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Solutions for Hoff Exercises 5.1, 5.3, 5.4, 5.8, and LC 4.2.2

5.1 Let X1, . . . , Xn ∼ iid N(θ, σ2), where σ2 is known. Using the prior distribution
θ ∼ N(θ0, σ2/κ0),
5.1.a Obtain the Bayes estimator under squared error loss.

Under squared error loss, the Bayes estimator will be the posterior mean E[θ|X]. In this
case, looking at

π(θ|X) ∝θ p(X|θ)π(θ)

and plugging in the known expressions for p(X|θ) and π(θ), we find that π(θ|X) is pro-
portional to the kernel of a normal density with mean

κ0θ0 + nX̄
κ0 + n

and variance
σ2

κ0 + n
.

Therefore, the Bayes estimator is just the posterior mean, namely

δπ =
κ0θ0 + nX̄

κ0 + n
=

κ0

κ0 + n
θ0 +

n
κ0 + n

X̄.

�

5.1.b Compute the risk function of the Bayes estimator.

By definition,

R(θ, δπ) = EX|θ[(δπ − θ)2]

Plugging in the expression for δπ from part (a), we see that this expectation just requires
us to compute first and second moments of X̄, which is easily done, since X̄ is normally
distributed. The result of the computations is

R(θ, δπ) =
κ2

0(θ − θ0)
2 + nσ2

(n + κ0)2 .

�



5.1.c Suppose the true population mean is µ. For what values of θ0 and κ0 will the
Bayes estimator beat the sample mean, in terms of risk? Write your answer in terms of
(µ− θ0)

2, κ0, σ2, and n.

In class we showed that the risk of the sample mean is a constant value, σ2/n. So the
question is just for which values we have

κ2
0(µ− θ0)

2 + nσ2

(n + κ0)2 <
σ2

n
.

We can simplify this to

(µ− θ0)
2 < 2

σ2

κ0
+

σ2

n
,

that is, the Bayes estimator beats the sample mean when µ and θ0 are “close”. �

5.3 Let X = X1, . . . , Xn ∼ iid N(θ, σ2). Consider the prior distribution π(θ, σ2) where
π(θ|σ2) is the N(θ0, σ2/κ0) density and π(σ2) is the inverse-gamma density, so that
1/σ2 ∼ Gamma(a = ν0/2, b = ν0σ2

0 /2) and 1/σ2 has expectation a/b = 1/σ2
0 . For

this model and prior, obtain π(σ2|θ, X), π(θ|σ2, X), π(σ2|X), and π(θ|X). If you prefer,
you can write everything in terms of τ2 = 1/σ2 instead.

It’s easiest to start with

π(τ2|θ, X) ∝τ π(X|τ2, θ)π(τ2|θ) ∝τ π(X|τ2, θ)π(θ|τ2)π(τ2).

Plugging in these known densities and reducing terms, we see that π(τ2|θ, X) is propor-
tional to the kernel of a Gamma density with shape parameter (n + ν0 + 1)/2 and rate
parameter 1

2(ν0σ2
0 + κ0(θ − θ2

0) + ∑(Xi − θ)2). That is,

τ2|θ, X ∼ Gamma
(
(n + ν0 + 1)

2
,

1
2

(
ν0σ2

0 + κ0(θ − θ2
0) + ∑(Xi − θ)2

))
.

We apply a similar procedure for π(θ|τ2, X).

π(θ|τ2, X) ∝θ π(X|θ, τ2)π(θ|τ2).

We can then plug in these known densities and find that π(θ, τ2, X) is proportional to the
kernel of a normal density. The result is

θ|τ2, X ∼ N
(

nX̄ + θ0κ0

n + κ0
,

1
τ2(n + κ0)

)
.



For π(τ2|X), we note

π(τ2|X) =
π(τ2, X)

π(X)

=

∫
θ π(X, θ, τ2)dθ

π(X)

∝τ2

∫
θ

π(X|τ2, θ)π(θ|τ2)π(τ2)dθ

Plugging in densities and computing the integral, we find

τ2|X ∼ Gamma
(

n + ν0

2
,

1
2

(
ν0σ2

0 +
nκ0

n + κ0
(θ0 − X̄)2 + ∑(Xi − X̄)2

))
.

Finally, we have

π(θ|X) ∝θ

∫
τ2

π(X|τ2, θ)π(θ|τ2)π(τ2)dτ2.

