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Abstract

Reduced-rank decompositions provide descriptions of the variation among the elements of a

matrix or array. In such decompositions, the elements of an array are expressed as products of

low-dimensional latent factors. This article presents a model-based version of such a decompo-

sition, extending the scope of reduced rank methods to accommodate a variety of data types

such as longitudinal social networks and continuous multivariate data that is cross-classified by

categorical variables. The proposed model-based approach is hierarchical, in that the latent

factors corresponding to a given dimension of the array are not a priori independent, but ex-

changeable. Such a hierarchical approach allows more flexibility in the types of patterns that

can be represented.

Some key words: Bayesian, multiplicative model, PARAFAC, regularization, shrinkage.

1 Introduction

Matrix-valued data are prevalent in many scientific disciplines. Studies in social and health sciences

often gather social network data that can be represented by square, binary matrices with undefined

diagonals. Numerical results from gene expression studies are recorded in matrices with rows

representing tissue samples and columns representing genes. Analysis of stock market returns

involves data matrices with rows representing stocks and columns representing time. With such

data there are often dependencies among both the rows and the columns of the data matrices, and

so the standard tools of multivariate analysis, in which patterns along one dimension of the data
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matrix are thought of as i.i.d., may be inadequate for data analysis purposes. As an alternative to

the i.i.d. paradigm, patterns of row and column variation in matrix-valued data are often described

with reduced-rank matrix decompositions and models. For example, the i, jth entry of an m1×m2

matrix might be expressed as yi,j = 〈ui,vj〉 + εi,j , where the heterogeneity among a set of low-

dimensional vectors {u1, . . . ,um1} and {v1, . . . ,vm2} is used to represent heterogeneity attributable

to the row and column objects respectively. Such models can be described as being bilinear, as

the expectation of yi,j is a bilinear function of the parameters. These models are related to biplots

[Gabriel, 1971], bilinear regression [Gabriel, 1998] and the singular value decomposition (SVD).

In more complex situations the data take the form of a multidimensional array instead of a

matrix. For example, temporal variation in a social network over a discrete set of time points may

be represented by a three-way array Y = {yi,j,t}, where yi,j,t describes the relationship between

nodes i and j at time t. Similarly, gene expression data gathered under a variety of experimental

conditions, or multiple variables measured on a set of companies over time are also examples of

array-valued or multiway data. Surveys of multiway data analysis include Coppi and Bolasco [1989]

and Kroonenberg [2008]. The July-August 2009 issue of the Journal of Chemometrics was dedicated

to Richard Harshman, one of the founders of three-way data analysis. Harshman [Harshman, 1970,

Harshman and Lundy, 1984] developed a three-way generalization of the SVD known as “parallel

factor analysis”, or PARAFAC, that has become one of the primary methods of multiway data

analysis. The generalization is as follows: The SVD represents the i, jth element of a rank-R

matrix A as ai,j = 〈ui,vj〉 ≡
∑R

r=1 ui,rvj,r. For a three-way array, a PARAFAC decomposition

represents the i, j, kth element as ai,j,k = 〈ui,vj ,wk〉 =
∑R

r=1 ui,rvj,rwk,r. Kruskal [1976, 1977]

related such decompositions to a precise definition of rank for three-way arrays, in which the rank

is the smallest integer R for which the above representation holds. The generalization to arbitrary

dimensions is straightforward: A K-dimensional array of rank R is one in which the elements can

be expressed as a multilinear function of R-dimensional factors. A compact review of these results

and others appears in Kruskal [1989].

While the area of multiway data analysis has been active, most of the focus has been on al-

gorithms for finding least-squares solutions, pre- and post-processing of results, and interpretation

of the least-squares parameters. Little has been done in terms of incorporating multilinear repre-

sentations into statistical models. One exception is the work of Vega-Montoto and Wentzell [2003]
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and Vega-Montoto et al. [2005], who develop algorithms for finding maximum likelihood solutions

for situations with heteroscedastic or correlated error terms. However, these algorithms assume the

error variance is known.

This article develops a hierarchical multilinear model for incorporation into a variety of non-

standard multiway data analysis situations, and presents a Bayesian approach for parameter es-

timation. The motivation is twofold: First, multilinear array representations can involve a large

number of parameters. Overfitting of the model can be ameliorated by using shrinkage estimators

provided by a Bayesian approach. In particular, a hierarchical Bayesian approach can be used to

provide shrinkage patterns that are based primarily on the observed data, rather than relying heav-

ily on a fixed prior distribution. The second motivation is that Bayesian approaches and MCMC

estimation methods allow one to incorporate the basic multilinear representation into models for

complex data that might involve additional dependence structures or discrete data.

After presenting the hierarchical multilinear model and Bayesian methods for estimation in

Sections 2 and 3, a small simulation study is presented in Section 4 to compare mean squared errors

of three different parameter estimation methods: least-squares, a simple non-hierarchical Bayesian

approach and a Bayesian hierarchical approach. The Bayes estimators are found to outperform the

least-squares estimator, with the hierarchical Bayes procedure having the best performance. Also

considered is the performance of the estimators when the rank of the model is misspecified. In this

situation, the least-squares and non-hierarchical Bayes procedures increasingly overfit the data as

the rank is increased, while the hierarchical Bayes procedure is robust to rank misspecification.

Sections 5 and 6 give examples in which it is useful to embed a multilinear model within a

larger model for observed data. Section 5 considers estimation of a multivariate mean E[yx] = µx

for each possible value of a vector of categorical variables x. Often the number of observations

per level of x is small and varies from level to level. A hierarchical model for the mean, µx ∼

multivariate normal(βx,Σ), allows for consistent estimation of each µx but shrinkage towards βx

when the sample size is small. The values B = {βx : x ∈ X} can be represented as a multiway

array, and a reduced rank multilinear model for B allows for the modeling of non-additive effects

of x with a relatively small number of parameters.

Section 6 presents an analysis of international cooperation and conflict during the cold war.

The data consist of a three-way array with element yi,j,t representing the relationship between
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countries i and j in year t. Several features of these data make existing tools from multiway data

analysis inappropriate, one being that the data are ordinal. The range of the data includes the

integers from -5 to 2, indicating different levels of military cooperation or conflict. Assuming that

the yi,j,k’s are normally distributed or even continuous would be inappropriate. However, using the

tools developed in this article it is reasonably straightforward to embed a multilinear representation

within an ordered probit model for these data. A discussion of the results and directions for future

research follows in Section 7.

2 Reduced rank models for array data

In this section we review the reduced rank model and an alternating least-squares(ALS) procedure

for parameter estimation. For a review of the properties, limitations and alternatives to ALS, see

Tomasi and Bro [2006] and Chapter 5 of Kroonenberg [2008].

2.1 Rank and factor representations for arrays

Given an m1 ×m2 data matrix Y it is often desirable to separate out the “main features” of Y

from the “patternless noise.” This motivates a model of the form Y = Θ + E, where Θ is to be

estimated from the data. Interpreting “main features” as those that can be well-approximated by

a low-rank matrix, the rank of Θ is usually taken to be some value R < m1 ∧m2. The rank of a

matrix Θ can be defined as the smallest integer R such that there exists matrices U ∈ Rm1×R and

V ∈ Rm2×R such that

Θ =
R∑

r=1

ur ⊗ vr = UVT , or equivalently, θi,j =
R∑

r=1

ui,rvj,r = 〈ui,vj〉,

where ur is the rth column of U in the first equation and ui is the ith row of U in the second.

Variation among the rows of U represents the heterogeneity in Θ attributable to variation in the

row objects, and similarly variation among the rows of V represents heterogeneity attributable to

the column objects.

A K-order multiway array Y with dimension m1 × · · · × mK has elements {yi1,...,iK : ik ∈

{1, . . . ,mk}}. As with a matrix, we may define a model for a K-order array as Y = Θ + E, where

E is an array of uncorrelated, mean-zero noise and Θ is a reduced rank array to be estimated.
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Following Kruskal [1976] and Kruskal [1977], the rank of a K-order array Θ is simply the smallest

integer R such that there exist matrices {U(k) ∈ Rmk×R, k = 1, . . . ,K}, such that

Θ =
R∑

r=1

u(1)
r ⊗ · · · ⊗ u(K)

r ≡ 〈U(1), . . . ,U(K)〉 , or equivalently

θi1,...,iK =
R∑

r=1

u
(1)
i1,r × · · · × u

(K)
iK ,r ≡ 〈u

(1)
i1
, · · · ,u(K)

iK
〉,

where u(k)
r is the rth column of U(k) in the first equation and u(k)

i is the ith row of U(k) in the second.

As in the matrix case, variation among the rows of U(k) represents heterogeneity attributable to

the kth set of objects, that is, the kth mode of the array.

2.2 Least squares estimation

In the matrix case the least squares estimate of Θ = UVT (also the MLE assuming normal, i.i.d.

errors) can be obtained from the first R components of the singular value decomposition of Y. For

arrays of higher order, only iterative methods of estimation are available. Perhaps the simplest

method of parameter estimation is the alternating least squares algorithm (ALS), in which factors

corresponding to a given mode are updated to minimize the residual sums of squares given the

current values for the other modes. In this subsection we review the relevant calculations for ALS,

which will also be useful for Bayesian estimation in the next section.

Estimation for a three-way model: We begin with an three-way array so that the main ideas

can be understood with a minimal amount of notational complexity. Let Y be a three-way array

modeled as yi,j,k = 〈ui,vj ,wk〉+ εi,j,k, with {εi,j,k} ∼ i.i.d. normal(0, σ2). We can write

yi,j,· = W(ui ◦ vj) + εi,j,·

yi,·,k = V(ui ◦wk) + εi,·,k

y·,j,k = U(vj ◦wk) + ε·,j,k,

where U, V, W are m1×R, m2×R and m3×R matrices respectively, ui, vj , wk are rows of these

matrices, yi,j,·, yi,·,k, y·,j,k are vectors of length m1, m2 and m3, and “◦” denotes the Hadamard

product (elementwise multiplication). Some matrix algebra and careful summation shows that, as
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a function of U, p(Y|U,V,W) can be written

p(Y|U,V,W) ∝ etr(UT L/σ2 −UT UQ/[2σ2]) ,where (1)

Q = (VT V) ◦ (WT W) and

L =
∑
j,k

y·,j,k ⊗ (vj ◦wk) .

With V and W fixed, the conditional MLE and least-squares estimate of U is given by Û = LQ−1.

The ALS procedure is to iteratively replace a current value of U with its conditional least-squares

estimate, then replace V and W similarly. This procedure is then iterated until a convergence

criterion has been met.

Estimation for a K-way model: Now suppose Y is an m1×· · ·×mK array. Let U(1), . . . , U(K)

be the matrices of factors for the K modes, so that U(k) is an mk × R matrix. The basic results

from the three-way model carry over as follows: Let yi1 = (y1,i2,...,iK , . . . , yn1,i2,...,im) be a “fiber”

along the first dimension of the array. Then we can write yi1 = U(1)(u(2)
i2
◦ u(3)

i3
◦ · · · ◦ u(K)

iK
) + εi1 .

Similar to the three-mode case, as a function of U(1), p(Y|U(1), . . . ,U(K)) can be written

p(Y|U(1), . . . ,U(K)) ∝ etr(U(1)T L/σ2 −U(1)T U(1)Q/[2σ2]) ,where (2)

Q = (U(2)T U(2)) ◦ · · · ◦ (U(K)T U(K)) and

L =
∑

i2,...,im

yi1 ⊗ (u(2) ◦ · · · ◦ u(k)) .

The conditional MLE and least squares estimator of U(1) given the factor values for the other

modes is thus Û
(1)

= LQ−1. As with three-way data, the ALS procedure is to iteratively replace

the factors matrices with their conditional least-squares estimates until convergence.

3 Bayes and hierarchical Bayes estimation

Compared to least-squares or maximum likelihood methods, Bayesian procedures often provide sta-

ble estimation in high-dimensional problems due to regularization via the prior distribution. Using

conjugate prior distributions, this section provides a Gibbs sampling scheme that approximates the

posterior distribution p(U(1), . . . ,U(K), σ2|Y), and by extension, an approximation to the posterior

distribution of Θ = 〈U(1), . . . ,U(K)〉. The posterior expectation of Θ can be used as a Bayesian

estimate of the main features of the data array.
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3.1 A basic Gibbs sampler

Let the prior distribution for U(k) be such that that the rows of U(k) are i.i.d. multivariate

normal(µk,Ψk) or equivalently, U(k) ∼ matrix normal(Mk = 1µT
k ,Ψk, I) with density

p(U(k)) ∝ etr(−(U(k) −Mk)T (U(k) −Mk)Ψ−1
k /2)

∝ etr(U(k)T MkΨ−1
k −U(k)T U(k)Ψ−1

k /2).

Combining this with the likelihood from Equation 2, it follows that if U(1) ∼matrix normal(M1,Ψ1, I)

a priori, then the full conditional distribution is also matrix normal with density

p(U(1)|Y,U(2), . . . ,U(K)) ∝ etr(−(U(1) − M̃1)T (U(1) − M̃1)/2)Ψ̃
−1
1 )

Ψ̃1 = (Q/σ2 + Ψ−1
1 )−1

M̃1 = (L/σ2 + M1Ψ−1
1 )Ψ̃1.

Full conditional distributions for U(2), . . . ,U(m) are derived analogously. Using a conjugate inverse-

gamma(ν0/2, ν0σ
2
0/2) prior distribution for σ2 results in an inverse-gamma(a, b) full conditional

distribution where a = (ν0 +
∏

k mk)/2 and b = (ν0σ
2
0 + ||Y− 〈U(1), . . . ,U(K)〉||2)/2.

A Markov chain Monte Carlo approximation to p(U(1), . . . ,U(K), σ2|Y) can be made by iter-

atively sampling each unknown quantity from its full conditional distribution. This generates a

Markov chain, samples from which converge in distribution to p(U(1), . . . ,U(K), σ2|Y). However,

it would be inappropriate to estimate U(k) by its posterior mean Û
(k)

, or Θ with 〈Û(1)
, . . . , Û

(K)〉,

as the values of the latent factors are not separately identifiable. For example, the likelihood is

invariant to joint permutations and complementary rescalings of the columns of the U(k)’s (see

Kruskal [1989] for a discussion of the uniqueness of reduced-rank array decompositions). Instead,

the posterior mean estimate Θ̂ of Θ, obtained from the average of 〈U(1), . . . ,U(K)〉 over iterations

of the Markov chain, can be used as a point estimate of Θ. If desired, point estimates of the U(k)’s

can then be obtained from a rank-R least-squares approximation of Θ̂.

3.2 Hierarchical modeling of factors

Rarely will we have detailed prior knowledge of an appropriate mean µk and variance Ψk for

each factor matrix U(k). Absent these, we may consider a simple “weak” prior distribution such
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as u(k)
1 , . . . ,u(k)

mk ∼ i.i.d. multivariate normal(0, τ2I), where τ2 is large. However, doing so would

ignore patterns of heterogeneity in the data that could improve parameter estimation.

Recall that the factors represent variance among the elements of the data array Y that can

be attributed to heterogeneity within the various modes. To illustrate, consider three mode data

in which the first mode represents a large number of experimental units and the other two modes

represent two sets of experimental conditions. In this case, yi,j,k is the measurement for unit i when

condition one is at level j and condition two is at level k. Letting the factors corresponding to the

three modes be U, V and W, modeling the rows u1, . . . ,um1 of the m1×R factor matrix U as i.i.d.

multivariate normal(µ,Ψ) induces a covariance among the elements of each unit-specific m2 ×m3

matrix Yi = {yi,j,k, 1 ≤ j ≤ m2, 1 ≤ k ≤ m3}, given by the following calculation:

ui = µ + γi, γi ∼ multivariate normal(0,Ψ)

yi,j,k = 〈ui,vj ,wk〉+ εi,j,k

= uT
i (vj ◦wk) + εi,j,k = µT (vj ◦wk) + γT

i (vj ◦wk) + εi,j,k

Cov[yi,j,k, yi,l,m] = E[γT
i (vj ◦wk)(vl ◦wm)T γi]

= tr((vj ◦wk)(vl ◦wm)T Ψ)

= tr([(vjvT
l ) ◦ (wkwT

m)]Ψ)

Each unit has a measurement under conditions (j, k) and under (l,m), and the covariance of these

measurements across experimental units is determined by vjvT
l , wkwT

m and the covariance matrix

Ψ. Fixing Ψ in advance places restrictions on the form of this covariance. This suggests the use of

a hierarchical model as an alternative, whereby the mean and variance of the factors of each mode

are estimated from the observed data. Returning to the general case of K modes, the proposed

hierarchical model is as follows:

{u(k)
1 , . . . ,u(k)

mk
} iid∼ multivariate normal(µk,Ψk)

Ψk ∼ inverse-Wishart(S0, ν0)

µk|Ψk ∼ multivariate normal(µ0,Ψk/κ0)

Readers familiar with factor models for matrices (the case of K = 2) may be concerned about

the non-orthogonality of the columns of the latent factor matrices in the above model. In the

matrix case, the mean matrix for Y is given by Θ = U(1)U(2)T . Letting Ũ
(k)

= U(k)H, k = 1, 2 we
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see that Θ = Ũ
(1)

Ũ
(2)T

for any orthonormal matrix H. This invariance to rotation in the matrix

case, however, does not generalize to rotation invariance for multilinear representations of arrays:

Kruskal [1977] shows that other than some elementary invariances (such as a common relabeling of

the columns of all the factor matrices), multilinear factor representations are generally rotationally

unique.

Diffuse priors can be used as a default, such as µ0 = 0, κ0 = 1, ν0 = R + 1 and S−1
0 = Iτ2

0 ,

where τ2
0 is some pre-specified value determined by the scale of the measurements. An alternative

default set of priors can be based on unit information prior distributions [Kass and Wasserman,

1995], which weakly center the prior parameters around estimates obtained from the data. For

example, τ2
0 could be obtained as the variance of latent factor estimates obtained from a rank-

R least squares approximation to Y, and the prior distribution for σ2 could be weakly centered

around the corresponding residual variance. In either case, the full conditional distributions for all

parameters have straightforward derivations, and are summarized in the following Gibbs sampling

scheme: Given current values of {U(1), . . . ,U(K)} and σ2, new values of these parameters are

generated as follows:

1. For each k ∈ {1, . . . ,K} in random order,

(a) sample Ψk ∼ inverse-Wishart([U(k)T U(k) + Iτ2
0 ]−1,mk +R+ 1)

(b) sample µk ∼ multivariate normal(U(k)T 1/[mk + 1],Ψk/[mk + 1])

(c) sample U(k) ∼ matrix normal(M̃k, Ψ̃k, I), where

• Ψ̃k = (Qk/σ
2 + Ψ−1

k )−1

• M̃k = (Lk/σ
2 + 1µT

k Ψ−1
k )Ψ̃k

2. sample σ2 ∼ inverse-gamma(ν̃0/2, ν̃0σ̃
2
0/2), where

• ν̃0 = ν0 +
∏K

k=1mk

• ν̃0σ̃
2
0 = ν0σ

2
0 + ||Y− 〈U(1), . . . ,U(K)〉||2

Note that {(µk,Ψk), k = 1, . . . ,K} will not be separately identifiable since, for example, the scales

of {U(k), k = 1, . . . ,K} are not separately identifiable. However, a non-hierarchical Bayesian ap-

proach restricts the overall scale of Θ, as well the shrinkage point for the U(k)’s. In contrast, the

hierarchical model allows these things to be determined by the data.
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4 Comparison of estimators

This section presents the results of some simulation studies comparing the performance of the

hierarchical Bayes procedure to ALS estimation. In the first study, one-hundred random Θ-arrays

were generated, each having dimension m1 ×m2 ×m3 = 10 × 8 × 6 and rank R = 4, and each to

be estimated from a corresponding “observed” data array Y. Letting R̃ = m2 ×m3, the Θ and Y

arrays were generated as follows:

1. For each mode k ∈ {1, 2, 3},

(a) sample Ψk as follows:

i. sample Ψ0 ∼ Wishart (I, R̃+ 1),

ii. set ν0 = R̃+ x where x ∼ Poisson(
√
R̃),

iii. sample Ψk ∼ inverse-Wishart(Ψ0, ν0);

(b) sample µk ∼ multivariate normal (0,Ψk)

(c) sample Ũ
(k) ∼ multivariate normal (µk,Ψk).

2. Let Θ be the rank-R least-squares approximation to 〈Ũ(1)
, Ũ

(2)
, Ũ

(3)〉, but rescaled so that

the average squared magnitude of the elements
∑
θ2
i,j,k/(m1m2m3) is 1.

3. Set Y = Θ + E, where {εi,j,k}
iid∼ normal(0, 1/4).

We now go through the rationale for this simulation scheme. Working backwards, in steps 2 and

3 the error variance for E is set to be 1/4 of the average squared magnitude of the elements of

Θ. This makes estimation of Θ feasible but not trivial. In steps 1 and 2, we first generate an

array having a maximal rank R̃, and then let Θ be its rank-4 least-squares approximation. The

rationale for this is to make the generated Θ arrays somewhat different in distribution from the

prior distribution that will be used for estimation, thus giving a more fair comparison between the

performance of the Bayesian procedure and ALS estimation. Additionally, the “prior” parameters

Ψ0 and ν0 in steps 1.(a) are randomly generated in order to provide a broader range of patterns

generated in the Θ arrays than could be obtained from fixed values of Ψ0 and ν0.
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4.1 Known rank

We first examine the case where the presumed rank of Θ is equal to the true rank of 4. Two

estimates were computed for each of the one-hundred simulated Θ-arrays:

Θ̂LS (least squares), an estimate obtained via the alternating least-squares algorithm;

Θ̂HB (hierarchical Bayes), a posterior estimate under the hierarchical model and unit infor-

mation priors described in Section 3.2.

The least squares estimates were obtained by running the ALS algorithm using twenty different

random starting values and then selecting the one that gave the minimum residual sum of squares.

For each starting value, the ALS algorithm was iterated until the magnitude of the change in the

estimate, relative to the magnitude of the estimate, was less than 10−6.

The Bayesian estimates were obtained using the Gibbs sampling scheme described in the previ-

ous section, with 1000 iterations to allow for convergence to the stationary distribution (“burn-in”),

followed by 10000 iterations for estimating the mean matrix. Mixing of the algorithm was assessed

by monitoring the value of ||Θ||2 across the 10000 iterations of the Markov chain. Mixing was gen-

erally good, with the median effective sample size (the equivalent numbers of independent Monte

Carlo samples) for ||Θ||2 being 9422. For each simulated dataset we obtained a posterior mean

estimate of Θ. However, this estimate will generally have a rank higher than 4 as rank is not

preserved under linear combinations. For this reason, the rank-4 least squares approximation to

the posterior mean was also computed as an alternative Bayesian point estimate of Θ.

The results of the simulation study are summarized in Figure 1. For each dataset and estimation

method, the ratio of ||Θ̂−Θ||2/||Y−Θ||2 was computed to assess the performance of Θ̂ relative to

the unbiased estimate Y. In this example where the true rank of Θ is known, using the reduced-

rank ALS estimate is superior to using Y, giving reductions of mean squared error of roughly 60

to 80%. However, the first panel of Figure 1 indicates that the Bayesian estimators provide a

substantial further reduction in MSE, amounting to an additional reduction of 41% on average and

up to 80% for particular datasets. Also, note that the rank-4 Bayesian point estimate performs

essentially the same as the posterior mean estimate, even though the latter may be of rank higher

than 4.
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Figure 1: Comparison of MSE and RSS for different estimation methods.

One possible explanation for the superiority of the Bayesian approach over ALS is that the

latter does not explore as much of the parameter space as an MCMC algorithm. The second panel

of Figure 1, which plots the relative residual sum of squares (RSS) ||Y − Θ̂||2/||Y||2 for the ALS

estimate versus the two Bayes estimates, suggests that this is not the case. This plot indicates that

Θ̂LS is in fact closer to Y than Θ̂HB for every simulated dataset. This observation, together with

the superiority of the Bayes estimate in terms of estimating Θ, suggests that the ALS procedure

tends to overfit.

For each of the 100 simulated datasets an alternative Bayesian estimate of Θ was also obtained,

in which the elements u(k)
i,r of the U-matrices were assumed to be a priori independent normal(0, 100)

random variables. This non-hierarchical approach fixes the amount of regularization, and does not

recognize patterns in Θ that could be represented by correlations among the latent factors. Not

surprisingly, estimates obtained from this approach generally had higher MSEs than the estimates

based on the hierarchical model (in 99% of the cases using the posterior mean estimates, and 92%

of the cases using rank-4 point estimates).
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4.2 Misspecified rank

A more realistic data analysis situation is one in which the true rank of Θ is not known. In

this subsection we investigate the MSEs of Θ̂LS Θ̂HB for estimating the rank-4 arrays generated

as described above, but when the assumed rank is R ∈ {1, . . . , 8}. Using the same simulation
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Figure 2: RSSs and MSEs under different presumed ranks and estimation methods.

and estimation procedures as described in the previous subsection, a Θ̂ was obtained for each of

the 100 simulated Θ-arrays and for each combination of the two estimation methods and ranks

R ∈ {1, . . . , 8}. For each of these 100 × 2 × 8 estimates, a relative MSE ||Θ̂ − Θ||2/||Y − Θ||2

and RSS ||Y − Θ̂||2/||Y||2 was computed as before. The first of these measures the fidelity of the

estimate to the true underlying parameter, and the second to the the data.

A summary of the results are plotted in the four panels of Figure 2. For example, each boxplot

in the top row of plots summarizes the 100 RSS values of the ALS estimates assuming a given

rank. As expected, as the rank increases the percentage of the variation in Y explained by the

ALS estimate goes up and the RSS goes down. However, the first plot of the bottom row shows
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that increasing the rank of the ALS estimate beyond 3 generally increases the MSE. In contrast,

the MSE of the hierarchical estimate Θ̂HB generally achieves a minimum at the actual rank of 4,

and increases relatively slowly as the assumed rank is increased beyond 4. This suggests that the

hierarchical Bayes approach is more robust to overfitting than the least squares method. Since the

“true” rank of Θ is generally not known, it may be desirable to fit a model with a moderately

large rank in the hopes of capturing as much of Θ as possible. The above results suggest that

a hierarchical Bayes estimate may be preferable in such situations, as it provides a more stable

estimate of Θ across different choices of the presumed rank.

4.3 Rank selection

We now consider the possibility of estimating the rank R from the observed data array Y. One pop-

ular model selection procedure is to minimize the Bayesian information criterion, or BIC [Schwarz,

1978]. The BIC for a given model and dataset y is −2 ln p(y|θ̂) + p lnn, where θ̂ is the parameter

estimate, p is the dimension of θ and n is the sample size. In practice, the BIC can be computed

for a range of different models, and the one giving the smallest BIC is selected. This procedure

favors models that fit well (in terms of likelihood) but penalizes model complexity.

As pointed out by Pauler [1998], for hierarchical models the number of parameter can be

ambiguous. As a remedy, Spiegelhalter et al. [2002] proposed the deviance information criterion,

or DIC which can be computed from output of a Markov chain. The DIC is given by D̄+ p̃ , where

D̄ is the average value of −2 ln p(y|θ) across iterations of the Markov chain, and p̃ is the “effective

number of parameters”, given by p̃ = D̄ + 2 ln p(y|θ̂), where θ̂ is an estimate of θ. For our model

the parameters are Θ and σ2, and we take our estimates to be the posterior mean of Θ and the

mean residual error under the posterior mean, respectively.

For each of the 100 simulated datasets described above we computed the DIC for each value of

R ∈ {1, . . . , 8}, and took our “estimate” R̂ of R to be the rank for which the DIC was minimized.

The fraction of times R̂ took on the values {1, . . . , 8} was {0.08, 0.15, 0.27, 0.28, 0.06, 0.07, 0.04, 0.05},

making the true rank of 4 the most frequently selected, followed closely by 3. The fact that R̂ = 3

was selected 27 times is somewhat ameliorated by the fact that in 15 of these instances the “best”

rank in terms of MSE turned out to be 3 (11 cases) or 2 (4 cases).

To further evaluate the BIC procedure, we also reran the entire simulation study when the true
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rank was R = 2 and when it was R = 6. For the case of R = 2, the DIC selection fractions were

{0.10, 0.74, 0.07, 0.05, 0.02, 0.01, 0.01}, indicating that in this case the true rank can be identified

with a high degree of accuracy. Rank selection with DIC was more problematic when the true

rank was 6, for which the selection proportions were {0.07, 0.18, 0.19, 0.17, 0.10, 0.08, 0.09, 0.12}. As

we would hope, the distribution of ranks selected here is somewhat shifted to the right from the

distribution of selected ranks when R = 4, but the true rank of 6 can not be identified accurately

with DIC. However, the DIC is not as bad in terms of obtaining the rank that gives the best

approximation to the true Θ in terms of MSE. For example, 75% of the 71 simulated datasets for

which R̂ was less than 6 also attained their minimum MSE at an R-value less than 6. In particular,

the seven datasets for which R̂ = 1 also attained their minimum MSE with a rank 1 model.

5 Example: Multiway means for cross-classified data

Large scale surveys collect data on a variety of numerical and categorical variables. Numerical

data are often summarized by computing sample averages for combinations of a set of categorical

variables. For example, letting y be a p-dimensional vector of numerical variables and x a K-

dimensional vector of categorical variables, interest may lie in the population average of y for a

given value of x, which is denoted as µx ∈ Rp. However, if the number of categorical variables

or their number of levels is large compared to the sample size, then we may lack sufficient data

to provide stable estimates for each µx separately. For example, the 2008 General Social Survey

includes data on the following six variables:

• y1 (words): number of correct answers out of 10 on a vocabulary test;

• y2 (tv): hours of television watched in a typical day;

• x1 (deg) highest degree obtained: none, high school, Bachelor’s, graduate;

• x2 (age): 18-34, 35-47, 48-60, 61 and older;

• x3 (sex): male or female;

• x4 (child) number of children: 0, 1, 2, 3 or more.
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Complete data for these variables are available for 1116 survey participants. However, there are

4× 4× 2× 4 = 128 levels of x: More than half of these cells have 5 or fewer observations in them,

and about 75% have less than 12 observations. As such, an estimator of µx that uses only data

from group x, that is {yi : xi = x}, will be subject to a large sampling variance.

5.1 A multilinear model for group means

Statistical remedies to this problem typically allow the estimate of µx to depend on data from groups

other than that corresponding to x. One such approach is to parameterize the set of multivariate

means {µx : x ∈ X} by a smaller number of parameters. Another approach is via a hierarchical

model that allows for the shrinkage of set of parameters towards a common group center. Here we

consider the following model which has both of these features:

{yi : xi = x} iid∼ multivariate normal(µx,Σ) (3)

µx = βx + γx (4)

{γx : x ∈ X} iid∼ multivariate normal(0,Ω) (5)

Equation 3 says that the data within a cell are modeled as multivariate normal, with cell-specific

means and a common covariance matrix. Equations 4 and 5 express each µx as equal to a “sys-

tematic” component βx plus patternless noise γx. The collection {βx : x ∈ X} can be represented

as an m1 × · · · × mK × p array B, where mk is the number of levels of categorical variable xk.

These values are not separately estimable from the noise γx unless we assume B lies in a restricted

subset of the set of arrays of this size, such as the set of rank-R arrays. In this setting, where one

of the modes of the array represents variables and each other mode represents the different levels

of a single categorical variable, it is useful to express the array decomposition as follows:

B = 〈U(1), . . . ,U(K),V〉 , or equivalently

βx = V(u(1)
x1
◦ · · · ◦ u(K)

xK
).

The equations above describe a hierarchical model in which the heterogeneity among {µx : x ∈ X}

is centered around a low-dimensional array B = {βx : x ∈ X}. Such a model is similar to

representing an interaction term in an ANOVA with a reduced rank matrix [Tukey, 1949, Boik,

1986, 1989]. However, the hierarchical approach used here allows for consistent estimation of each

µx, but shrinks towards the lower-dimensional representation B when data are limited.
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Figure 3: Marginal distributions of vocabulary score and television hours watched for different

levels of degree, age sex and number of children.

Estimation for this model can proceed as described in Section 4 with a few modifications. As

before, a Gibbs sampler can be used to approximate the posterior distribution of the unknown

parameters. Using a conjugate inverse-Wishart prior distribution for Σ and the other prior distri-

butions as in Section 4, one iteration of the Markov chain is as follows:

1. sample Σ ∼ p(Σ|{yi : i = 1, . . . , n}, {µx : x ∈ X}), an inverse-Wishart distribution;

2. sample µx ∼ p(µx|{yi : xi = x},βx,Σ), a multivariate normal distribution for each x ∈ X ;

3. sample Ω ∼ p(Ω|{µx,βx : x ∈ X},V), an inverse-Wishart distribution;

4. iteratively sample {U(k), k = 1, . . . ,K} as in Section 3;

5. sample V ∼ p(V|U, {µx : x ∈ X},Ω), a matrix normal distribution.

Derivations of the full conditional distributions are straightforward and are available from the

author and in the computer code available at the author’s website. Provided here are only the
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following comments which describe some of the calculations: Let the model for the p×R matrix V

be such that the R columns are i.i.d. multivariate normal with a zero mean vector and covariance

equal to Ω. Doing so links the scale of the factor effects for µx to the scale of the across-group

differences γx. Writing µ̃x = Ω−1/2µx and Ṽ = Ω−1/2V, we have

µ̃x = Ṽ(u(1)
x1
◦ · · · ◦ u(K)

xK
) + γ̃x , with

{γ̃x}
iid∼ multivariate normal(0, I).

From this, we see that sampling from the full conditional distribution of U(1), . . . ,U(K) can be done

just as in Section 3.2, with σ2 replaced by 1 and the observed array data replaced by the values

of the array defined by {µ̃x : x ∈ X}. Similarly, the full conditional of Ṽ is the matrix normal

distribution from Section 3.1, again with σ2 replaced by 1 and {µ̃x : x ∈ X} taking the place

of the observed array data. A value of V can be generated from its full conditional distribution

by sampling Ṽ from this matrix normal distribution and then setting V = Ω1/2Ṽ. Finally, note

that the inverse-Wishart full conditional distribution of for Ω depends on V: If we have Ω ∼

inverse-Wishart(Ω−1
0 , η0) then the full conditional distribution of Ω is inverse-Wishart(Ω−1

1 , η1)

where η1 = η0 +R+
∏K

k=1mk and Ω1 = Ω0 + VT V +
∑

x(µx − βx)(µx − βx)T .

5.2 Posterior analysis of GSS data

We now discuss posterior inference for the GSS data based on the above model and estimation

scheme. The numerical variables y1 (words) and y2 (tv) were first centered and scaled to have zero

mean and unit variance. Prior distributions for the covariance matrices Σ and Ω were taken to

be independent inverse-Wishart distributions with p+ 1 = 3 degrees of freedom each and centered

around the sample covariance (correlation) matrix of {yi,1, yi,2, i = 1, . . . , n}. Doing so gives these

prior distributions an empirical basis while still keeping them relatively weak. Such priors are

similar to the “unit information” prior distributions described in Kass and Wasserman [1995]. A

rank-2 model for the array of means was used so that the estimated factor effects could represented

with a simple two-dimensional plot.

The algorithm described above was used to construct a Markov chain consisting of 22,000

iterations, the first 2000 of which were discarded to allow for convergence to the stationary dis-

tribution. Parameter values were saved every 10th iteration, leaving 2000 saved values for Monte
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Figure 4: Posterior estimates of factor scores, along with the amount of shrinkage as a function of

cell-specific sample size.

Carlo approximation. Mixing of the Markov chain was examined by inspecting the sequences of

saved values of Σ, Ω and the average value of {βx} across levels of x. The effective sample sizes

for these parameters were all over 1000. Some summary descriptions of the resulting posterior

estimates are shown in Figure 4. The first panel plots point estimates of the latent factors V and

U(1), . . . ,U(4). These were obtained as follows: A posterior mean array B̄ was obtained from the

2000 saved values of B from the Markov Chain. This array is not quite a rank-2 array, as rank is not

generally preserved under array addition. An alternating least-squares algorithm was performed

on B̄ to obtain a rank-2 point estimate B̂ and a multiplicative decomposition in terms of matrices

V̂, Û
(1)
, . . . , Û

(4)
. The difference between B̄ and B̂ was small, with ||B̄ − B̂||2/||B̄||2 = 0.00011.

These point estimates of the latent factors are shown in the first panel in Figure 4: For example, the

matrix Û
(1)

represents the multiplicative effects of deg, and consists of a two-dimensional vector

for each level of this variable. These vectors are plotted in the figure with “deg.1” representing no

degree, “deg.2” a high school degree, and so on. Similarly, the matrix V̂ has a two-dimensional

vector for each of the two numerical variables. To interpret the figure, note that the estimated

mean for either numeric variable in any cell can be obtained by coordinate-wise multiplication and
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then addition of the latent factor vectors. For example, the proximity of the “words” vector to the

“deg.3” and “deg.4” vectors indicates that these two groups have higher mean vocabulary scores

than the other two degree categories. Similarly, the close proximity of the “child.1”, “child.2” and

“child.3” vectors indicates lack of heterogeneity in the means for three of these four categories

across levels of the other x-variables. Finally, note that some care should go into interpreting the

figure, as the array B = 〈U(1), . . . ,U(4),V〉 is invariant to certain transformations of the factors:

For example, multiplying either the first or second column of each of an even number of factor

matrices by -1 does not change the value of B.

The second plot in Figure 4 highlights how the estimated cell means {µ̂x} differ from the

empirical cell means {ȳx} as a function of sample size. This plot indicates what we would expect

from a hierarchical model: The difference between estimated cell mean and empirical cell mean

decreases with increasing sample size. A cell with a large sample size will have ȳx ≈ µ̂x , whereas a

cell with a small sample size will have an estimated mean µ̂x shrunk towards the reduced-rank value

β̂x. Note that without the multiplicative effects in Equation 4 of the hierarchical model, the cell

means would all be shrunk towards a common vector, regardless of the value of x. In contrast, the

hierarchical multiplicative effects model allows cell-specific shrinkage, as estimated by the reduced

rank array B̂.

An alternative approach to the analysis of these data might involve MANOVA or a hierarchical

model similar to the one above but in which βx is parameterized in terms of additive effects, so

that βx = u(1)
x1 + · · · + u(K)

xK with each u(k)
xk ∈ Rp. Such additive models have representations

as multilinear models, although of course they are restricted to be additive. For comparison, an

additive MANOVA model was fit and the average value of (ȳx− β̂x)2 was computed, measuring the

lack-of-fit of the additive model. This value was about the same as the corresponding value for the

multilinear model for the tvhours variable, but 15% larger for the words variable. This indicates

that some patterns among the cell means for words cannot be represented with an additive model.

In general, we may expect that some aspects of the heterogeneity among the µx’s will not be

additive. In such situations, it may be preferable to use a multiplicative model whose complexity

can be controlled with the choice of the rank R rather than to have to consider the inclusion and

estimation of a variety of higher-order interaction terms.
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6 Example: Analysis of longitudinal conflict data

The theory of the Kantian peace holds that militarized interstate disputes are less likely to occur

between democratic countries. Ward et al. [2007] evaluate this theory using international coopera-

tion and conflict data from the cold war period. The data include records of militarized conflict and

cooperation every five years from 1950 to 1985, along with economic and political characteristics of

the countries. In this section we analyze a subset of the data from Ward et al. [2007]. These data

include cooperation, conflict and gross domestic product data (gdp) for each of m = 66 countries

every fifth year, t ∈ {1950, 1955, . . . , 1980, 1985}. Additionally, each country in each of these years

has a polity score, measuring the level of openness in government. A positive polity score is given

to democratic states, while a negative score is given to authoritarian states.

The cooperation and conflict data form a three-way array with two modes representing country

pairs and one mode representing time. In this section we will fit an ordered probit model of

cooperation and conflict data as a function of gdp and polity. Specifically, for each unordered pair

{i, j} of countries and each time t, our data are as follows:

yi,j,t ∈ {−5,−4, . . . ,+1,+2}, indicating the level of military cooperation (positive) or conflict

(negative) between countries i and j in year t;

xi,j,t,1 = log gdpi + log gdpj , the sum of the log gdps of the two countries;

xi,j,t,2 = (log gdpi)× (log gdpj), the product of the log gdps;

xi,j,t,3 = polityi × polityj , where polityi ∈ {−1, 0,+1};

xi,j,t,4 = (polityi > 0)× (polityj > 0).

The sample space for yi,j,t is ordered but the scale is not meaningful: The difference between y = 0

and y = 1 is not comparable to the difference between y = −5 and y = −4. For this reason we use

the following ordered probit model to relate yi,j,t to xi,j,t:

zi,j,t = βT xi,j,t + γi,j,t

yi,j,t = max{k : zi,j,t > ck, k ∈ {−5,−4, . . . ,+1,+2}}

In this model the parameters to estimate include the regression coefficients β and the cutoffs

c = (c−4, . . . , c+2), with c−5 = −∞. The usual probit regression model would assume the γi,j,t’s are
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independent standard normal variables (standard, as the scale of these error terms is not separately

identifiable from β and c). However, results of Ward et al. [2007] suggest that the residuals from

regression models of international relations data are generally not patternless. For example, we

might expect γi,1,t, . . . , γi,66,t to exhibit statistical correlation, as these residuals are all associated

with country i. More subtle might be higher order patterns common in relational data: If i and j

have a positive relationship and j and k have a positive relationship, then a positive relationship

between i and k is more likely.

Hoff [2008] describes how two-way factor models can be used to represent patterns in ordinal

matrix-valued relational and social network data. Here we extend this idea, using a three-way

factor model to represent the longitudinal relational patterns represented by the array Γ = {γi,j,t}.

Specifically, the following factor model is proposed:

γi,j,t = 〈ui,uj ,vt〉+ εi,j,t , with

{εi,j,t = εj,i,t}
iid∼ normal(0, 1).

The uj ’s are vectors representing heterogeneity among the countries and the vt’s represent het-

erogeneity over time. This is a modification of the usual three-way PARAFAC representation

to accommodate the fact that the data are symmetric (yi,j,t = yj,i,t). This model has a simple

interpretation: Letting Γt = {γi,j,t : (i, j) ∈ {1, . . . ,m}2}, we have

Γt = UΛtUT + Et , where U = (u1, . . . ,um)T and Λt = diag(vt).

This symmetric version of the PARAFAC model is analogous to a type of eigenvalue decomposition

of a collection of square matrices {Γ1950, . . . ,Γ1985} in which the eigenvectors are held constant

across matrices, but the eigenvalues are allowed to vary.

The unobserved quantities in this model include the latent variable array Z as well as the pa-

rameters U,V and β. Using the same hierarchical prior distributions for U and V described in

Section 3.2 and a diffuse multivariate normal(0, 100× I) prior distribution for β, we can implement

a Gibbs sampler to approximate the joint posterior distribution p(Z,U,V,β|Y,X). All full con-

ditionals are standard, and are available from the supplementary material at the author’s website.

Using a rank-2 model, the Gibbs sampler was run for 505,000 iterations, dropping the first 5,000

to allow for burn-in and then saving the parameter values every 10th iteration. Convergence of

the Markov chain was monitored via the sampled values of β. The effective sample sizes for the
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Figure 5: Posterior densities for the elements of β. Gray lines are 95% confidence intervals.

four regression coefficients based on the 50,000 saved scans were 12,548, 16,622, 1,386 and 8,878

respectively.

The plots in Figure 5 show the marginal posterior distributions of the four regression coefficients,

along with 95% highest posterior density confidence intervals. The results indicate a negative

association between gdp and the latent variable z, reflecting the fact that a majority of the conflicts

over the cold war period involved economically large countries. The plots in the second row indicate

that zi,j tends to be larger if both i and j have polity scores of the same sign, but that there is not

strong evidence for a further increase if the polities of i and j are both positive.

Figure 6 displays a summary of the posterior distribution of U and V. This summary was

obtained as follows: First, a Monte Carlo approximation Θ̂ of the posterior mean of the three-

way array Θ = 〈U,U,V〉 was obtained using the values generated from the Markov chain. The

alternating least-squares algorithm was then applied to Θ̂ to obtain values Û and V̂. The columns

of Û were normalized to be unit vectors, and the columns of V̂ were then rescaled accordingly. The

columns of the latent factor matrices were then permuted so that the magnitude of the columns
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Figure 6: Posterior estimates of the country- and time-specific factors.

of V̂ were in decreasing order. The resulting values are plotted in Figure 6. The large square plot

shows the estimates of the two-dimensional latent factor vectors {ûi} for each country, with a larger

font used for those countries with larger vectors. The second column gives the values of v̂t,k, sorted

chronologically. Since all of these values are positive, two latent vectors {ûi1 , ûi2} being in similar

directions indicates a tendency for countries i1 and i2 to cooperate militarily, whereas vectors in

opposite directions indicate a tendency for conflict. For example, the vectors corresponding to USA

and South Korea are similar to each other and in the opposite direction of China and North Korea.

The heterogeneity of the v̂t’s over time allows for different patterns of conflict across the years. For

example, cooperation and conflict in 1980 and 1985 are described primarily by the first dimension

of the factors (u1), whereas events in 1955 and 1975 primary by the second (u2).

7 Discussion

This article has presented a hierarchical version of a reduced-rank multilinear model for array data

and a Bayesian method for parameter estimation. Unlike least-squares estimation, a Bayesian

approach allows for regularized estimates of the potentially large number of parameters in a mul-
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tilinear model. Unlike a non-hierarchical Bayesian approach, the hierarchical approach provides

a data-driven method of regularization, and a more flexible representation of the patterns in the

data array. Additionally, in a simulation study the estimates provided by the hierarchical approach

showed robustness to rank misspecification, as compared those obtained from a least-squares or

non-hierarchical approach.

Another advantage of the Bayesian approach is that it allows for the incorporation of multilinear

structure into a broad class of statistical models. For example, a least-squares approach would be

inappropriate for the ordinal cooperation and conflict data in Section 6, but Bayesian estimation for

these data, using a probit model with multilinear effects, is relatively straightforward. As another

example, the survey data presented in Section 5 was not in the form of an array, but the cell

means corresponding to the 128 levels of the 4 categorical variables can be represented as such. A

reduced-rank multilinear model provides a parsimonious representation of the cell means, but also

is more flexible than a simple additive effects model.

An important line of future research is the study of the theoretical properties of hierarchical

Bayesian approaches to parameter estimation for multiway data arrays. For a matrix model in

which Y = Θ + E and E is a matrix of normally-distributed noise, Tsukuma [2008, 2009] studies

Bayesian and hierarchical Bayesian approaches to providing admissible and minimax estimates of

Θ. One aspect of this work shows that under certain prior distributions on the singular vectors

of Θ, the Bayes estimates are equivariant and can be obtained by shrinking the singular values

of Y. Such estimates are somewhat analogous to those presented in this article for multiway

data, as shrinking the singular values of a matrix is similar to regularizing the variance of a set of

multiplicative factors. The author is currently investigating the extent to which such similarities

between the matrix and array models lead to similar theoretical properties of Bayesian estimates

in the two cases.

Replication code and data for the numerical results in this paper are available at the author’s

website: http://www.stat.washington.edu/~hoff
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