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Solutions for Hoff Exercises 6.3, 6.6, and 6.8

6.3 Note that the risk advantage of δJS over X is largest when ‖θ‖2 is small, i.e. θ ≈ 0.
Suppose instead you thought that θ ≈ θ0. Derive an alternative estimator that performs
well when θ ≈ θ0, in that it beats δJS at θ = θ0 and also dominates X everywhere. Show
that your estimator meets these latter two criteria.

Intuitively, a good estimator to try would be a modified James Stein estimator where we
shrink towards θ0 instead of towards 0. A good candidate for such an estimator might be

δθ0 = θ0 +

(
1− p− 2
‖X − θ0‖2

)
(X − θ0) = X −

(
p− 2

‖X − θ0‖2

)
(X − θ0).

Letting g(X) =
(

p−2
‖X−θ0‖2

)
(X − θ0), we can express our estimator as δθ0 = X − g(X).

Then to compute the risk, we have

R(θ, δθ0) = E[‖δθ0 − θ‖2]

= E[‖X − g(X)− θ‖2]

= E[‖(X − θ)− g(X)‖2]

= E[‖(X − θ)‖2] + E[‖g(X)‖2]− 2E[(X − θ)Tg(X)].

We then compute these three expectations separately. Since X ∼ Np(θ, I), we have
‖X − θ‖2 ∼ χ2

p, so E[‖(X − θ)‖2] = p.
For the second term, we have

E
[
‖g(X)‖2

]
= E

[
(p− 2)2‖X − θ0‖2

‖X − θ0‖4

]
= (p− 2)2E

[
1

‖X − θ0‖2

]
For the third term, applying Stein’s identity yields

E[(X − θ)Tg(X)] = (p− 2)2E
[

1
‖X − θ0‖2

]
,

so all together we have

R(θ, δθ0) = p− (p− 2)2E
[

1
‖X − θ0‖2

]
.



Now our two goals are to show i) that this risk is smaller than the risk of X everywhere
and ii) that this risk is smaller than the risk of the usual James Stein estimator at θ0.

For i), we note that the risk of X is p everywhere, so since (p− 2)2E
[

1
‖X−θ0‖2

]
> 0, we

have R(θ, δθ0) < R(θ, X) everywhere.
For ii), we are comparing the risk functions

R(θ, δθ0) = p− (p− 2)2E
[

1
‖X − θ0‖2

]
and

R(θ, δJS) = p− (p− 2)2E
[

1
‖X‖2

]
,

so to show that R(θ0, δθ0) < R(θ0, δJS), it is enough to show that

E
[

1
‖X − θ0‖2

]
< E

[
1
‖X‖2

]
when X ∼ Np(θ0, I).

One option is to just appeal to the results of the unassigned exercise 6.7. A more
thorough option is to apply Lehman and Romano Lemma 3.4.2. Since the non-central
χ2 distribution has monotone likelihood ratio, for Zθ ∼ χ2(θ), LR Lemma 3.4.2.i gives
E[1/Z2

θ ] is non-decreasing in θ. Since ‖X − θ0‖ ∼ χ2(0) and ‖X‖2 ∼ χ2(‖θ0‖), we have
the desired inequality. �

6.6 For estimating θ based on X ∼ Np(θ, I), consider the class of adaptive shrinkage
estimators of the form δc(x) = (1− c

‖x‖2 )x.
6.6.a Under squared error loss, find the simplest expression you can for the risk function
of δc.

Here we use the same set of tricks as in exercise 6.3. Write δc = X − c
‖X‖2 X = X − g(X).

Then, as before, we have

R(θ, δc) = E[‖(X − θ)‖2] + E[‖g(X)‖2]− 2E[(X − θ)Tg(X)].

Again, the first term in this sum is p. The second term is

E
[
‖g(X)‖2

]
= E

[
c2‖X‖2

‖X‖4

]
= c2E

[
1
‖X‖2

]
and for the third term, applying Stein’s identity yields

E[(X − θ)Tg(X)] = c(p− 2)E
[

1
‖X‖2

]
,



so all together we have

R(θ, δc) = p + (c2 − 2c(p− 2))E
[

1
‖X‖2

]
.