Computing this integral and examining the resulting density, we find that θ|X follows
a non-standardized t-distribution with degrees of freedom parameter ν = ν0 + n, mean
parameter µ = κ0θ0+nX̄

κ0+n , and squared scale parameter

σ2 =
1

ν0 + n

(
ν0σ2

0 + κ0θ2
0 + ∑ X2

i
κ0 + n

−
(

κ0θ0 + nX̄
κ0 + n

)2
)

.

�

5.4 Let X1, . . . , Xn ∼ iid Poisson(θ), and let θ ∼ Gamma(a, b) with expectation a/b.
Suppose you observe X1, . . . , Xn and want to predict the value of a future observation
from this population. Obtain the form of the predictive distribution p(X∗|x1, . . . , xn) based
on the Poisson model X1, . . . , Xn, X∗ ∼ iid Poisson(θ) and the Gamma(a, b) prior distri-
bution. Note that the predictive distribution does not depend on any unknown param-
eters, meaning that you can actually use it to make predictions. Letting µ be the true
population mean, what does the predictive distribution converge to as n→ ∞? Explain
why this limiting distribution makes sense.

First, we note that the posterior predictive distribution p(X∗|x1, . . . , xn) can be computed
as

p(X∗|x1, . . . , xn) =
∫

θ
p(X∗, θ|x1, . . . , xn) dθ

=
∫

θ
p(X∗|θ, x1, . . . , xn)p(θ|x1, . . . , xn) dθ

=
∫

θ
p(X∗|θ)p(θ|x1, . . . , xn) dθ.



We already know p(X∗|θ), so we will be able to evaluate this integral once we know
the posterior density p(θ|x1, . . . , xn).

Now,

p(θ|x1, . . . , xn) =
p(x1, . . . , xn|θ)π(θ)

p(x1, . . . , xn)

∝θ p(x1, . . . , xn|θ)π(θ)

∝θ

(
n

∏
i=1

θx
i

xi
e−θ

)
ba

Γ(a)
θa−1e−bθ

∝θ θnx̄+a−1e−θ(b+n),

which we recognize as the kernel of a Gamma(nx̄ + a, b + n) distribution.
Returning now to the posterior predictive distribution, we have

p(X∗|x1, . . . , xn) =
∫

θ
p(X∗|θ)p(θ|x1, . . . , xn) dθ

=
∫ ∞

0

θX∗

X∗!
e−θ (b + n)nx̄+a

Γ(nx̄ + a)
θnx̄+a−1e−θ(b+n) dθ

=
(b + n)nx̄+a

X∗!Γ(nx̄ + a)

∫ ∞

0
θX∗+nx̄+a−1e−θ(b+n+1) dθ.

Now we can either recognize the integrand as the kernel of a Gamma pdf or consult an
integral table to obtain the result

p(X∗|x1, . . . , xn) =
(b + n)nx̄+a

X∗!Γ(nx̄ + a)
Γ(X∗ + nx̄ + a)

(b + n + 1)X∗+nx̄+a .

With a little work, we can rewrite this expression as

v =
1

X∗!
Γ(X∗ + a + nx̄)

Γ(a + nx̄)(a + nx̄)X∗

(
a + nx̄

b + n + 1

)X∗

×
((

1− 1
b + n + 1

)b+n+1
)x̄ (

1− 1
b + n + 1

)a−(b+1)x̄
.

Looking at the limits of each of these terms as n goes to infinity, we find

1
X∗!
→ 1

X∗!

Γ(X∗ + a + nx̄)
Γ(a + nx̄)(a + nx̄)X∗ → 1

(
a + nx̄

b + n + 1

)X∗

→ x̄X∗



((
1− 1

b + n + 1

)b+n+1
)x̄

→ e−x̄

and (
1− 1

b + n + 1

)a−(b+1)x̄
→ 1.

So altogether we have p(X∗|x1, . . . , xn)→ e−x̄ x̄X∗

X∗! . That is, X∗|x1, . . . , xn in asymptoti-
cally Poisson(x̄) distributed. Furthermore, by the law of large numbers, we have x̄ → µ,
so the limiting predictive distribution is Poisson(µ), i.e. the true distribution of X∗|θ. This
makes sense because as the amount of data grows, we expect the data to give us a correct
inference about the parameter, and the influence of the prior distribution should shrink
to nil as we learn more from the data. �

5.8 Consider Bayesian inference using a posterior density π(θ|x):
5.8.a Find the form of the Bayes estimator under absolute loss L(θ, d) = |θ − d|, and
prove your result.

Let’s start with the assumptions that θ|x has a continuous distribution and that π(θ|x) is
a nice enough function that we can interchange differentiation and integration.

The Bayes estimator will minimize posterior risk R(π, d|x). By definition, we have

R(π, d|x) =
∫

θ
|θ − d|π(θ|x)dθ

=
∫

θ<d
(d− θ)π(θ|x)dθ +

∫
θ≥d

(θ − d)π(θ|x)dθ.

To find the minimizing value of d, we differentiate posterior risk with respect to d and
set the derivative equal to 0.

0 =
∂

∂d
R(π, d|x) =

∫
θ<d

π(θ|x)dθ −
∫

θ≥d
π(θ|x)dθ.

This equation is solve by any d for which
∫

θ<d π(θ|x)dθ =
∫

θ≥d π(θ|x)dθ. That is, d
can be any posterior median.

If we don’t make the assumptions about the distribution of θ|x, it is still possible to
show that posterior risk is minimized by a posterior median. One possible method is to
proceed directly by fixing a value of x and assuming some estimator d′ such that π(θ ≤
d′|x) < 1/2. It’s then possible to show that R(π, d|x) ≤ R(π, d′|x), so that it’s not possible
for a non-median to have lower posterior risk than a median. �

5.8.b Find the form of the Bayes estimator under zero-one loss L(θ, d) = 1(θ 6= d) for
the case that π(θ|x) is discrete.



Again, the Bayes estimator will minimize the posterior risk. In this case, the posterior risk
is

R(π, d|x) =
∫

θ
1(θ 6= d)π(θ|x)dθ

= ∑
θ∈Θ

1(θ 6= d)π(θ|x)

= 1− π(d|x),

which is minimized if we maximize π(d|x). That is, the Bayes estimator is any posterior
mode. �

LC 4.2.2 Consider the exaple of sequential binomial sampling (LC Example 4.2.1). Let
X be the number of successes in n Bernoulli trials with success probability p.
4.2.2.a Suppose that the number of Bernoulli trials performed is a prespecified number
n, so that we have the binomial sampling model

P(X = x) =
(

n
k

)
px(1− p)n−x, x = 0, 1, . . . , n.

Calculate the Bayes risk of the Bayes estimator and the UMVU estimator of p.

The algebra for this problem is rather unpleasant, so we just give setup and answers.
We know the Bayes estimator is given by

δπ(X) =
a + X

a + b + n

and the UMVU estimator is just X/n.
The Bayes risk of the Bayes estimator is

Ep[EX|p[(δπ(X)− p)2]].

Performing the inner expectation yields (after a lot of algebra)

EX|p[(δπ(X)− p)2] =
(p(a + b + 2n) + a)2 + np(1− p)

(a + b + n)2 .

Subsequently performing the outer expectation yields

Ep[EX|p[(δπ(X)− p)2]] =
ab

(a + b)(a + b + 1)(a + b + n)
.

On the other hand, the Bayes risk of the UMVU estimator is

Ep[EX|p[(X/n− p)2]].



Performing the inner expectation yields

EX|p[(X/n− p)2] =
p(1− p)

n
and consequently

Ep[EX|p[(X/n− p)2]] =
ab

(a + b)(a + b + 1)n
.

�

LC 4.2.2.b Suppose that the number of Bernoulli trials performed is a random variable
N. The value N = n was obtained when a prespecified number x of successes was
observed so that we have the negative binomial sample model

P(N = n) =
(

n− 1
k− 1

)
px(1− p)n−x, n ≥ x.

Calculate the Bayes risk of the Bayes estimator and the UMVU estimator of p.

Here, as far as anyone can tell, there’s no nice solution. The Bayes estimator is still

δπ(N) =
a + x

a + b + N

and now the UMVU estimator is (x− 1)/(N − 1).
Again, we can find the Bayes risk of an estimator d by computing

Ep[EN|p[(d− p)2]].

However, now both our estimators d have N in the denominator and it’s hard to take the
expectation of 1/N or 1/N2. It’s still possible to come up with something for EN|p[(d −
p)2], but it’ll involve an infinite sum. �

LC 4.2.2.c Calculate the mean squared errors of all three estimators under each model.
If it is unknown which sampling mechanism generated the data, which estimator do
you prefer overall?

For the first model, we already calculated the mean squared errors as EX|p[(d− p)2]. For
the third estimator d = X−1

n−1 , the mean squared error is given by

EX|p[((X− 1)/(n− 1)− p)2] =
np(1− p) + (1− p)2

(n− 1)2 .

Under the second model, the mean squared errors will all be ugly infinite sums.
In any case, even without being able to compare mean squared errors, we might note

that the form of the Bayes estimator is the same regardless of the data generating mecha-
nism and prefer it for that reason alone. �


