
Stat 581 Supplementary Exercises
These exercises are derived from a variety of sources.

1 Measure theory and probability

1. Let A be an algebra on X , closed under complements and finite unions. Show that A
is closed under finite intersections.

2. Let A be an algebra that contains the set (−∞, 1/n] for n ∈ {1, 2, . . .}. Is (−∞, 0] ∈ A
necessarily? If so, prove, otherwise, explain. Repeat the question for the case that A
is a σ-algebra.

3. Let C be the collection of open intervals on the real line, and let G be the collection

of open sets on the real line. Show that σ(G) = σ(C) (Hint: recall that σ(G) is the

smallest σ-algebra that contains the open sets).

4. Let C,G be the open intervals and open sets, and let D,F be the closed sets and closed

intervals. Show that σ(C) = σ(G) = σ(D) = σ(F ).

5. Let (X ,A, µ) be a measure space. Show that if {An} ⊂ A, An ⊂ An+1, then µ(An) ↑
µ(∪An).

6. Let (Ω,A, µ) be a measure space and let f ∈ (mA)+, i.e. f(ω) > 0 a.e. µ. Prove that∫
fdµ > 0.

7. Let A be a σ-algebra of Ω and let X : Ω→ R.

(a) Show that the collection B of sets B for which {ω : X(ω) ∈ B} ∈ A is a σ-algebra

on R.

(b) Now suppose {ω : X(ω) < x} ∈ A for every x ∈ R. Show that X is A-measurable.

i. First, show {ω : X(ω) ∈ (a, b)} ∈ A for all a < b.

ii. Second, show {ω : X(ω) ∈ G} ∈ A for open sets G ⊂ R.

iii. Third, show that B contains the Borel sets of R.

8. Let P be a probability measure on (R,B) with CDF F (x) = P ((−∞, x]). Using the

basic limit theorems on measures, show that F has a left limit ( ∃c : limε↑0 F (x+ε) = c)

and is continuous on the right (limε↓0 F (x+ ε) = F (x)).
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9. Let Z ∼ normal(0,1), Y ∼ binary(1/2) independent of Z, and X = Y Z. Let P be the

probability measure for X on (R,B). Find a measure µ that dominates P , and find

the density of P with respect to µ.

10. Let X1, . . . , Xn be i.i.d. “failure times” with pdf p(x|θ) = e−x/θ/θ on 0 < x < ∞.

Suppose we only see the censored variables Y1, . . . , Yn where Yi = min(Xi, t) and t is a

known censoring time.

(a) Calculate Pr(Y = t|θ) and the CDF F (y) for a single observation Y = min(X, t).

(b) Explain why the class of distributions PY = {Pr(Y ∈ ·|θ) : 0 < θ < ∞} for the

Yi’s is not dominated by Lebesgue measure µ. Define a new measure ν which is

a simple modification of µ that dominates PY .

(c) Find the corresponding Radon-Nikodym derivatives, i.e. the probability densities

p(y|θ) for Y , such that Pr(Y ∈ A|θ) =
∫
A
p(y|θ)ν(dθ).

11. Let (Ω,F ,Pr) be a probability space, G be a sub σ-algebra of F , X ∈ mF and

Z ∈ mG+, with Z being bounded. Show that ZE[X|G] is a version of E[ZX|G].

(a) Show the result holds when Z is an indicator function.

(b) Show the result holds when Z is a simple function.

(c) Show the result holds when Z ∈ mG+ and bounded.

(*) Show the result holds when E[|ZX|] <∞.

12. Let f(x, y) be the joint pdf of two continuous random variables X and Y , and let

f(x|y) be the conditional pdf of X “given Y = y” defined in the usual way. Show

formally that conditional probabilities can be obtained from f(x|y), i.e., that∫
A

f(x|Y )dx is a version of Pr(X ∈ A|σ(Y )) ≡ E[1A(X(ω))|Y (ω)].

13. Suppose X ∈ mF+ is a positive integrable random variable that is independent of a

sub-σ-algebra H. Show that E[X|H] = E[X]:

(a) Let X∗ be any σ(X)-measurable simple function. Show that E[X∗|H] = E[X∗]

and so
∫
H
X∗dP = E[X∗] Pr(H) for H ∈ H.

(b) Now let {Xn} be a sequence of σ(X)-measurable simple functions such that

Xn(ω) ↑ X(ω) ∀ω ∈ Ω. Use the appropriate limit theorem to show that E[X|H] =

E[X].
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(note that this result holds for general integrable random variables X).

14. Let X1, . . . , Xn be i.i.d. random variables with E[|X1|] < ∞. Obtain E[X1|X̄] and

confirm that it satisfies Kolmogorov’s conditions. One way to proceed is as follows:

(a) Show that for G ∈ σ(X̄), then X = (X1, . . . , Xn) ∈ G⇒ Xπ = (Xπ1 , . . . , Xπn) ∈
G for any permutation π (hint: first show this for sets of the form G = {X : X̄ ∈
(a, b)}.

(b) Show that E[X1|X̄] = · · · = E[Xn|X̄].

(c) Obtain E[X1|X̄].

2 Exponential families

1. The entropy of a random variable measures our inability to predict it. For a continuous

random variable with density p(y), the entropy is given by

−
∫

ln p(y)p(y)dy,

which is the negative of the “average height” of the density.

(a) Using the fact that lnx ≤ x− 1 ∀x ≥ 0 show that

−q ln q ≤ −q ln p+ (p− q) ∀p ≥ 0, q ≥ 0.

(b) Let pθ(y) = exp{t(y) ·θ−a(θ)} be a member of a continuous K-parameter regular

exponential family with θ ∈ Θ, the natural parameter space. Let q(y) be any other

probability density such that Eq[t(y)] = Eθ[t(y)] ≡
∫
t(y)pθ(y) dy. Show that the

entropy of pθ(y) is at least as great as that of q(y), i.e.

−
∫
q(y) ln q(y)dy ≤ −

∫
pθ(y) ln pθ(y)dy.

2. Let q(y) be a probability density, t(y) : Y → RK and ψ0 be the q-expectation of t(y),

i.e. ∫
t(y)q(y) dy = ψ0.

Suppose we are to sample data from q but model it as having come from a member

of the exponential family {pθ(y) = exp{t(y) · θ − a(θ} : θ ∈ Θ}, of which q is not

necessarily a member.
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(a) Let

l̃(θ) =

∫
ln pθ(y)q(y) dy

be the q-expectation of the log-likelihood. Obtain a set of K equations which

define the maximizer θ0 of l̃(θ) in terms of derivatives of a(θ) and ψ0. Also obtain

ψθ0 = Eθ0 [t(y)], the expectation of t(y) under pθ0(y), and compare it to ψ0.

(b) Let Y1, . . . , Yn ∼ i.i.d. q and let l(θ) = 1
n

∑
ln pθ(yi).

i. For a given θ, what will l(θ) converge to as n→∞?

ii. Let θ̂ be the maximizer of l(θ) and ψ̂ = Eθ̂[t(Y )]. What is ψ̂ converging to?

iii. What is θ̂ converging to ?

3. Consider the Kullback-Leibler loss:

L(θ, d) =

∫
log

p(x|θ)
p(x|d)

p(x|θ) µ(dx),

which measures the predictive accuracy of p(x|d) against the truth p(x|θ). Note that

L(θ, d) ≥ 0 unless p(x|θ) = p(x|d) a.e. µ.

(a) Obtain an expression for this loss function for estimating the natural parameter

in a (multiparameter) exponential family model in the natural parameter space,

and show that this loss function is convex.

(b) Obtain expressions for the loss function when the model is

i. Poisson with unknown mean;

ii. normal with unknown mean and variance;

iii. gamma with unknown shape and scale.

4. Show that if t(x) satisfies a linear constraint, then the exponential family generated

by t(x) is not identifiable.

