Solutions for Exercises 4.1 and 4.3

4.1: Obtain an example of a model and loss function for which there is a θ_0 such that $\delta(X) = \theta_0$ is not admissibile. Many possibilities exist, the most straightforward being those where the distributions in the model $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ do not have common support. For example, suppose there are θ_0 and θ_1 in Θ , where the supports S_{θ_0} and S_{θ_1} of P_{θ_0} and P_{θ_1} have no overlap, so that $P_{\theta_1}(S_{\theta_0}) = 0 = P_{\theta_0}(S_{\theta_1})$. Then the estimator $\delta'(x) = \theta_0 \mathbf{1}(x \in S_{\theta_0}) + \theta_1 \mathbf{1}(x \in S_{\theta_1})$ dominates the constant estimator $\delta(x) = \theta_0$.

4.3:

(a) The four non-randomized estimators are

$$\delta_{ll}(x) = \theta_l$$

$$\delta_{lh}(x) = (1 - x)\theta_l + x\theta_h$$

$$\delta_{hl}(x) = x\theta_h + (1 - x)\theta_l$$

$$\delta_{hh}(x) = \theta_h$$

(b) The randomized estimators can be expressed as

$$\delta_r(x,U) = \begin{cases} \delta_{ll}(x) & \text{if } 0 < U < a \\ \delta_{lh}(x) & \text{if } a < U < b \\ \delta_{hl}(x) & \text{if } b < U < c \\ \delta_{hh}(x) & \text{if } c < U < 1 \end{cases}$$

where $U \sim \text{uniform}(0,1)$. The risk set has a diamond shape, with the risks of the non-randomized estimators as vertices. These risks are (0,1) for δ_{ll} , $(1-\theta_l,\theta_h)$ for δ_{hl} , (1,0) for δ_{hh} and $(\theta_l, 1-\theta_h)$ for δ_{lh} .

- (c) The admissibile estimators are on the "southwest" boundary of the risk set. This inclues δ_{ll} , δ_{lh} and δ_{hh} , and randomized estimators that are combinations of δ_{lh} and one of δ_{ll} and δ_{hh} .
- (d) (a) If $\pi(\theta_l) > \theta_h/(\theta_l + \theta_h)$, then δ_{ll} is Bayes.
 - (b) If $\pi(\theta_l) = \theta_h / (\theta_l + \theta_h)$, then randomized combinations of δ_{ll} and δ_{lh} are Bayes.
 - (c) If $\theta_h/(\theta_l + \theta_h) < \pi(\theta_l) < (1 \theta_h)/(2 (\theta_l + \theta_h))$, then δ_{lh} is Bayes.

- (d) If $\pi(\theta_l) = (1 \theta_h)/(2 (\theta_l + \theta_h))$, then randomized combinations of δ_{hh} and δ_{lh} are Bayes.
- (e) If $\pi(\theta_l) < (1 \theta_h)/(2 (\theta_l + \theta_h))$, then δ_{hh} is Bayes.