This has probably been the great-
est obstacle to the widespread adoption of the
rank likelihood approach to regression. How-
ever, it turns out that Bayesian estimation using
the rank likelihood is comparatively straightfor-
ward. Taking the event {z ∈ R(yobs} as our ob-
served information, we can obtain samples of
{z, β} conditional on this information via iter-
ative Gibbs sampling. The relevant full condi-
tional distributions are quite simple:

p(β|z, z ∈ R(yobs)) = p(β|z) is a multivariate nor-
mal distribution (assuming p(β) is multi-
variate normal).

p(zi|β, z−i, z ∈ R(yobs)) is a normal density con-
strained to the interval

max{z j : y j < yi} < zi < min{z j : yi < y j}.

Example

Let’s take a look at how rank likelihood estima-
tion can be implemented in R in the context of an
example. The 1996 General Social Survey gath-
ered a wide variety of information on the adult
U.S. population, including each survey respon-
dent’s sex, their self-reported frequency of reli-
gious prayer (on a six-level ordinal scale), and the
number of items correct out of 10 on a short vo-
cabulary test. We’ll estimate the parameters in a
regression model for yi=prayer as a function of
xi,1 = sex of respondent (0-1 indicator of being
female) and xi,2 = vocabulary score. Our model
is

zi = β1xi,1 + β2xi,2 + β12xi,1xi,2 + εi

yi = g(zi)

From these data and this model we hope to learn
if the relationship between prayer and vocab-
ulary score is positive, negative or zero, and
whether or not the relationship is different for
men and women. Letting (y,X) be R-objects con-
taining the data, R-code for the estimation proce-
dure described above is as follows:

##### data setup and starting values

n<-dim(X)[1] ; p<-dim(X)[2]

ranks<-match(y,sort(unique(y)))

uranks<-sort(unique(ranks))

z<-qnorm(rank(y,ties.method="random")/(n+1))

b<-matrix(0,p,1)

#####

for(s in 1:S) {

##### update z

mu<-X%*%b

for(r in sample(uranks)) {

ir<-(1:n)[ranks==r]

lb<-max(z[ranks<r]) ; ub<-min(z[r<ranks])

z[ir]<-qnorm(

runif( length(ir),

pnorm(lb,mu[ir],1),

pnorm(ub,mu[ir],1)

),

mu[ir],1

)

}

#####

##### update b

V<-solve ( t(X)%*%X +diag(1,nrow=p) )

E<-V%*%( t(X)%*%z )

b<-chol(V)%*%rnorm(p) + E

#####

}
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Data and code for this example are available at
www.stat.washington.edu/hoff/ISBAexample.
In practice, the mixing of the Markov chain is im-
proved if the columns of X are centered to have
mean zero.

I ran this algorithm for 25,000 iterations, sav-
ing the value of β every 25th iteration leaving
1000 samples with which to estimate the poste-
rior distribution. Some posterior quantiles for the
regression parameters are as follows:

2.5% 50% 97.5%
β1 0.45 0.88 1.29
β2 -0.06 -0.02 0.01
β12 -0.10 -0.08 -0.05

These results indicate that the relationship be-
tween prayer and vocabulary score differs be-
tween men and women: The (2.5,50,97.5)% quan-
tiles for the sex specific slope parameters are ( -
.13,-.10, -.06) for women and (-.06, -.02, .01) for
men, indicating that women’s prayer rate de-
creases more rapidly as a function of vocabulary
than does that of the men. This is shown graphi-
cally in the figure, which plots the posterior mean
regression lines for both sexes, along with a sin-
gle posterior sample of z (the last sample from
the Markov chain).

Copula estimation

In the above example all three variables were
sampled. In such situations it may be desirable
to estimate the joint dependence among all three
variables. This can be accomplished with the
Gaussian copula model:

zi = (zi,1, . . . , zi,p) ∼ multivariate normal(0,Σ)
yi, j = g j(zi, j), j ∈ {1, . . . , p}

As described in Hoff [2007], estimation of Σ us-
ing the rank likelihood can be implemented by
conditioning on the event

R(y) = {z1, . . . , zn : zi1, j < zi2, j if yi1, j < yi2, j}.
This estimation procedure does not require mod-
eling the univariate marginal distributions, and
is applicable for mixed discrete and continuous
data.

Summary

By only using part of the observed information,
rank likelihoods allow for estimation of depen-
dence parameters without having to deal with

high-dimensional nuisance parameters. Distri-
butions of the dependence parameters, condi-
tional on the partial information, are easily ap-
proximated via Gibbs sampling. Besides regres-
sion and copula estimate, there are undoubtedly
a variety of other semiparametric inference prob-
lems that can be addressed by a combination of
rank likelihood and Bayesian methodology.
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