�

6.6.b Now suppose we are in a hierarchical situation where θ ∼ Np(0, τ2I). Obtain a
closed-form expression for the risk R(τ2, δc) of δc, where now risk means the loss aver-
aged over X and θ. Find the value c̃ of c that minimizes R(τ2, δc).

The only thing we’re missing to evaluate this risk is a way to calculate E[1/‖X‖2]. For this,
we can appeal to the known marginal distribution of X. We know X ∼ Np(0, (1 + τ2)I).
Then, ‖X‖2 follows a Gamma( p

2 , 1
2(1+τ2)

) distribution. So 1/‖X‖2 follows an inverse

gamma distribution with mean 1
(p−2)(1+τ2)

. Plugging this into our expression for the risk,
we get

R(τ2, δc) = p +
c2 − 2c(p− 2)
(p− 2)(1 + τ2)

.

This expression is quadratic in c and minimized at c̃ = p− 2, so the optimal estimator of
this form is the James-Stein estimator. �

6.6.c For small, medium, and large values of p, plot R(τ2, δc̃) as a function of τ2, along
with R(τ2, τ2

1+τ2 X). Describe and interpret what you see.

Plugging in our expression for c̃ yields R(τ2, δc̃) = p − p−2
1+τ2 . From lecture, we have

R(τ2, τ2

1+τ2 X) = p τ2

1+τ2 . [Plots omitted.] For fixed τ2, the risk of the oracle estimator is
always lower than the risk of δc̃, but the two risks converge as p→ ∞. This makes sense.
For large numbers of observations, we can estimate the value of τ2 with a high degree of
precision. �

6.8 Let X ∼ Np(θ, σ2I) and S/σ2 ∼ χ2
n be independent. For the case that σ2 is un-

known, consider the class of estimators of the form δc(x, s) = (1− cs
‖x‖2 )x.

6.8.a Compute the risk function of δc.

We continue to use the same tricks as in the previous problems. Write δc(X, S) = X −
cS
‖X‖2 X = X − g(X, S). Then, as before, we have

R(θ, δc) = E[‖(X − θ)‖2] + E[‖g(X, S)‖2]− 2E[(X − θ)Tg(X, S)].



The first term in this sum is pσ2. The second term is

E
[
‖g(X, S)‖2

]
= E

[
c2S2‖X‖2

‖X‖4

]
= c2E[S2]E

[
1
‖X‖2

]
= c2σ4(n2 + 2n)E

[
1
‖X‖2

]
and for the third term, applying Stein’s identity yields

E[(X − θ)Tg(X, S)] = c(p− 2)σ2E
[

S
‖X‖2

]
= c(p− 2)nσ4E

[
‖X‖2

]
so all together we have

R(θ, δc) = pσ2 + (c2σ4(n2 + 2n)− 2cnσ4(p− 2))E
[

1
‖X‖2

]
.

�

6.8.b Find the value c̃ of c that minimizes the risk function.

Again, we have an expression for risk which is quadratic in c. This expression is mini-
mized at

c̃ = −−2nσ4(p− 2)
2σ4(n2 + 2n)

=
p− 2
n + 2

.

�

6.8.c Compare the risk function of δJS in the case σ2 = 1 is known to the risk of δc̃. How
much is lost by not knowing σ2?

The known risk function for the James Stein estimator in the case of σ2 = 1 known is
given by

R(θ, δJS) = p− (p− 2)2E
[

1
‖X‖2

]
.

Plugging in our value of c̃ and σ2 = 1, we get a risk function for our alternative estimator
of

R(θ, δc̃) = p− n
n + 2

(p− 2)2E
[

1
‖X‖2

]
.

Thus, the difference in risks is given by

R(θ, δc̃)− R(θ, δJS) =
2

n + 2
(p− 2)2E

[
1
‖X‖2

]
.

For fixed p, as n goes to infinity, this difference in risks goes to zero. �


