
STAT 581
Homework #1

10/7/2013

Solutions for Hoff Exercises 3.1, 3.2, 4.2, and 4.4

3.1 Suppose we want to estimate a parameter θ under a strictly convex loss function.
Let X be the data and let T = T(X) be a sufficient statistic that is not a 1-1 function of X.
Show that any estimator θ̂(X) that is a function of X and not T is inadmissible. In your
construction, where did you use the fact that T is sufficient, and not just any function of
X?

Let θ̂ be an estimator that is a function of X and not T. Consider the alternative estimator
δ = EX|T[θ̂(X)|T]. By sufficiency of T, the distribution of X|T does not depend on θ, so δ
is a function of T but not of θ. Then

R(θ, θ̂) = EX[L(θ, θ̂(X))]

= ET[EX|T[L(θ, θ̂(X))|T]]
> ET[L(θ, EX|T[θ̂(X)|T])] by Jensen’s Inequality

= ET[L(θ, δ(T(X)))]

= EX[L(θ, δ(T(X)))]

= R(θ, δ).

Thus, since δ dominates θ̂, we have that θ̂ is inadmissible. �

3.2 Based on X̄ ∼ N(θ, 1/n), suppose you need to decide among three actions: 1)
stating nothing, 2) stating θ < 0, or 3) stating θ > 0. Refer to these decisions numerically
as d = 0, d = −1, and d = 1, respectively, and let the loss be L(θ, d) = 1− d · sign(θ).
3.2.a Consider a decision rule of the form δ(x̄) = sign(x̄) · 1(|x̄| > c). Compute the risk
as a function of θ and n, and plot the risk function for several values of n.



For convenience, note that X̄ ∼ N(θ, 1/n)⇒
√

n(X̄− θ) ∼ N(0, 1). Now,

R(θ, δ) = E[L(θ, δ)]

= E[1− δsign(θ)]
= E[I(δ = 1)(1− sign(θ)) + I(δ = 0) · 1 + I(δ = −1)(1 + sign(θ))]
= E[I(X̄ > c)(1− sign(θ)) + I(−c ≤ X̄ ≤ c) · 1 + I(X̄ < −c)(1 + sign(θ))]
= Pr(X̄ > c)(1− sign(θ)) + Pr(−c ≤ X̄ ≤ c) · 1 + Pr(X̄ < c)(1 + sign(θ))

= Pr(
√

n(X̄− θ) >
√

n(c− θ))(1− sign(θ))

+ Pr(
√

n(−c− θ) ≤
√

n(X̄− θ) ≤
√

n(c− θ)) · 1
+ Pr(

√
n(X̄− θ) <

√
n(−c− θ))(1 + sign(θ))

= (1−Φ(
√

n(c− θ)))(1− sign(θ))

+ Φ(
√

n(c− θ))−Φ(
√

n(−c− θ))

+ Φ(
√

n(−c− θ))(1 + sign(θ)),

where Φ is the standard normal CDF.
Plots of this function are below. �
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Figure 1: Plots of the risk function for c = 0.5 and n ∈ {5, 10, 100, 1000}.
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Figure 2: Plots of the risk function for c = 1 and n ∈ {5, 10, 100, 1000}.



3.2.b Consider a decision rule based on the z-test: If the test of θ = 0 is rejected at level
α = 0.05, then take d to be the sign of X̄. If the test doesn’t reject, then take d = 0.
Compute the risk function of this procedure as a function of n for several values of n,
compare to the risk function in (a) and comment.

For each fixed value of n, this decision rule just reduces to a decision rule based on a
cutoff value of c = 1.96/

√
n. We know the risk function for such a decision rule from part

a, so our new risk function is just

R(θ, δ) = (1−Φ(
√

n(c/
√

n− θ)))(1− sign(θ))

+ Φ(
√

n(c/
√

n− θ))−Φ(
√

n(−c/
√

n− θ))

+ Φ(
√

n(−c/
√

n− θ))(1 + sign(θ)).

We can plot this to compare against the risk function from part (a):
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Figure 3: Plots of the risk function for the decision rule based on the z-test with n ∈
{5, 10, 100, 1000}.

For this decision rule, increasing n yields a decision rule with uniformly lower risk
(except at θ = 0). This is different than the decision rule from part (a) in which we saw
that increasing n was detrimental in the range of θ values given by (−c, c).

�

4.2 Suppose we want to estimate θ under a strictly convex loss function. Let X be
the data and let T1, T2 be any two sufficient statistics such that T2 = g(T1) for some
known function g. Let C1, C2 be the classes of estimators that are functions of T1 and T2,
respectively.
4.2.a Show that both C1 and C2 are complete classes.



Let δ be an arbitrary estimator in Cc
1. To show that C1 is complete, it is enough to show

that δ is inadmissible. Since δ /∈ C1, δ is not a function of T1. Thus, by the sufficiency of
T1 and Exercise 3.1, δ is inadmissible, as desired. An analogous argument shows that C2
is complete. �

4.2.b Show that C2 ⊂ C1.

We need only show that δ ∈ C2 ⇒ δ ∈ C1. Take an arbitrary δ ∈ C2. Our goal is to show
that δ is a function of T1.

By definition, since δ is in C2, there is an h such that δ(X) = h(T2(X)) = h(g(T1(X))).
Thus, letting f ≡ h ◦ g, we have δ = h(T1(X)), so δ ∈ C1, as desired. �

4.2.c Show that if δ ∈ C1 \ C2, then δ is inadmissible.

We already know that both C1 and C2 are complete classes. If we have δ ∈ C1 \ C2, then
we must have δ /∈ C2, and since δ is not in the complete class C2, it must be inadmissible.

�

4.2.d Based on the result, what sort of sufficient statistic should be used to construct an
estimator?

Given two statistics on which to base complete classes, we’d prefer to look at the one
which leads to the smaller complete class. That is, we’d like to look at a sufficient statis-
tic which is a function of other sufficient statistics, if possible. By definition, a minimal
sufficient statistic is a function of all other sufficient statistics, so we should construct our
estimator based on a minimal sufficient statistic whenever possible. �

4.4 Let Xj ∼ N(θj, 1), j = 1, 2, and let L((θ1, θ2), d) = (θ1 − d)2. Show that
δ((X1, X2)) = sign(X2) is an admissible procedure, and explain this counterintuitive
result.

Assume δ′ is another estimator which is at least as good as δ. If we can show that δ′ = δ
a.e., then it must be the case that δ is not dominatable and therefore δ is admissible.

First, consider the risk of δ.

R((θ1, θ2), δ) =
∫ ∞

−∞

∫ ∞

−∞
(θ1 − sign(x2))

2p(x1|θ1)p(x2|θ2) dx1 dx2

=
∫ ∞

−∞
(θ1 − sign(x2))

2p(x2|θ2) dx2,

where p(x|µ) is the density function of the N(µ, 1) distribution.



Similarly, for δ′, we have the risk function

R((θ1, θ2), δ′) =
∫ ∞

−∞

∫ ∞

−∞
(θ1 − δ′(x1, x2))

2p(x1|θ1)p(x2|θ2) dx1 dx2

=
∫ ∞

−∞
h(x2|θ1)p(x2|θ2) dx2,

where h(x2|θ1) is defined to be
∫ ∞
−∞(θ1 − δ′(x1, x2))

2p(x1|θ1) dx1.
Now, since δ′ is at least as good as δ, we have R((θ1, θ2), δ′) ≤ R((θ1, θ2), δ) for all

values of θ1 and θ2. Equivalently,

R((θ1, θ2), δ′)

R((θ1, θ2), δ)
≤ 1.

Consider what happens to the risk ratio at θ1 = 1 as we let θ2 grow without bound. At
θ1 = 1, we have

R((θ1, θ2), δ′)

R((θ1, θ2), δ)
=

∫ ∞
−∞ h(x2|1)p(x2|θ2) dx2∫ ∞

−∞(1− sign(x2))2p(x2|θ2) dx2

=

∫ ∞
−∞ h(x2|1)p(x2|θ2) dx2∫ 0
−∞ 4 · p(x2|θ2) dx2

≥
∫ ∞

0 h(x2|1)p(x2|θ2) dx2∫ 0
−∞ 4 · p(x2|θ2) dx2

.

By an exponential family property, this ratio grows without bound as θ2 goes to infin-
ity unless h(x2|1) = 0 almost everywhere on x2 > 0. If the ratio grows without bound,
we have a contradiction with the inequality

R((θ1, θ2), δ′)

R((θ1, θ2), δ)
≤ 1,

so it must be the case that h(x2|1) = 0 almost everywhere on x2 > 0. By the definition of
h, this requires (1− δ′(x1, x2))

2p(x1|θ1) to be 1 a.e. on x2 > 0, or equivalently, δ′ = 1 a.e.
on x2 > 0.

A similar argument considering θ1 = −1 and letting θ2 go to −∞ shows that δ′ = −1
a.e. on x2 < 0. Together, this yields δ′ = δ a.e., which shows that δ is admissible.

Although δ is an absurd estimator for most parts of the (θ1, θ2) parameter space, it
performs exceptionally well when θ1 = 1 and θ2 � 0 and also when θ1 = −1 and θ2 �
0—well enough that the only estimator which has any chance of competing is forced to
be 1 when x2 > 0 and -1 when x2 < 0. �


