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Solutions for Hoff Exercises 8.4, 8.7, and 8.8

8.4 Let P be the class of all probability distributions on (R, B(IR)) with continuous
CDFs. Let Xj,...,X; be an iid sample from P € P, and consider estimation of the
median via the loss L(P,d) = (P(—oo,d] —1/2))?. Show that the estimation prob-
lem is invariant under the group G of transformations of the form gj(x1,...,x,) =
(h(x1),...,h(xy)), where h is a continuous, strictly increasing function on R. Identify
the induced transformations G and G.

As setup, we first note that each distribution in the class P can be uniquely identified by
the CDF F associated with X;. Let F be the set of all continuous CDFs. We will use the
notation Pr to refer to the model P € P where X is assumed to have CDF F € F. In this
way, we can think of F as our parameter space, even though F isn’t a space with a finite
number of dimensions.

Now we proceed in several steps:

a) For an arbitrary g, identify the distribution of g, X, where Xj, ..., Xy, ~jig Pr. (This
will give us a handle on §j,.)

b) Check invariance of the parameter space, i.e. . F = F.

c) Identify the induced transformation on decision rules to attain invariance of loss.

a) Say Xj,..., Xy ~ijig Pr. Then Xy, ..., X,, have joint cdf given by

Pr(X; <x1,...,X, <xy) = HF(xi).
i

What about the transformed variables g, X? Let X! = h(X;). Then
Pr(X{ <xy,..., X, <xy)=Pr(h(X1) < xq,...,h(Xn) < xy)
=Pr(X; < hil(xl),...,Xn < hil(xn))
=Pr(X; <h Y(xq)) - Pr(X, < h Y(xy))
— TTF((x)
1

Thatis, X}, ..., X}, ~iig Proy-1. Thatis, §; is givenby g, : F+ Foh™ L.
The induced group of transformations is givenby G = {g;, : F — Foh™1}.



b) Firstly, we note that since & is continuous and strictly increasing, its inverse exists
and is also continuous. Thus, F o h~! is also a continuous cdf, so applying any
transformation g; to X won’t cause us to leave the model.

Secondly, fix a transformation g;. We need to show that g, doesn’t reduce F. That
is, for each F € F, there is an F’ € F such that X ~ Pp = ¢, X ~ Pr. Fixing an F
and taking F’ = F o h, we see that §,F' = F'oh™! = Fohoh™! = F, so g, doesn’t
reduce F.

Together, these show invariance of the parameter space under the group of param-
eter transformations C; .

¢) Finally, we look at loss. For invariance of loss, we want to find a definition of g, that
satisfies L(Pr,d) = L(Pg,r, $nd). Working backwards, one option is

L(Pr,d) = L(Pg,F, §nd)

(F(d) —1/2)> = (F(h™'(gn(d))) — 1/2)
F(d) = F(h™'(gx(d)))

d=n""(g(d))

< gu(d) = h(d).

That is, taking §j, : d — h(d) gives us invariance of loss. The induced group of
transformations is then G = {g;, : d — h(d)}.

Altogether, from parts a, b, and ¢, we have invariance of the estimation problem under

g. .

8.7 Consider a scale model P = {py(x) = p1(x/6)/6 : 6 > 0}, where p; is a known
probability density on R™.

8.7.a Show that the model is invariant under the group G = {g : x — cx,c > 0}, and
identify the induced group G on the parameter space.

Firstly, if X ~ Py, what's the distribution of g.X = cX? Appealing to the known formula
for scale transformations, since X has pdf p;(x/0)/6, cX has pdf p1(x/cf)/c6. That is,
cX ~ P, suggesting g.(0) = cf. Or, in group form, G = {g. : 0 — ¢6,c > 0}.

For model invariance, we need to check that §.:® = ©. Abusing notation somewhat,
we’re checking that cR™ = R™, which is indeed true so long as ¢ > 0. "

8.7.b Show that the problem of estimating 6 is invariant under G for loss functions of
the form L(6,d) = f(d/0), where f attains its minimum value of zero at d = 6. Identify

the induced group G on the decision space.




For loss invariance, we want to find g, such that L(6,d) = L(g.60, §.d).

L(6,d) = L(g.0,§.4)
< f(d/0) = f(g.d/ch)

d _ gd
0 co

That is, one option for invariance of loss is to take §.d = cd. Depending on the function
f, it may not be the only option, but it’s certainly sufficient for invariance of loss. Thus,
the induced group we’ll consider on the decision space is G = {§. : d — cd,c > 0}. n

8.7.c Characterize the class of equivariant estimators and the UMREE in terms of f and
p1.

For equivariance, we require that §(g.(x)) = §.(d(x)). Thatis, d(cx) = ¢d(x). Using
our usual trick of considering ¢ = 1/x, we see that it is necessary and sufficient to have
02(X) = aX for some a € R.

As we've seen in the course notes, this particular G acts transitively on the parame-
ter space, so the risk of any equivariant estimator is constant across the parameter space.
Thus, to find the UMREE, it suffices to find the estimator which minimizes risk at a con-
venient 6, say 8§ = 1. Then

R(1,aX) = E[L(1,aX)]
f(aX)|6 = 1]

= E|
= [ fax)pa(x) d

If we let a* be the value of a which minimizes the above integral, then the UMREE is
given by a* X. n

8.7.d In the case f(r) = (1 —r)?, find the UMREE in terms of p;.

Plugging in for f above, we now want to find 2 which minimizes

/(1 —ax)?p; (x) dx.

Equivalently, we’re minimizing

/1p1(x) dx —2a / xpy(x) dx + a? / x2p1(x) dx.
This is a quadratic function in @ which is minimized by at

. _ Jxpi(x)dx _ E[X]6 =1]
[ x?py(x)dx  E[X%]0 =1]




Thus, the UMREE is given by

[ xp1(x) dx E[X|6 = 1]

X.
[ x2p1(x) dx T E[X2[0 = 1]

5{1*

8.7.e For the case f(r) = (1 — r)?, show that the risk of any equivariant estimator can
be expressed as a posterior risk under a (possibly improper) prior distribution. Show
that the UMREE can be viewed as a Bayes estimator under this prior.

What's the risk of an equivariant estimator?

R(6,aX) = R(1,aX)

—/ fau)py(u

- / f(udy/x)p1(u) du (where d, = ax)
0
0 —_—
- L f(dx/Q)Pl(x/G)e—zx df (change of variables : 6 = x/u)
= [ fd /0o (x/0) 3 6
which looks like a posterior expected loss if we can just find a posterior distribution of

the form X
7(0lx) = pi(x/6)

Recalling that 77(0]x) oy p(x|60)7(0), and that p(x|60) = p1(x/0) /0, itlooks like we should
be okay by taking a prior 71(6) & %, or equivalently, 77(6) o . We can then confirm by

computing )
(8]x) = <x|> <>

J p(x]0)7(0)

that this prior does indeed lead to the desired posterlor.

Then, under this improper prior, the Bayes estimator is the estimator for each value
of x which minimizes the posterior risk. But we’ve already shown that the posterior risk
is equivalent to the usual risk R(6,aX), so minimizing with respect to a will give us the
same estimator that we saw as the UMREE in part (d). "

8.8 Obtain the UMREE for the univariate location problem X ~ pg(x —0),0 € R, for
the group G = {f : x — x +¢,c € R} and absolute loss L(0,d) = |0 — d|.

From the lecture notes, we already have 3.0 = 6 + c and ¢.d = d + c for this problem.
Then an equivariant estimator should have 6(g.(x)) = §c(d(x)). Thatis, é(x +c¢) =



0(x) + c. With our usual tricks (taking ¢ = —x), we find that all equivariant estimators
must be of the form é,(x) = x 4 a for some a € R.

All that remains is to find the value of 2 which minimizes risk. Noting that G acts
transitively on ® = R, it’s enough to minimize R(0,J,) with respect to a. What is this
risk?

R(0,6,(X)) = B[L(0,04(X))|6 = O]
= E[|X +al||0 = 0]

:/|x+a|po(x) dx

:/_:—(x+a)i?o(x) dx+ [ (x+a)po(x) dx.

—a
Applying Leibniz’s rule and differentiating with respect to a gives

oo —a

0
po(x) dx,

5RO = [ o) dx— |

—a —

which is 0 when —a = median(py). (For thoroughness, you could also check that we're
finding a minimum and not a maximum here.) Thus, the UMREE is X — median(pp). =