5. Consider an exponential family P = {p(x|η) = exp(t(x) · η − A(η)) : η ∈ H}. Derive

expressions for E[t(x)|η] and Var[t(x)|η] as a function of the derivatives of A(η). Apply

this result to obtain E[t(x)|η] and Var[t(x)|η] for the following families:

(a) the normal(µ, σ2) family;

(b) the beta(a, b) family;

(c) the gamma(a, b) family, having mean a/b and variance a/b2.
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3 Decision problems

1. Suppose we want to estimate a parameter θ under a strictly convex loss function. Let

X be the data and let T = T (X) be a sufficient statistic that is not a 1-1 function of

X. Show that any estimator θ̂(X) that is a function of X and not of T is inadmissible.

(Hint: For any estimator δ(X), find an estimator based on T that dominates it.) In

your construction, where did you use the fact that T is sufficient, and not just any

function of X?

2. Based on X̄ ∼ N(θ, 1/n), suppose you need to decide among three actions: 1) stating

nothing, 2) stating θ < 0 or 3) stating θ > 0. Refer to these decisions numerically as

d = 0, d = −1 and d = 1, respectively, and let the loss be L(θ, d) = 1− d× sign(θ).

(a) Consider a decision rule of the form δ(x̄) = sign(x̄) × 1(|x̄| > c). Compute the

risk as a function of θ and n, and plot the risk function for several values of n.

(b) Consider a decision rule based on the z-test: If the test of θ = 0 is rejected at

level α = 0.05, then take d to be the sign of X̄. If the test doesn’t reject, then

take d = 0. Compute the risk function of this procedure as a function of n for

several values of n, compare to the risk function in (a) and comment.

4 Admissibility

1. Obtain an example of a model and loss function for which there is a θ0 such that

δ(X) = θ0 is not admissible.

2. Suppose we want to estimate θ under a strictly convex loss function. Let X be the

data and let T1, T2 be any two sufficient statistics such that T2 = g(T1) for some known

function g. Let C1, C2 be the classes of estimators that are functions of T1 and T2,

respectively.

(a) Show that both C1 and C2 are complete classes.

(b) Show that C2 ⊂ C1.

(c) Show that if δ ∈ C1 \ C2, then δ is inadmissible.

(d) Based on the result, what sort of sufficient statistic should be used to construct

an estimator?
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3. Let X ∼ binary(θ), θ ∈ {θl, θh} where 0 < θl < θh < 1. Consider estimation of θ with

0-1 loss.

(a) Characterize all non-randomized estimators of θ.

(b) Characterize all estimators of θ, in terms of the non-randomized estimators, and

draw the risk set.

(c) Characterize all admissible estimators.

(d) Identify the priors for which the corresponding Bayes estimators are admissible.

4. Let Xj ∼ N(θj, 1), j = 1, 2 and let L((θ1, θ2), d) = (θ1− d)2. Show that δ((X1, X2)) =

sign(X2) is an admissible procedure, and explain this counter-intuitive result.

5. Let X ∼ N(θ, 1) and L(θ, d) = (θ − d)2.

(a) Show formally that δ(X) = θ0 is an admissible estimator.

(b) Consider a randomized estimator of the form δ(X,U) = θ0×1(U < c)+θ1×1(U >

c), where U ∼ uniform(0,1). Decide whether or not δ is admissible, and prove

your result.

6. Recall we proved that if X ∼ normal(θ, 1) then X is admissible for θ under squared

error loss. Using this fact, show the following:

(a) If X ∼ normal (θ, σ2
0), σ2

0 known, then X is admissible for θ.

(b) If X ∼ normal (θ, σ2), σ2 unknown, then X is admissible for θ.

(c) If X1, . . . , Xn ∼ i.i.d. normal (θ, σ2
0), σ2

0 known, then X̄ is admissible for θ.

(d) If X1, . . . , Xn ∼ i.i.d. normal (θ, σ2), σ2 unknown, then X̄ is admissible for θ.

7. Let θ ∈ (0,∞) be an unknown parameter and X be a random variable such that

E[X|θ] = θ and Var[X|θ] = v(θ) where v(θ) is specified. Consider estimation of θ by

linear functions of the form

δa(X) = aX

for a ∈ (0, 1), with squared-error loss

L(δ(X), θ) = [δ(X)− θ]2.

Let A be the set of all such estimators, indexed by a ∈ (0, 1).
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(a) For v(θ) = θ2, calculate the risk function of δa, and find a value of a that makes

δa admissible within the class A (i.e., no member of A dominates it). Show that

this estimator dominates the unbiased estimator δ1(X) = X.

(b) For v(θ) = θ, prove that every member of A is admissible among the class A (i.e.,

no member dominates another), and that no member of A dominates δ1.

(c) Suppose v(θ) = θk where k is a positive integer. Find a closed form expression for

the Bayes estimator in the class A when θ has prior density p(θ) = e−θ, θ > 0.

8. Consider testing H0 : X ∼ P0 versus H1 : X ∼ P1, where P0 and P1 have densities

p0(x) and p1(x) with respect to a common dominating measure µ on X .

(a) Obtain the Bayes risk of a decision rule δ under the priors (π0, π1) = (1, 0) and

(π0, π1) = (0, 1).

(b) For each prior, obtain the form of all Bayes rules.

(c) Identify which Bayes rules under these two priors are admissible.

5 Bayesian estimation

1. Let X1, . . . , Xn ∼ i.i.d. normal(θ, σ2) where σ2 is known. Using the prior distribution

θ ∼ normal(θ0, σ
2/κ0),

(a) Obtain the Bayes estimator under squared error loss.

(b) Compute the risk function of the Bayes estimator.

(c) Suppose the true population mean is µ. For what values of θ0 and κ0 will the

Bayes estimator beat the sample mean, in terms of risk? Write your answer in

terms of (µ− θ0)2, κ0, σ2 and n.

2. Let X ∼ N(θ, 1), where θ ∈ R. Use a limiting Bayes argument to show that X is

admissible under squared error loss (Hint: Use LC thm 7.8.7 on page 415, and note

from the proof in class that it is sufficient for the condition to hold for all open sets of

the form Θ0 = {θ : |θ − θ0| < r|} for some θ0 ∈ Θ0 and r > 0) .

3. Let X = X1, . . . , Xn ∼ i.i.d. normal(θ, σ2). Consider the prior distribution π(θ, σ2)

where π(θ|σ2) is the normal(θ0, σ
2/κ0) density and π(σ2) is the inverse-gamma density,

so that 1/σ2 ∼ gamma(a = ν0/2, b = ν0σ
2
0/2) and 1/σ2 has expectation a/b = 1/σ2

0.

7



For this model and prior, obtain π(σ2|θ,X), π(θ|σ2,X), π(σ2|X) and π(θ|X). If you

prefer, you can write everything in terms of the precision τ 2 = 1/σ2 instead.

4. Let X1, . . . , Xn ∼ i.i.d. Poisson(θ), and let θ ∼ gamma(a, b) with expectation a/b.

Suppose you observe X1, . . . , Xn and want to predict the value of a future observation

from this population. Obtain the form of the predictive distribution p(X∗|x1, . . . , xn)

based on the Poisson model X1, . . . , Xn, X
∗ ∼ i.i.d. Poisson(θ) and the gamma(a, b)

prior distribution. Note that the predictive distribution does not depend on any un-

known parameters, meaning that you can actually use it to make predictions. Letting

µ be the true population mean, what does the predictive distribution converge to as

n→∞? Explain why this limiting distribution makes sense.

5. Let X ∼ multinomial(n,θ), where θ ∈ SK , the K-dimensional simplex, and X is a

K-vector of counts that sum to n.

(a) Find a class of conjugate prior distributions for {p(x|θ) : θ ∈ SK}, and obtain

the posterior expectation of E[θ|X].

(b) Obtain Jeffrey’s default prior distribution for θ. Is it a proper probability distri-

bution?

6. Let X1, X2, . . . be i.i.d. exponential(1) and suppose we observe T = X1 + · · · + XM ,

where M ≥ 1 is unknown. We want to estimate M under the loss function L(M, δ) =

(M−δ)2/M , i.e., if M is very large you can be off by more than if M is small. Suppose

our prior distribution for M has density π(m) = p(1− p)m−1.

(a) Is T UMRUE for M?

(b) Obtain the posterior distribution of M given T .

(c) Show that the posterior expected loss E[L(M, δ)|T ] for any estimator δ(t) can be

expressed as 1 +λ− 2δ+ (1− exp−λ)δ2/λ, where λ = (1− p)T . From this, obtain

the Bayes estimator.

(d) Compare the (non-Bayesian) risk functions of the unbiased estimator T and the

Bayes estimator.

7. A positive random variable X has density p(x|θ) where θ ∈ Θ = {0, 1} and

p(x|0) = e−x for x > 0

p(x|1) = e−(x−1)/2/2 for x > 1 .
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Suppose you have a prior distribution π for θ such that π(0) = γ = 1 − π(1), and

consider estimating θ with zero-one loss. Recall under this loss, a posterior mode is a

Bayes estimator.

(a) Find the posterior distribution π(θ|x) and the Bayes estimator when 0 < γ < 1.

(b) Find the Bayes estimator if γ = 1.

(c) Describe all Bayes estimators if γ = 0. Thinking intuitively, find the Bayes

estimator in this set that has minimum (non-Bayes) risk. You don’t have to

show that this estimator has minimum risk, but you do need to identify the right

estimator. Is this estimator Bayes with respect to another prior on θ, i.e. another

value of γ? Is it admissible?

8. Consider Bayesian inference using a posterior density π(θ|x):

(a) Find the form of the Bayes estimator under absolute loss L(θ, d) = |θ − d|, and

prove your result.

(b) Find the form of the Bayes estimator under zero-one loss L(θ, d) = 1(θ 6= d) for

the case that π(θ|x) is discrete.

9. Let X ∼ Np(θ, I). Try using Blyth’s method with normal priors to show admissibility

of X as an estimator of θ under squared error loss. What goes wrong?

10. Based on X̄ ∼ N(θ, 1/n), suppose you need to decide among three actions: 1) stating

nothing, 2) stating θ < 0 or 3) stating θ > 0. Refer to these decisions numerically as

d = 0, d = −1 and d = 1, respectively, and let the loss be L(θ, d) = 1 − d × sign(θ).

Find the Bayes rule under a N(0, τ 2) prior for θ. Plot the (non-Bayes) risk function

of the Bayes procedure, and compare it to the risk function of the “z-test” procedure

detailed in Exercise 3.2.

11. Let X ∼ Pη for some unknown value of η, where Pη has density p(x|η) = exp(η · x−
A(η))h(x). Show that the Bayes estimator under prior π(η) and sum of squared error

loss is given by

η̂j = ∂
∂xj

log pπ(x)
h(x)

.
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6 Shrinkage estimators

1. Let X ∼ p(x|θ) for some θ ∈ Θ, and define µ = µ(θ) = E[X|θ] ∈ Rp. Show that if

M = µ(Θ) is convex and µ0 6∈ M̄ , then wµ0+(1−w)X is not admissible for estimating

µ under squared error loss.

2. Derive the version of Stein’s lemma for multiparameter exponential families given by

LC lemma 1.5.15 using Fubini’s theorem.

3. Note that the risk advantage of δJS over X is largest when ||θ||2 is small, i.e. θ ≈
0. Suppose instead you thought that θ ≈ θ0. Derive an alternative estimator that

performs well when θ ≈ θ0, in that it beats δJS at θ = θ0 and also dominates X

everywhere. Show that your estimator meets these latter two criteria.

4. Let X ∼ Np(θ, I). Note that X can be written as X = Sθ + R where R · θ = 0.

Obtain the joint distribution of S and R.

5. Consider the hierarchical model where X ∼ Np(θ, I) and θ ∼ Np(0, τ
2I), and only X

is observed.

(a) For the case that τ 2 is known, obtain an estimator δ of θ that minimizes the

expected squared error

E[(θ − δ)2] =

∫
(θ − δ(x))2p(x|θ)p(θ|τ 2) dxdθ.

(b) For the case that τ 2 is unknown, find an unbiased estimator of τ 2/(τ 2 + 1) based

on X.

6. For estimating θ based on X ∼ Np(θ, I), consider the class of adaptive shrinkage

estimators of the form δc(x) = (1− c
||x||2 )x.

(a) Under squared error loss, find the simplest expression you can for the risk function

of δc.

(b) Now suppose we are in a hierarchical situation where θ ∼ Np(0, τ
2I). Obtain a

closed-form expression for the risk R(τ 2, δc) of δc, where now risk means the loss

averaged over X and θ (this would be the Bayes risk, if the distribution for θ

were thought of as a prior). Find the value of c̃ of c that minimizes R(τ 2, δc).
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(c) For small, medium and large values of p, plot R(τ 2, δc̃) as a function of τ 2, along

with R(τ 2, τ2

1+τ2
X). Describe and interpret what you see.

7. For X ∼ Np(θ, I) show that E[||X||−2|θ] ≤ E[||X||−2|0].

8. Let X ∼ Np(θ, σ
2I) and S/σ2 ∼ χ2

n be independent. For the case that σ2 is unknown,

consider the class of estimators of the form δc(x, s) = (1− cs
x·x)x.

(a) Compute the risk function of δc. Your final answer will depend on E[(X ·X)−1]

but no other uncalculated expectations.

(b) Find the value of c̃ of c that minimizes the risk function.

(c) Compare the risk function of δJS in the case σ2 = 1 is known to the risk of δc̃.

How much is lost by not knowing σ2?

7 Minimax estimation

1. Let X ∼ binomial(n, θ). Obtain the minimax estimator of θ under loss L(θ, d) =

(θ− d)2/[θ(1− θ)]. Compute the risk of this estimator, and compare it to a plot of the

risk function of the minimax estimator under squared error loss. Conversely, plot the

risk function of this estimator under squared error loss, and compare it to the minimax

estimator in that case.

2. An estimator δ is said to be ε-Bayes w.r.t. a prior π if R(π, δ) ≤ R(π, δπ) + ε. An

estimator is said to be extended Bayes if for each ε > 0, there is a prior πε for which it

is ε-Bayes. Show that if δ is constant risk and is extended Bayes, then it is minimax

(this result is similar to LC Theorem 5.1.12)

3. Find a minimax estimator of θ = E[X] in each of the following scenarios, showing all

work that leads to your result.

(a) X ∼ N(θ, σ2), σ2 unknown, with loss L(θ, d) = (θ − d)2/σ2.

(b) X ∼ Poisson(θ) under loss L(θ, d) = (θ − d)2/θ.

(c) X ∼ binomial(n, θ) under loss L(θ, d) = (θ − d)2/[θ(1− θ)].

Now generalize these results to the case that X has density p(x|ψ) = h(x) exp(ψx −
A(ψ)) for some unknown parameter ψ ∈ Ψ, and where θ = E[X|ψ]. Specify any

conditions on {p(x|a) : ψ ∈ Ψ} you need.
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4. Let X1, . . . , Xp be independent random variables with with E[Xi] = µi and Var[Xi] =

σ2
i < M , for some known M < ∞. Determine whether or not X̄ is minimax for

estimating µ̄ =
∑
µi/p under squared error loss.

5. The following to scenarios indicate some limitations of the minimax criteria:

(a) Let P = {Pθ : θ ∈ [0, 1]} be some model, and consider estimation of θ based on

the loss L(θ, d) = (1−θ)d+θ(1−d) and a sample X ∼ Pθ. Show that δ(x) = 1/2

is minimax.

(b) Let X ∼ binomial(n, θ) and consider estimating θ under the loss L(θ, d) =

min((θ − d)2/θ2, 2). Show that δ(x) = 0 is the unique minimax estimator.

6. Consider estimating θ = µy−µx under squared error loss based on X1, . . . , Xm ∼ i.i.d.

N(µx, σ
2
x) and Y1, . . . , Yn ∼ i.i.d. N(µy, σ

2
y).

(a) Find a minimax estimator for θ in the case that σ2
x and σ2

y are known.

(b) Find a minimax estimator for θ in the case that σ2
x and σ2

y are known to be less

some number C.

(c) Do you think the minimax estimators from parts (a) and (b) are unique minimax?

Why or why not?

8 Equivariance

1. Show that if {Pθ : θ ∈ Θ} is invariant under a group G, then the induced transformation

classes Ḡ and G̃ are also groups of bijections.

2. Let X ∼ N(θ, 1), θ ∈ R, and and consider estimation of the sign of θ under the loss

L(θ, d) =


0 if d = s(θ)

1 if d = 0

c if d = −s(θ),

where s() is the sign function.

(a) Show the estimation problem is invariant under the transformation g : x → −x.

Characterize the class of equivariant estimators in terms of |x| and s(x).
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(b) Obtain the Bayes estimator under the prior θ ∼ N(0, τ 2) and determine whether

or not it is equivariant. Describe the estimator as τ 2 →∞.

3. Let P = {p(x|θ) = e−x/θ/θ : x > 0, θ ∈ Θ = R+}. Consider estimation of θ under the

loss L(θ, d) = (1− d/θ)2 based on one observation X ∼ Pθ, θ ∈ Θ.

(a) Characterize the class of estimators equivariant under the group of functions G =

{g : x→ cx, c > 0}.

(b) Calculate the risk function of each such estimator.

(c) Identify the equivariant estimator that uniformly minimizes the risk.

4. Let P be the class of all probability distributions on (R,B(R)) with continuous CDFs.

Let X1, . . . , Xn be an i.i.d. sample from P ∈ P , and consider estimation of the me-

dian via the loss L(P, d) = (P (−∞, d] − 1/2))2. Show that the estimation prob-

lem is invariant under the group G of transformations of the form gh(x1, . . . , xn) =

(h(x1), . . . , h(xn)), where h is a continuous strictly increasing function on R. Identify

the induced transformations Ḡ and G̃.

5. Let {Θ, L,D} be an invariant estimation problem where the induced group acts tran-

sitively and commutatively on Θ, and let δ0 be an equivariant estimator. Prove that δ

is equivariant iff

δ(x) = g̃xδ0(x)

for some invariant function g̃x : X → G̃, i.e. g̃gx = g̃x ∀g ∈ G, x ∈ X .

6. Obtain the UMRE estimator for the vector location problem X ∼ p0(x−θ) under the

group G = {g : x→ x+ a, a ∈ Rp} under squared error loss.

7. Consider a scale model P = {pθ(x) = p1(x/θ)/θ : θ > 0}, where p1 is a known

probability density on R+.

(a) Show that the model is invariant under the group G = {g : x → cx, c > 0}, and

identify the induced group Ḡ on the parameter space.

(b) Show that the problem of estimating θ is invariant under G for loss functions of

the form L(θ, d) = f(d/θ), where f attains its minimum value of zero at d = θ.

Identify the induced group G̃ on the decision space.

(c) Characterize the class of equivariant estimators and the UMREE in terms of f

and p1.
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(d) In the case f(r) = (1− r)2, find the UMREE in terms of p1.

(e) For the case f(r) = (1− r)2, show that the risk of any equivariant estimator can

be expressed as a posterior risk under a (possibly improper) prior distribution.

Show that the UMREE can be viewed as a Bayes estimator under this prior.

8. Obtain the UMREE for the univariate location problem X ∼ p0(x− θ), θ ∈ R, for the

group G = {g : x→ x+ c, c ∈ R} and absolute loss L(θ, d) = |θ − d|.
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