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1 Motivation

Motivating example:

X1, . . . , Xn ∼ i.i.d. N(θ, 1)

X̄ ∼ N(θ, 1/n)

L(θ, d) = (θ − d)2 ⇒ R(θ, X̄) = E[(θ − X̄)2|θ] = 1/n so the risk of X̄ is constant in

θ.

What if we suspect that θ ≈ 0?
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Regularized estimator:

δa(X) = aX̄, for some a ∈ (0, 1).

R(θ, δa) = E[(aX̄ − θ)2] = E[(aX̄ − aθ − (1− a)θ)2]

= E[(a(X̄ − θ)2 − 2a(X̄ − θ)(1− a)θ + (1− a)2θ2]

= a2/n+ (1− a)2θ2

Where does δa beat X̄?

Some algebra shows that δa beats X̄ when

θ ∈ ±
√

1

n

1 + a

1− a
.

Draw the picture of the risk functions.

• The range of
√

1
n

1+a
1−a as a function of a is (1/

√
n,∞).

• If we are confident that |θ| <
√

1
n

1+a
1−a , we might want to use δa instead of X̄.

• δa(X) = aX̄ doesn’t beat X̄ everywhere, just where we think θ is likely to be.

• δa(X) minimizes a weighted average of the risk function, the Bayes risk, under

a N(0, τ 2) prior distribution on θ, where τ 2 = σ2

n
a

1−a .
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2 Bayes rules

2.1 Defining Bayes estimators

Suppose we have

• a model P = {Pθ : θ ∈ Θ};

• a loss function L(θ, d);

• a probability measure π on Θ.

Definition (Bayes risk). The Bayes risk of an estimator δ under a prior distribution

π is

R(π, δ) =

∫ ∫
L(θ, δ(x))Pθ(dx)π(dθ)

Note that unlike the real-valued risk function R(θ, δ), R(π, δ) is a positive real scalar.

Definition (Bayes estimator). A Bayes estimator is a minimizer of the Bayes risk.

The minimizer is specific to the prior π being used. We will often write a minimizer

of R(π, δ) in δ as δπ, so that

R(π, δπ) ≤ R(π, δ) ∀δ ∈ D.

Notes:

1. Bayes estimators do not always exist.

2. Bayes estimators are not always unique.

3. Existence and uniqueness are most easily shown on a case by case basis.

Nevertheless, we will obtain a few general results on existence and uniqueness of

Bayes estimators.
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2.2 Finding Bayes estimators

Bayesian calculations are most easily done in terms of densities instead of distribu-

tions. With this in mind, let {Pθ : θ ∈ Θ} be a set of distributions dominated by a

common measure µ on X , σ(X ), so

Pθ(A) =

∫
A

p(x|θ)µ(dx) ∀θ ∈ Θ, A ∈ σ(X ).

We will sometimes refer to p(x|θ) as a “sampling density” for X. As a function of θ

and with fixed x, L(θ : x) = p(x|θ) is often referred to as the likelihood function.

Let ν be a measure that dominates the prior measure π, so that

π(B) =

∫
B

π(θ)ν(dθ) ∀B ∈ σ(Θ).

Note that we are overloading our notation, so that π denotes both a probability

measure and density on Θ. How it is being used should be clear from the context:

π(θ) is the prior density at θ, π(B) is the probability of the set B,
∫
fπ(dθ) is the

integral of f with respect to π.

The model and prior together define a joint probability distribution on (X × Θ)

defined by

Pr({X, θ} ∈ A×B) =

∫
B

∫
A

p(x|θ)π(θ)µ(dx)ν(dθ).

From this distribution we can derive other distributions that are useful for Bayesian

calculations. One of these is the marginal distribution of X, also known as the prior

predictive distribution:

Definition. (Prior predictive density and distribution) The prior predictive density

and distribution of X are

pπ(x) =

∫
p(x|θ)π(dθ)

Pπ(A) =

∫
Θ

∫
A

Pθ(dx)π(dθ) , ∀A ∈ σ(X )

The former is w.r.t. the dominating measure on {Pθ : θ ∈ Θ}.
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Interpretation:

• If π describes where you think θ is, pπ(x) describes where you think your data

will be.

• Pπ is a predictive distribution - it doesn’t depend on any unknown parameters.

A distribution that depends on unknown parameters can’t make predictions.

Definition 1. (Posterior density and distribution) The posterior density and distri-

bution of θ given {X = x} is

π(θ|x) = p(x|θ)π(θ)/pπ(x)

π(B|x) =

∫
A

π(θ|x)ν(dθ)

Note that we again are overloading notation: π(·|x) may refer to a density or a

measure, depending on the context. If you are worried about the existence of the

class of conditional distributions {π(·|x) : x ∈ X}, see Hoffmann-Jørgensen [1971].

Interpretation:

• π(θ) is where you think θ is.

• Pθ is where you think the data will be, if θ is true.

• Pπ is where you think the data will be.

• π(θ|x) is where you think θ is, having seen X = x.

2.3 Minimizing posterior and Bayes risk

Having seen the data, observing {X = x}, what should your decision be?
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Definition (Posterior risk). Under prior π and having observed {X = x}, the pos-

terior risk of decision d is

R(π, d|x) = E[L(θ, d)|X = x]

=

∫
L(θ, d)π(dθ|x)

Since π(θ|x) represents where we think θ is after seeing {X = x}, R(π, d|x) is our

expected loss in taking decision d, where expectation/integral is over our posterior

uncertainty in the value of θ.

Intuitively, having observed {X = x} the optimal thing to do would be to minimize

the posterior risk:

dx = arg min
d∈D

R(π, d|x)

This would be the optimal decision, were we to see {X = x}. We can construct an

estimator based on this optimal decision:

δπ(x) = dx , ∀x ∈ X .

It turns out that δπ(x) is a Bayes estimator, i.e. it minimizes the Bayes risk.

Theorem 1. If δπ(x) minimizes R(π, d|x) in d for x a.s. Pπ, then δπ(x) minimizes

R(π, δ) and so is a Bayes estimator.

Proof. Since L is nonnegative, by Tonelli’s theorem we can write the risk as

R(π, δ) =

∫
X

∫
Θ

L(θ, δ)p(x|θ)π(θ)µ(dx)ν(dθ)

=

∫
Θ

∫
X
L(θ, δ)π(θ|x)pπ(x)ν(dθ)µ(dx)

=

∫
X
R(π, δ|x)pπ(x)µ(dx) =

∫
X
R(π, δ|x)Pπ(dx).

Therefore, if δπ(x) minimizes R(π, d|x) for x a.s. Pπ, and δ is any other estimator,

then

R(π, δ) =

∫
X
R(π, δ|x)pπ(x)µ(dx) ≥

∫
X
R(π, δπ|x)pπ(x)µ(dx) = R(π, δπ)

6



Peter Hoff Bayes estimators October 23, 2013

The minimizer of the posterior risk is the Bayes estimate or Bayes decision. The

theorem says that the estimator or decision rule obtained by minimizing the posterior

risk for each x ∈ X is also a Bayes estimator or rule, i.e. a minimizer of the Bayes

risk.

This theorem by itself does not necessarily help us with proving admissibility: If

δπ(x) as the unique minimizer of the posterior risk for each x, the theorem just

tells us that δπ is Bayes, not that it is unique Bayes. What we need to know is

whether or not all Bayes estimators are minimizers of the posterior risk. The answer

is (typically) yes:

Theorem 2. Suppose δπ(x) minimizes R(π, δ) and R(π, δπ) <∞. Then R(π, δπ(x)|x) =

infd∈D R(π, d|x) a.s. Pπ.

Proof. By Theorem 3 of Brown and Purves [1973], for every ε > 0 there exists a

decision rule δε(x) such that

R(π, δε(x)|x) < ε+ inf
d∈D

R(π, d|x).

Let A = {x : R(π, δπ(x)|x) > R(π, δε(x)|x)}, and define the estimator δ0(x) as

δ0(x) =

{
δε(x) if x ∈ A
δπ(x) if x ∈ Ac

Since δπ is Bayes with finite Bayes risk, we can write

0 ≤ R(π, δ0)−R(π, δπ)

=

∫
[R(π, δ0(x)|x)−R(π, δπ(x)|x)]Pπ(dx)

=

∫
A

[R(π, δε(x)|x)−R(π, δπ(x)|x)]Pπ(dx)

Since the last integrand is negative on A, we must have Pπ(A) = 0. Therefore

R(π, δπ|x) ≤ R(π, δε|x)

< ε+ inf
d∈D

R(π, d|x) a.s. Pπ.

Since the last line holds for all ε > 0, we have the result.
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To summarize the last two theorems: If there exists an estimator with finite Bayes

risk, then an estimator is Bayes if and only if it minimizes the posterior risk a.s. Pπ.

If there is no estimator with finite Bayes risk, then any estimator is Bayes in that

it “minimizes” the Bayes risk, even those that do not minimize the posterior risk.

For this reason, some authors define the Bayes estimator as the minimizer of the

posterior risk instead of as the minimizer of the Bayes risk.

Interpretation: Assuming an estimator with finite Bayes risk exists, the fact that δπ is

Bayes if and only if it minimizes the posterior risk unites two distinct interpretations

of Bayesian inference, what I will call the “subjective” and “pragmatic” schools of

Bayesian inference.

Subjective Bayesian:

• π(θ) represents my pre-experimental information about θ.

• π(θ|x) represents my post-experimental information.

• Observing {X = x}, I should minimize posterior expected loss R(π, d|x).

* My decision is dx = arg mind∈D R(π, d|x).

Pragmatic Bayesian:

• π(θ) puts higher weight on θ-values that I think are likely than unlikely.

• θ-values for which π(θ) is large contribute more to the Bayes risk R(π, δ).

• Minimizing Bayes risk minimizes the risk where I think θ might be.

* My decision rule is δ = arg minδ∈D R(π, δ).

The subjective Bayesian should minimize R(π, d|x) for each x.

The pragmatic Bayesian should minimize R(π, δ).

According to the theorem, these correspond to the same procedure.
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This correspondence is convenient and philosophically pleasing. However, the sub-

jective Bayesian viewpoint leads to a much more complete inferential framework. To

the subjective Bayesian, π(θ|x) represents the information about θ having observed

X = x, from which other procedures can be derived:

• Confidence regions: Find a set B ⊂ Θ : π(B|x) = 1− α.

• Prediction: Forecast future data or experiments with the posterior predictive

distribution:

Pr(X̃ ∈ A|x) =

∫
A

∫
Θ

p(dx̃|θ)π(dθ|x).

• Imputation, model selection, hypothesis testing and more.

2.4 Examples

Example (squared error loss):

L(θ, d) = (θ − d)2

E[L(θ, d)|x] =

∫
(θ − d)2π(dθ|x)

Suppose Var[θ|x] <∞. Then

E[L(θ, d)|x] = E[θ2|x]− 2E[θd|x] + d2.

Taking derivatives, the minimum in d is attained at dx =
∫
θπ(dθ|x) = E[θ|x].

If δπ(x) = E[θ|x] a.s. Pπ, then δπ(x) is a Bayes estimator.

If Var[θ|x] <∞ a.s. Pπ, then δπ(x) is the unique a.s. Pπ Bayes estimator.

Example (binomial model, beta prior):

X|θ ∼ bin(n, θ) {p(x|θ) = dbinom(x, n, θ)}
θ ∼ beta(a, b) {π(θ) = dbeta(θ, a, b)}
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π(θ|x) =
p(x|θ)π(θ)∫
p(x|θ)π(dθ)

=
p(x|θ)π(θ)

p(x)

∝θ
(
n

x

)
θx(1− θ)n−x Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1

∝θ θa+x−1(1− θ)b+n−x−1 ∝θ dbeta(θ, a+ x, b+ n− x).

The Bayes estimate of θ under squared error loss is

δab(x) = E[θ|X = x] =
a+ x

a+ b+ n

= (
a+ b

a+ b+ n
)

a

a+ b
+ (

n

a+ b+ n
)
x

n

Interpretation:

• a ≈ prior number of 1’s, b ≈ prior number of 0’s.

• If π(θ) represents pre-experimental beliefs, π(θ|x) represents rational post-

experimental beliefs.

• Regardless of beliefs, δab will do better than x/n when θ is near a/(a+ b).

Example (absolute loss):

L(θ, d) = |θ − d|

E[L(θ, d)|x] =

∫
|θ − d|π(dθ|x)

The minimizer in d is any median θ1/2 of π(θ|x):

Pr(θ ≥ θ1/2|x) ≥ 1/2 , Pr(θ ≤ θ1/2|x) ≥ 1/2

Prove as an exercise.
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2.5 Uniqueness of Bayes rules

The above results can help us identify Bayes rules that are unique a.s. Pπ: Suppose

for a given prior π

• δπ has finite Bayes risk, and

• δπ uniquely minimizes the posterior risk.

Then any other Bayes estimator must also minimize the posterior risk a.s. Pπ, and

therefore equals δπ a.s. Pπ. In this case, the Bayes estimator is unique a.s. Pπ.

Although unique Bayes estimators are admissible, the same is not necessarily true

for Bayes estimators that are unique a.s. Pπ. The problem is that δπ(x) = δ′π(x) a.s.

Pπ implies that the Bayes risks of δπ and δ′π are the same, but does not imply the

risk functions are equal, and so one Bayes estimator may dominate the other. This

problem is illustrated in the following example:

Example(where Pπ matters):

Let X ∼ binomial(n, θ), θ ∈ [0, 1], so P = {dbinom(x, n, θ) : θ ∈ [0, 1]}.
Let π({0}) = π({1}) = 1/2.

In this case Pπ(X = 0) = Pπ(X = n) = 1/2.

Note that

π({0}|X = 0) =
P0(X = 0)π({0})

P0(X = 0)π({0}) + P1(X = 0)π({1})

=
P0(X = 0)π({0})

Pπ(X = 0)

=
1 · 1/2

1/2
= 1

Similarly, π({1}|X = n) = 1.

The posterior risk of an estimator δ, a.e. Pπ is given by

R(π, δ|X = 0) = E[L(θ, δ)|X = 0] = L(0, δ(0))

R(π, δ|X = n) = E[L(θ, δ)|X = n] = L(1, δ(n)).
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We can minimize the posterior risk for each x a.e. Pπ by making sure that δ(0) = 0

and δ(n) = 1. The posterior risk R(π, δ|x) for such an estimator is zero a.e. Pπ,

regardless of what δ(x) is for x ∈ {1, . . . , n− 1}.

Our theorem says this is a Bayes estimator, i.e. the minimizer of the Bayes risk

R(π, δ). Let’s check this result: The Bayes risk is

R(π, δ) =
∑

θ∈{0,1}

n∑
x=0

L(θ, δ)p(x|θ)π(θ)

= 1
2

[
n∑
x=0

L(0, δ)p(x|0) +
n∑
x=0

L(1, δ)p(x|1)

]
= 1

2
[L(0, δ(0)) + L(1, δ(1))]

= 0 if δ(0) = 0 and δ(1) = 1 .

In this case, every estimator δ for which δ(0) = 0 and δ(n) = 1 minimizes the

posterior risk a.s. and is therefore Bayes. The Bayes estimator is unique a.s. Pπ but

not unique for all x ∈ X .

In the above example, minimizing the Bayes risk (or the posterior risk a.s. Pπ) was not

sufficient to uniquely define an estimator for each x ∈ X , and therefore not sufficient

to show admissibility. To study admissibility, we need a notion of uniqueness that

can distinguish estimators with different risk functions.

Definition. An event A ∈ σ(X ) happens a.s. PΘ if Pθ(A) = 1 ∀θ ∈ Θ.

Definition. δ is unique Bayes if for any other Bayes estimator δ′,

δ(x) = δ′(x) a.s. PΘ

Exercise: Show that if δ = δ′ a.s. PΘ, then R(θ, δ) = R(θ, δ′) ∀θ ∈ Θ.

Theorem 3. If L(θ, d) is strictly convex in d, a Bayes estimator δπ is unique if

1. R(π, δπ) <∞
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2. Pθ � Pπ ∀θ ∈ Θ.

Proof. By Theorem 2, any Bayes estimator with finite Bayes risk must minimize

the posterior risk a.s. Pπ, so

R(π, δπ(x)|x) = inf
d∈D

R(π, d|x) a.s. Pπ.

Since Pθ � Pπ ∀θ ∈ Θ,

R(π, δπ(x)|x) = inf
d∈D

R(π, d|x) a.s. PΘ.

By the strict convexity of L, and that convexity is preserved by averaging, R(π, d|x)

is convex in d for each x.

Therefore, any minimizer of R(π, d|x) is unique (LC exercise 1.7.26), and so any

Bayes estimator is unique a.e. PΘ.

Condition 1 will be met if there exists any estimator with finite Bayes risk.

Condition 2 will generally be met unless π puts all of its mass on θ-values for which

the corresponding Pθ distributions do not cover all of X (recall the example).

Example (normal mean):

X1, . . . , Xn ∼ i.i.d. N(θ, 1/n)

θ ∼ N(0, τ 2)

}
→ θ|x̄ ∼ N(aX̄, a/n)

where a = n
n+1/τ2

. Under squared error loss, δ(x) = ax̄ is the unique minimizer of

the posterior risk for every x and therefore also X a.s. PΘ. The estimator is therefore

admissible. Also note that

δ(X)

{
→ X̄ as τ 2 or n→∞,

→ 0 as τ 2 → 0.

Example (predictive loss):
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Consider the Kullback-Leibler loss:

L(θ, d) =

∫
log

p(x|θ)
p(x|d)

p(x|θ) µ(dx),

which measures the predictive accuracy of p(x|d) against the truth p(x|θ). Note that

L(θ, d) ≥ 0 unless p(x|θ) = p(x|d) a.e. µ.

If {p(x|θ) : θ ∈ ×} is an exponential family with × being the natural parameter

space, then the convexity of L(θ, d) follows from the convexity of A(θ).

Example (where Pπ matters):

X|θ ∼ binomial(n, θ), θ ∈ Θ = [0, 1]

π(θ) = 1(θ ∈ {0, 1})/2.

R(π, δ) =
∑

θ∈{0,1}

n∑
x=0

L(θ, δ)p(x|θ)π(θ)

= 1
2

[
n∑
x=0

L(0, δ)p(x|0) +
n∑
x=0

L(1, δ)p(x|1)

]
= 1

2
[L(0, δ(0)) + L(1, δ(1))]

= 0 if δ(0) = 0 and δ(1) = 1 .

As we’ve discussed,

• Pπ({0, 1}) = 1, so the Bayes estimator is uniquely defined a.e. Pπ .

• Pθ 6� Pπ ∀θ ∈ Θ, so the Bayes estimator is not uniquely defined a.e. PΘ.

For convex loss functions there will be unique minimizers of the posterior risk. This

will imply uniqueness of Bayes estimators (and therefore admissibility) if Pθ �
Pπ ∀θ ∈ Θ. For what priors will this condition hold?

Lemma 1. If
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1. Θ is open;

2. support(π) = Θ;

3. Pθ(A) is continuous in θ ∀A ∈ σ(X ),

then Pθ � Pπ ∀θ ∈ Θ.

Proof.

Suppose Pθ0(A) = ε > 0. We want to show this implies Pπ(A) > 0.

By continuity there is a ball B(θ0) such that Pθ(A) > ε/2 ∀θ ∈ B(θ0).

Pπ(A) =

∫
Pθ(A)π(dθ) ≥

∫
B(θ0)

Pθ(A)π(dθ) > ε
2
π(B(θ0)) > 0,

where the last inequality holds by the support assumption.

Thus Pθ0(A) > 0 implies Pπ(A) > 0.

Thus Pπ(A) = 0 implies Pθ0(A) = 0.

Note that we don’t really need Θ to be open, just that Θ ∩ B(θ0) contains an open

subset of Θ for every θ0.

2.6 Bias

Bias(δ, θ) = E[δ|θ]− g(θ)

A biased estimator is systematically “off” from its estimand, which sounds bad.

It seems like an unbiased estimator will be closer to the estimand than a biased one.

This is not true, as a biased estimator may have much smaller variances.

“Bias” also suggests subjectivity, i.e. inference that corrupts the data with prior

beliefs. This notion is reinforced by the following theorem:

Theorem 4. Let L(θ, δ) = (g(θ) − δ)2. Then no Bayes estimator can be unbiased

unless its Bayes risk is zero.
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Proof. The Bayes risk is

E[(δ − g)2]] = E[δ2
π − 2δπg + g2]

If δπ is Bayes and unbiased, then

δπ(X) = E[g(θ)|X] since δπ is Bayes.

g(θ) = E[δπ(X)|θ] since δπ is unbiased.

Then

E[δπ(X)g(θ)] = E[E[δπ(X)g(θ)|X]]

= E[δπ(X)E[g(θ)|X]] = E[δ2
π(X)].

Similarly, you can show E[δπ(X)g(θ)] = E[g(θ)2], which means

R(π, δ) = E[δπ(X)2]− 2E[δπ(X)g(θ)] + E[g(θ)2]

= 0.

Example (normal mean):

Under a N(0, τ 2) prior for θ, the Bayes estimator is

δτ2 =
n

n+ 1/τ 2
X̄,

which is biased (but consistent).

Example (binomial proportion):

Under a beta(a, b) prior for θ, the Bayes estimator is

δab = (
a+ b

a+ b+ n
)

a

a+ b
+ (

n

a+ b+ n
)
x

n
,

which is biased (but consistent).
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The Theorem seems to imply that X (or X̄) cannot be a Bayes estimator of its

expectation under squared error loss for any prior. This is not quite true - it is only

true of priors for which the Bayes risk is not zero:

Example (normal mean and variance):

X1, . . . , Xn ∼ i.i.d. N(µ, σ2), θ = {µ, σ2} ∈ R× R+.

Can X̄ be Bayes for g(θ) = µ under squared error loss?

R({µ, σ2}, δ) = E[(X̄ − µ)2|µ, σ2] = σ2/n > 0 ∀µ ∈ R, σ2 > 0

R(π, δ) = E[(X̄ − µ)2] = E[σ2/n] > 0, for any prior over σ2 > 0.

(Recall, if f(x) > 0 a.s., then
∫
f(x)P (dx) > 0 ).

What about a prior for which π({σ2 = 0}) = 1? In this case, X̄ has zero Bayes risk,

but so does any weighted average of one or more Xi’s. Thus X̄ is Bayes for this

prior, but not unique Bayes, and so admissibility of X̄ must be proven some other

way.

Finally, keep in mind that the theorem is specific to squared error loss.

Example (posterior mode for a binomial proportion):

Let

• X ∼ bin(n, θ);

• θ ∼ beta(1, 1).

Then {θ|X} ∼ beta(X + 1, n−X + 1). The posterior mode of θ is

mode(θ|X) =
X + 1− 1

X + 1− 1 + n−X + 1− 1
= X/n.

The posterior mode is “sort of” the Bayes estimator under 0-1 loss, where L(θ, d) =

1(θ 6= d).

3 Prior distributions

How should the prior distribution be chosen? There are many perspectives on this:
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• (subjective Bayes): π should be the “real” prior distribution, a probabilistic

representation of real prior knowledge.

• (pragmatic Bayes): Select π from a computationally convenient class of priors

(e.g. conjugate priors) that can represent some aspects of real prior information

(such as prior expectation and variance).

• (objective Bayes): Use a “noninformative” prior. This approach sounds oxy-

moronic, but can relate Bayes procedures to procedures that are optimal under

different criteria.

– Jeffreys’ prior;

– improper priors;

– invariant priors.

3.1 Conjugate priors

Definition. A class Π = {π(θ)} of prior distributions is called conjugate for a model

P = {p(x|θ) : θ ∈ Θ} if
π(θ) ∈ Π⇒ π(θ|x) ∈ Π.

A conjugate prior class is “closed under sampling.”

Example (binomial-beta family):

X|θ ∼ bin(n, θ) {p(x|θ) = dbinom(x, n, θ)}
θ ∼ beta(a, b) {π(θ) = dbeta(θ, a, b)}

π(θ|x) = p(x|θ)π(θ)/p(x)

∝θ p(x|θ)π(θ)

∝θ θx(1− θ)n−xθa−1(1− θ)b−1

∝θ θa+x−1(1− θ)b+n−x−1

∝θ dbeta(θ, a+ x, b+ n− x)

18
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Also note that

E[θ|x] =
a+ b

a+ b+ n

a

a+ b
+

n

a+ b+ n

x

n
.

Example (normal-normal family):

{X1, . . . , Xn|θ, σ2} ∼ i.i.d. normal(θ, σ2) {p(x|θ, σ2) =
∏n

i=1 dnorm(xi, θ, σ)}
θ ∼ normal(θ0, τ

2
0 ) {π(θ) = dnorm(θ, θ0, τ0)}

π(θ|x, σ2) = p(x|θ, σ2)π(θ)/p(x|σ2)

∝θ p(x|θ, σ2)π(θ)

∝θ exp{−
∑

x2
i /(2σ

2) + θ
∑

xi/σ
2 − nθ2/(2σ2)} × exp{−θ2/(2τ 2

0 ) + θ0θ/τ
2
0 − θ2

0/(2τ
2
0 )}

∝θ exp{−1
2
θ2(n/σ2 + 1/τ 2

0 ) + θ(nx̄/σ2 + θ0/τ
2)}

∝θ dnorm(θ, θn, τn)

where

• τ 2
n = (n/σ2 + 1/τ 2

0 )−1

• θn = τ 2
n(nx̄/σ2 + θ0/τ

2)

Also note that

E[θ|x1, . . . , xn] = θn =
1/τ 2

n/σ2 + 1/τ 2
0

θ0 +
n/σ2

n/σ2 + 1/τ 2
0

x̄.

Note that for both examples,

E[θ|X1, . . . , Xn] = wE[θ] + (1− w)X̄.

Does this hold more generally?

Conjugate priors for exponential families

p(x|θ) = exp{θ · t(x)− A(θ)}
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x1, . . . , xn ∼ i.i.d. p(x|θ)⇒ p(x|θ) = exp{θ ·
∑
t(xi)−nA(θ)} = exp{θ ·nt̄−nA(θ)}

Conjugate prior: Consider π(θ) ∝θ exp{θ · n0t0 − n0A(θ)}. Then

π(θ|x) ∝ exp{θ · (n0t0 + nt̄)− (n0 + n)A(θ)}

Then π(θ) and π(θ|x̄) have the same form, i.e. they are both members of the class

of densities given by

πn0t(θ) =
exp{θ · n0t0 − n0A(θ)}∫
exp{θ · n0t0 − n0A(θ)dθ}

What we haven’t checked yet is whether or not such densities are actual probability

densities, i.e. the integral in the denominator is finite.

Theorem 5 (Diaconis and Ylvisaker [1979]). If n0 > 0 and t0 ∈ Conv({t(x) : x ∈
X}), then ∫

H
exp{θ · n0t0 − n0A(θ)dθ} ≡ c(n0, t0)−1 <∞,

and π(θ) = c(n0, t0) exp{θ · n0t0 − n0A(θ)dθ} is a probability density on the natural

parameter space H.

Here, Conv(A) is the convex hull of the set A ⊂ Rs:

Conv(A) = {x ∈: Rs : x =
K∑
1

wkak, (a1, . . . , aK) ⊂ A,
∑

wk = 1, K ∈ N}.

The allowable values of t0 include all of those that could be expressed as a sample

average of t(X) . Thus we have the following interpretation:

• n0 ≈ prior sample size

• t0 ≈ average of t(x1), . . . t(xn0) from the “prior sample”.

Let’s try to push this interpretation further: Recall that

E[t(X)|θ] = ∇A(θ) Var[t(X)|θ] = ∇2A(θ).

Consider estimation of µ(θ) = E[t(X)|θ] = A(θ). For example,
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• normal model: µ = E[(X,X2)|θ] ≡ (µ, µ2 + σ2),

• Poisson model: µ = E[X|θ].

Under π(θ|n0, t0), what is E[µ] = E[∇A(θ)]? Diaconis and Ylvisaker [1979] show

that ∫
∇π(θ) dθ = 0.

But we also have

∇π(θ) = ∇(eθ·n0t0−n0A(θ)c(n0, t0))

= [n0t0 − n0∇A(θ)]π(θ).

Putting these together gives∫
∇π(θ) dθ =

∫
(n0t0 − n0∇A(θ))π(θ) dθ = 0.

which implies n0t0 = n0E[∇A(θ)] = n0E[µ], and so under π(θ|n0, t0), E[µ] = t0.

Therefore, when selecting a particular member of the conjugate class, you should

• pick t0 to represent your prior expectation of µ = E[t(X)], that is, your prior

guess at the population mean of t(X);

• pick n0 to represent your degree of confidence in your prior guess.

Exercise: Take second derivatives to identify the relationship between n0 and the

prior variance of µ.

Linear Bayes:

Suppose we use the conjugate prior π(θ|n0, t0), under which E[µ] = t0. Given i.i.d.

samples from p(x|θ), we have

π(θ|x1, . . . , xn) ∝ exp{θ(n0t0 + nt̄)− (n0 + n)A(θ)}

∝ π(θ|n1, t1)
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where n1 = n0 + n and

t1 =
n0t0 + nt̄

n1

=
n0

n0 + n
t0 +

n

n0 + n
t̄

By our calculations above, we must have E[µ] = t0 and E[µ|x1, . . . , xn] = t1, so

E[µ|x1, . . . , xn] =
n0

n0 + n
E[µ] +

n

n0 + n
t̄.

Recall that under squared error loss, this posterior mean is the unique Bayes estima-

tor. Thus conjugate priors generate “linear shrinkage” estimators of µ = E[t(X)|θ]
of the form

δ(X) =
n0

n0 + n
t0 +

n

n0 + n
t̄

= (1− w)t0 + wt̄

Such estimators allow for

• an amount of shrinkage w;

• a direction of shrinkage t0.
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