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Solutions for Hoff Exercises 8.4, 8.7, and 8.8

8.4 Let P be the class of all probability distributions on (R,B(R)) with continuous
CDFs. Let X1, . . . , Xn be an iid sample from P ∈ P , and consider estimation of the
median via the loss L(P, d) = (P(−∞, d] − 1/2))2. Show that the estimation prob-
lem is invariant under the group G of transformations of the form gh(x1, . . . , xn) =
(h(x1), . . . , h(xn)), where h is a continuous, strictly increasing function on R. Identify
the induced transformations Ḡ and G̃.

As setup, we first note that each distribution in the class P can be uniquely identified by
the CDF F associated with X1. Let F be the set of all continuous CDFs. We will use the
notation PF to refer to the model P ∈ P where X1 is assumed to have CDF F ∈ F . In this
way, we can think of F as our parameter space, even though F isn’t a space with a finite
number of dimensions.

Now we proceed in several steps:

a) For an arbitrary gh, identify the distribution of ghX, where X1, . . . , Xn ∼iid PF. (This
will give us a handle on ḡh.)

b) Check invariance of the parameter space, i.e. ḡhF = F .

c) Identify the induced transformation on decision rules to attain invariance of loss.

a) Say X1, . . . , Xn ∼iid PF. Then X1, . . . , Xn have joint cdf given by

Pr(X1 ≤ x1, . . . , Xn ≤ xn) = ∏
i

F(xi).

What about the transformed variables ghX? Let X′i = h(Xi). Then

Pr(X′1 ≤ x1, . . . , X′n ≤ xn) = Pr(h(X1) ≤ x1, . . . , h(Xn) ≤ xn)

= Pr(X1 ≤ h−1(x1), . . . , Xn ≤ h−1(xn))

= Pr(X1 ≤ h−1(x1)) · · ·Pr(Xn ≤ h−1(xn))

= ∏
i

F(h−1(xi))

That is, X′1, . . . , X′n ∼iid PF◦h−1 . That is, ḡh is given by ḡh : F 7→ F ◦ h−1.

The induced group of transformations is given by Ḡ = {ḡh : F 7→ F ◦ h−1}.



b) Firstly, we note that since h is continuous and strictly increasing, its inverse exists
and is also continuous. Thus, F ◦ h−1 is also a continuous cdf, so applying any
transformation gh to X won’t cause us to leave the model.

Secondly, fix a transformation gh. We need to show that ḡh doesn’t reduce F . That
is, for each F ∈ F , there is an F′ ∈ F such that X ∼ PF′ ⇒ ghX ∼ PF. Fixing an F
and taking F′ = F ◦ h, we see that ḡhF′ = F′ ◦ h−1 = F ◦ h ◦ h−1 = F, so ḡh doesn’t
reduce F .

Together, these show invariance of the parameter space under the group of param-
eter transformations Ḡ.

c) Finally, we look at loss. For invariance of loss, we want to find a definition of g̃h that
satisfies L(PF, d) = L(PḡhF, g̃hd). Working backwards, one option is

L(PF, d) = L(PḡhF, g̃hd)

⇐⇒ (F(d)− 1/2)2 = (F(h−1(g̃h(d)))− 1/2)2

⇐ F(d) = F(h−1(g̃h(d)))

⇐ d = h−1(g̃h(d))
⇐ g̃h(d) = h(d).

That is, taking g̃h : d 7→ h(d) gives us invariance of loss. The induced group of
transformations is then G̃ = {g̃h : d 7→ h(d)}.

Altogether, from parts a, b, and c, we have invariance of the estimation problem under
G. �

8.7 Consider a scale model P = {pθ(x) = p1(x/θ)/θ : θ > 0}, where p1 is a known
probability density on R+.
8.7.a Show that the model is invariant under the group G = {g : x 7→ cx, c > 0}, and
identify the induced group Ḡ on the parameter space.

Firstly, if X ∼ Pθ, what’s the distribution of gcX = cX? Appealing to the known formula
for scale transformations, since X has pdf p1(x/θ)/θ, cX has pdf p1(x/cθ)/cθ. That is,
cX ∼ Pcθ, suggesting ḡc(θ) = cθ. Or, in group form, Ḡ = {ḡc : θ 7→ cθ, c > 0}.

For model invariance, we need to check that ḡcΘ = Θ. Abusing notation somewhat,
we’re checking that cR+ = R+, which is indeed true so long as c > 0. �

8.7.b Show that the problem of estimating θ is invariant under G for loss functions of
the form L(θ, d) = f (d/θ), where f attains its minimum value of zero at d = θ. Identify
the induced group G̃ on the decision space.



For loss invariance, we want to find g̃c such that L(θ, d) = L(ḡcθ, g̃cd).

L(θ, d) = L(ḡcθ, g̃cd)
⇐⇒ f (d/θ) = f (g̃cd/cθ)

⇐ d
θ
=

g̃cd
cθ

⇐⇒ g̃cd = cd.

That is, one option for invariance of loss is to take g̃cd = cd. Depending on the function
f , it may not be the only option, but it’s certainly sufficient for invariance of loss. Thus,
the induced group we’ll consider on the decision space is G̃ = {g̃c : d 7→ cd, c > 0}. �

8.7.c Characterize the class of equivariant estimators and the UMREE in terms of f and
p1.

For equivariance, we require that δ(gc(x)) = g̃c(δ(x)). That is, δ(cx) = cδ(x). Using
our usual trick of considering c = 1/x, we see that it is necessary and sufficient to have
δa(X) = aX for some a ∈ R.

As we’ve seen in the course notes, this particular Ḡ acts transitively on the parame-
ter space, so the risk of any equivariant estimator is constant across the parameter space.
Thus, to find the UMREE, it suffices to find the estimator which minimizes risk at a con-
venient θ, say θ = 1. Then

R(1, aX) = E[L(1, aX)]

= E[ f (aX)|θ = 1]

=
∫

f (ax)p1(x) dx

If we let a∗ be the value of a which minimizes the above integral, then the UMREE is
given by a∗X. �

8.7.d In the case f (r) = (1− r)2, find the UMREE in terms of p1.

Plugging in for f above, we now want to find a which minimizes∫
(1− ax)2p1(x) dx.

Equivalently, we’re minimizing∫
1p1(x) dx− 2a

∫
xp1(x) dx + a2

∫
x2p1(x) dx.

This is a quadratic function in a which is minimized by at

a∗ =
∫

xp1(x) dx∫
x2p1(x) dx

=
E[X|θ = 1]
E[X2|θ = 1]

.



Thus, the UMREE is given by

δa∗ =

∫
xp1(x) dx∫
x2p1(x) dx

X =
E[X|θ = 1]
E[X2|θ = 1]

X.

�

8.7.e For the case f (r) = (1− r)2, show that the risk of any equivariant estimator can
be expressed as a posterior risk under a (possibly improper) prior distribution. Show
that the UMREE can be viewed as a Bayes estimator under this prior.

What’s the risk of an equivariant estimator?

R(θ, aX) = R(1, aX)

=
∫ ∞

0
f (au)p1(u) du

=
∫ ∞

0
f (udx/x)p1(u) du (where dx = ax)

=
∫ 0

∞
f (dx/θ)p1(x/θ)

−x
θ2 dθ (change of variables : θ = x/u)

=
∫ ∞

0
f (dx/θ)p1(x/θ)

x
θ2 dθ,

which looks like a posterior expected loss if we can just find a posterior distribution of
the form

π(θ|x) = p1(x/θ)
x
θ2 .

Recalling that π(θ|x) ∝θ p(x|θ)π(θ), and that p(x|θ) = p1(x/θ)/θ, it looks like we should
be okay by taking a prior π(θ) ∝θ

x
θ , or equivalently, π(θ) ∝θ

1
θ . We can then confirm by

computing

π(θ|x) = p(x|θ)π(θ)∫
p(x|θ)π(θ)

that this prior does indeed lead to the desired posterior.
Then, under this improper prior, the Bayes estimator is the estimator for each value

of x which minimizes the posterior risk. But we’ve already shown that the posterior risk
is equivalent to the usual risk R(θ, aX), so minimizing with respect to a will give us the
same estimator that we saw as the UMREE in part (d). �

8.8 Obtain the UMREE for the univariate location problem X ∼ p0(x − θ), θ ∈ R, for
the group G = { f : x 7→ x + c, c ∈ R} and absolute loss L(θ, d) = |θ − d|.

From the lecture notes, we already have ḡcθ = θ + c and g̃cd = d + c for this problem.
Then an equivariant estimator should have δ(gc(x)) = g̃c(δ(x)). That is, δ(x + c) =



δ(x) + c. With our usual tricks (taking c = −x), we find that all equivariant estimators
must be of the form δa(x) = x + a for some a ∈ R.

All that remains is to find the value of a which minimizes risk. Noting that Ḡ acts
transitively on Θ = R, it’s enough to minimize R(0, δa) with respect to a. What is this
risk?

R(0, δa(X)) = E[L(0, δa(X))|θ = 0]
= E[|X + a||θ = 0]

=
∫
|x + a|p0(x) dx

=
∫ −a

−∞
−(x + a)p0(x) dx +

∫ ∞

−a
(x + a)p0(x) dx.

Applying Leibniz’s rule and differentiating with respect to a gives

∂

∂a
R(0, δa(X)) =

∫ ∞

−a
p0(x) dx−

∫ −a

−∞
p0(x) dx,

which is 0 when −a = median(p0). (For thoroughness, you could also check that we’re
finding a minimum and not a maximum here.) Thus, the UMREE is X−median(p0). �


