STAT 581
Homework #3
10/21/2013

Solutions for Hoff Exercises 5.1, 5.3, 5.4, 5.8, and LC 4.2.2

51 Let Xy,...,X, ~ iid N(6,0?), where ¢? is known. Using the prior distribution
0 ~ N(90,0'2/K0),
5.1.a Obtain the Bayes estimator under squared error loss.

Under squared error loss, the Bayes estimator will be the posterior mean E[#|X]. In this
case, looking at
7(6]X) op p(X[60)7(6)

and plugging in the known expressions for p(X|0) and 77(0), we find that 77(6|X) is pro-
portional to the kernel of a normal density with mean

kobo +nX
Ko+

and variance

o2

Ko+n
Therefore, the Bayes estimator is just the posterior mean, namely
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5.1.b Compute the risk function of the Bayes estimator.

By definition,
R(6,07) = Ex|g[(z — 0)°]

Plugging in the expression for J,; from part (a), we see that this expectation just requires
us to compute first and second moments of X, which is easily done, since X is normally
distributed. The result of the computations is

K3(0 — 6)? + no?

R(@,07) = == 2 s




5.1.c Suppose the true population mean is u. For what values of 6y and xy will the
Bayes estimator beat the sample mean, in terms of risk? Write your answer in terms of
(1 — 60)?, ko, 0%, and n.

In class we showed that the risk of the sample mean is a constant value, c?/n. So the
question is just for which values we have

15 (u — 60) + no? _ o2
(n+xp)? n’
We can simplify this to
o) o2 o?
— <2—+—,
(p=00)7 <2 -+
that is, the Bayes estimator beats the sample mean when u and 6 are “close”. u

53 Let X = Xy,...,X, ~ iid N(6,0?). Consider the prior distribution (6, 0?) where
7(0]0?) is the N(6p,0?/xo) density and 7t(c?) is the inverse-gamma density, so that
1/0% ~ Gamma(a = vy/2,b = 1/0(73/2) and 1/02 has expectation a/b = 1/(78. For
this model and prior, obtain 77(¢?|6, X), (8|02, X), 7(¢?|X), and 7(0|X). If you prefer,
you can write everything in terms of T2 = 1/0? instead.

It’s easiest to start with
(2|6, X) ¢ m(X|72,0)7(T%6) o< 7(X| T2, 0)7(0]T%) (7).

Plugging in these known densities and reducing terms, we see that 77(72|6, X) is propor-
tional to the kernel of a Gamma density with shape parameter (n + vy + 1)/2 and rate
parameter (1902 + (0 — 62) + (X, — 60)?). That is,

(m+1rp+1) 1
7210, X ~ Gamma (f’ 5 (1/0(73 +x0(0 —65) + Y (Xi — 9)2) :

We apply a similar procedure for 7t(8|72, X).
(0|72, X) o (X|6, T3) 7 (6]7?).

We can then plug in these known densities and find that (6, 2, X) is proportional to the
kernel of a normal density. The result is
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For 71(7?|X), we note
(1%, X)
m(T?X) = X
Jo (X, 0,7%)do
m(X)
.2 /9 (X[, 0)70(6| 1) (12)d6

Plugging in densities and computing the integral, we find

2 n+vp 1 >, 1Ko 12 12
77| X ~ Gamma (T'E <U000+n+xo(90_x) +Y (Xi—X) ))

Finally, we have
77(6]X) oxq / (X|7%,0) (8] 7) m(?)d?,
T

Computing this integral and examining the resulting density, we find that 6|X follows
a non-standardized t-distribution with degrees of freedom parameter v = vg + 1, mean

parameter y = Kogg—izx, and squared scale parameter
2= 1 1/0(73 + K()Q% + ZXZZ B kofo +nX 2
Vo +n Ko+ n Ko+ n ’

54 Let Xj,..., X, ~ iid Poisson(f), and let 6 ~ Gamma(a, b) with expectation a/b.
Suppose you observe Xj, ..., X, and want to predict the value of a future observation
from this population. Obtain the form of the predictive distribution p(X*|x1, ..., x,) based
on the Poisson model X3, ..., X,;, X* ~ iid Poisson(#) and the Gamma(a, b) prior distri-
bution. Note that the predictive distribution does not depend on any unknown param-
eters, meaning that you can actually use it to make predictions. Letting u be the true
population mean, what does the predictive distribution converge to as n — c0? Explain
why this limiting distribution makes sense.

First, we note that the posterior predictive distribution p(X*|x1, ..., x,) can be computed
as

p(X*|x1, ..., x0) = /9p(X*,9|x1,...,xn) a6
= Ap(X*|01x1/'"/x}’l)p(9|x1,-..,xn) d@

_ /Gp(X*|0)p(9|x1,...,xn)d@.



We already know p(X*|0), so we will be able to evaluate this integral once we know
the posterior density p(6|x1,...,xn).
Now,

p(x1,...,x,|0)7T(0)
p(x1,...,%xn)
g p(x1,...,%4]0)7(0)
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p(0|x1,...,x4) =

which we recognize as the kernel of a Gamma(nx + a,b + n) distribution.
Returning now to the posterior predictive distribution, we have

P(X* |21, Xn) = /9p(X*|9)p(9|x1,...,xn) 46
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Now we can either recognize the integrand as the kernel of a Gamma pdf or consult an
integral table to obtain the result

(b+n)"*t7  T(X*+nx+a)
X T(nx +a) (b+n+ 1)X+ni+ta’

p(X*|x1,...,x0) =

With a little work, we can rewrite this expression as
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Looking at the limits of each of these terms as 1 goes to infinity, we find
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So altogether we have p(X*|xq,...,x4) — ¢ ’”}‘(*, That is, X*|x1, ..., X, in asymptoti-
cally Poisson(x) distributed. Furthermore by the law of large numbers we have ¥ — u,
so the limiting predictive distribution is Poisson(y), i.e. the true distribution of X*|0. This
makes sense because as the amount of data grows, we expect the data to give us a correct
inference about the parameter, and the influence of the prior distribution should shrink
to nil as we learn more from the data. [

and

5.8 Consider Bayesian inference using a posterior density 77(6|x):
5.8.a Find the form of the Bayes estimator under absolute loss L(6,d) = |0 — d|, and
prove your result.

Let’s start with the assumptions that 6|x has a continuous distribution and that 77(8|x) is
a nice enough function that we can interchange differentiation and integration.
The Bayes estimator will minimize posterior risk R(7,d|x). By definition, we have

R(r,d|x) = /9 10— d|7(6]x)d6

— [ (d—6)r(6]x)d6 + / (6 — d)7e(6]x)d6
o<d 0>d
To find the minimizing value of d, we differentiate posterior risk with respect to 4 and
set the derivative equal to 0.

9
0= —R(m,dlx) = /M 7r(€|x)d9—/92d 72(6]x)d6

This equation is solve by any d for which [y,_, 7(0|x)d0 = [,.,7(0|x)df. That is, d
can be any posterior median.

If we don’t make the assumptions about the distribution of 6|x, it is still possible to
show that posterior risk is minimized by a posterior median. One possible method is to
proceed directly by fixing a value of x and assuming some estimator d’ such that 77(6 <
d'|x) < 1/2. It's then possible to show that R(7t,d|x) < R(7,d’|x), so thatit’s not possible
for a non-median to have lower posterior risk than a median. n

5.8.b Find the form of the Bayes estimator under zero-one loss L(6,d) = 1(0 # d) for
the case that 77(0|x) is discrete.




Again, the Bayes estimator will minimize the posterior risk. In this case, the posterior risk
is

R(rt, d|x) = /91(9 £ d)70(6]x)d0
=) 1(0 # d)m(60]x)

<G
=1-—n(d|x),

which is minimized if we maximize 7(d|x). That is, the Bayes estimator is any posterior
mode. n

LC 4.2.2 Consider the exaple of sequential binomial sampling (LC Example 4.2.1). Let
X be the number of successes in n Bernoulli trials with success probability p.

4.2.2.a Suppose that the number of Bernoulli trials performed is a prespecified number
n, so that we have the binomial sampling model

P(X=x)= (Z)px(l -p)"*, x=0,1,...,n

Calculate the Bayes risk of the Bayes estimator and the UMVU estimator of p.

The algebra for this problem is rather unpleasant, so we just give setup and answers.
We know the Bayes estimator is given by

a+ X
57T(X):a+b+n

and the UMVU estimator is just X /n.
The Bayes risk of the Bayes estimator is

EP[EX|p[(5n(X) - P)ZH-

Performing the inner expectation yields (after a lot of algebra)

(p(a+b+2n)+a)>+np(l - p).

— 2 —
Expl(6x(X) — p)? T
Subsequently performing the outer expectation yields

ab
a+b)(a+b+1)(a+b+n)

EP[EXW[(‘SH(X) - P)ZH = (

On the other hand, the Bayes risk of the UMVU estimator is

Ep[Ex,[(X/n = p)?]].



Performing the inner expectation yields
1—
Exy[(x/n —p)2) = PP
and consequently

ab
a+b)(a+b+1)n

Ep[Ex)p[(X/n — p)?]] = (

LC4.2.2.b Suppose that the number of Bernoulli trials performed is a random variable
N. The value N = n was obtained when a prespecified number x of successes was
observed so that we have the negative binomial sample model

n—1

P(N =) = (k B 1)px(1 — )", > x

Calculate the Bayes risk of the Bayes estimator and the UMVU estimator of p.

Here, as far as anyone can tell, there’s no nice solution. The Bayes estimator is still
a—+x
N = TN
and now the UMVU estimatoris (x —1)/(N —1).
Again, we can find the Bayes risk of an estimator d by computing
Ep[Enpl(d — p)?]].

However, now both our estimators d have N in the denominator and it’s hard to take the
expectation of 1/N or 1/N?. It’s still possible to come up with something for E Npl(d —

p)?], but it'll involve an infinite sum. u

LC 4.2.2.c Calculate the mean squared errors of all three estimators under each model.
If it is unknown which sampling mechanism generated the data, which estimator do
you prefer overall?

For the first model, we already calculated the mean squared errors as Ex, [(d — p)?]. For
the third estimator d = £=1, the mean squared error is given by

n—1’
ap(1 — 2
Bxpl((X 1)/ (n=1) = py) = PO C PP

Under the second model, the mean squared errors will all be ugly infinite sums.

In any case, even without being able to compare mean squared errors, we might note
that the form of the Bayes estimator is the same regardless of the data generating mecha-
nism and prefer it for that reason alone. U



