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1 Introduction

Suppose two scientists at different but nearby locations are tracking an object that

emits a signal via a radio beacon. The first scientist will infer the location θ1 of the

object relative to himself via a measurement

X1 ∼ Np(θ1, σ
2I), θ1 ∈ Rp, σ2 > 0.

The second scientist would also like to infer the location θ2 of the object relative to

herself. She would like to estimate θ2 = θ1 +a, where a is the (known) displacement

of scientist 2 from scientist 1. The inference problem from scientist 2’s perspective

can be expressed as

X2 = X1 + a, θ2 = θ1 + a

X2 ∼ Np(θ2, σ
2I), θ2 ∈ Rp, σ2 > 0.

Note that the models for X1 and X2 are exactly the same. We say that the model

for X1 is invariant under the transformation X2 = g(X1) = X1 + a.

Now suppose each scientist wants to estimate their relative displacement from the

object with squared error loss. Note that for any decision d1 about θ1,

L(θ1,d1) = (θ1 − d1)2 = ([θ1 + a]− [d1 + a])2

= (θ2 − d2)2 = L(θ2,d2).

In other words, for every decision d1 one can make about θ1, there is a corresponding

decision d2 = g(d1) = d1 + a one can make about θ2 that has the same loss profile

as d1. As such, we say the loss is invariant. For this problem, we have

L(θ1,d1) = L(g(θ1), g(d1)) ∀θ ∈ Rp,d1 ∈ Rp,

where g(x) = x+ a.

Formal invariance:

The model and loss functions are exactly the same for the two scientists. Therefore

if δ(X1) is the estimator of θ1 for scientist 1, then δ(X2) is the estimator of θ2 for

scientist 2.
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LC refer to this principle as formal invariance. The general idea is:

• estimating θ1 from X1 is the same decision problem as estimating θ2 from X2.

• Thus, our preferred estimator in each situation should be the same.

Suppose δ is a good estimator of θ1 based on X1. Then we should have

θ̂2 = δ(X2).

Now X2 = X1 + a, so an estimate of θ2 = θ1 + a can be obtained as

θ̂1 + a = δ(X1 + a).

Writing θ2 = g(θ1) and X1 + a = g(X1) gives

ĝ(θ1) = δ(g(X1)).

Formal invariance implies the estimate of the transformed parameter is the estimator

at the transformed data.

Functional invariance:

Since θ2 = θ1 + a, if scientist 2 knew θ̂1 = δ(X1) she would estimate the location

of the object as

θ̂2 = θ̂1 + a

ĝ(θ1) = g(δ(X1)).

The estimate of the transformed parameter is the transform of the parameter esti-

mate.

The principle of invariance:

The principle of invariance is to require a functionally invariant estimator in a for-

mally invariant problem. For this particular problem, this means we should use an

estimator that satisfies

δ(g(x)) = g(δ(x)) ∀x ∈ Rp, that is,

δ(x+ a) = δ(x) + a ∀x ∈ Rp.
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Such an estimator is called equivariant with respect to the transformation g.

Best equivariant estimators

It seems logical that we would want this to hold regardless of a ∈ Rp. If so, then we

require

δ(x+ a) = δ(x) + a ∀x ∈ Rp,a ∈ Rp.

An estimator satisfying this condition is equivariant with respect to the (group of)

transformations G = {g : x→ x+ a,a ∈ Rp}. For this problem, the set equivariant

estimators is easy to identify: Setting a = −x, we have

δ(x− x) = δ(x)− x

δ(x) = x+ δ(0)

δ(x) = x+ c,

i.e., δ(x) is equivariant with respect to G if and only if δ(x) = x+c for some c ∈ Rp.

Of course, we would like to find the best equivariant estimator, i.e. the one that

minimizes the risk. Since

R(θ,x+ c) = E[

p∑
j=1

(Xj + cj − θj)2]

=

p∑
j=1

Var[Xj + cj] + Bias2[Xj + cj]

= pσ2 + cTc,

the best equivariant estimator is x, obtained by setting c = 0. Thus δ(x) = x is the

UMRE (uniformly minimum risk equivariant) estimator.

More generally, restricting attention to equivariant estimators can reduce the class of

candidate estimators considerably, often enough so that a single optimal estimator

may be identified.

Does equivariance make sense? Often yes, especially if we lack information about the

unknown parameter. However, if we do have some information about the parameter,
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then the problem may not be invariant and an equivariant estimator may not make

sense.

Example:

Consider the model X ∼ Np(θ, σ
2I) : σ2 > 0, θ ∈ A ⊂ Rp.

This model is not invariant under g : x→ x+a. Letting X ′ = g(X) and θ′ = g(θ′),

• The models for X and X ′ are not the same,

• Our estimator of θ should be in A w.p. 1.

• Our estimator of θ′ should be in A+ a w.p. 1.

Thus we lack formal invariance. We may still want functional invariance, that is

δ′(x′) = θ̂
′
= θ̂ + a = δ(x) + a,

but without formal invariance we wouldn’t use the same estimator in the two situa-

tions. In particular, we wouldn’t necessarily want

δ(x+ a) = δ(x) + a,

especially if A ∩ {A+ a} = ∅.

2 Invariant estimation problems

2.1 Invariance under a transformation

Let P be a statistical model for {X , σ(X )}.
Let g be a bijection on X (one-one and onto).
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Definition 1 (model invariance under a transformation). P is invariant to g if

when X ∼ P ∈ P , then gX = X ′ ∼ P ′ ∈ P

and

∀P ′ ∈ P , ∃P ∈ P : X ∼ P → gX ∼ P ′.

The latter condition ensures that g doesn’t “reduce” the model.

Informally, P is invariant to g if “gP = P” (but this notation isn’t quite right).

Example:

Let g(x) = 2x, and

PA = {dnorm(x, µ, σ2) : µ ∈ R, σ2 > 0}

PB = {dnorm(x, µ, σ2) : µ ∈ R, σ2 > 1}

Then PA is invariant to g but PB is not. The transformation “reduces” PB. An

estimator appropriate for PB may not be appropriate for “gPB”. An estimator for

the former model should allow σ̂2 ∈ [1, 4], an estimator for the latter model should

not.

Induced transformation

Let P = {Pθ : θ ∈ Θ} be a (parametric) model that is invariant to g.

When X ∼ Pθ, θ ∈ Θ, then gX ∼ Pθ′ for some θ′ ∈ Θ.

Define ḡ to be this transformation of the parameter space:

ḡθ = θ′ : X ∼ Pθ → gX ∼ Pθ′ .

The function ḡ is only well defined if the parametrization is identifiable, so that θ1 6=
θ2 ⇒ Pθ1 6= Pθ2 . We will assume we are working with an identifiable parametrization

in what follows. In particular, identifiability makes ḡ a bijection:

Lemma 1. If P = {Pθ : θ ∈ Θ} is invariant under a bijection g and the parametriza-

tion is identifiable, then ḡ is a bijection.
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Proof. That ḡΘ = Θ (g is onto) follows from the second condition in the definition of

invariance: ∀θ1 ∈ Θ ∃θ0 ∈ Θ : ḡθ0 = θ1. That ḡ is 1-1 follows from the identifiability:

Suppose ḡθ1 = ḡθ2 = θ0. Then ∀A ∈ σ(X )

Pr(gX ∈ A|θ1) = Pr(gX ∈ A|θ2)

Pr(X ∈ g−1A|θ1) = Pr(X ∈ g−1A|θ2).

This shows that Pr(X ∈ B|θ1) = Pr(X ∈ B|θ2) for all sets B of the form {B =

g−1A : A ∈ σ(X )}.
This includes all of σ(X ): Pick any B ∈ σ(X ) and let A = gB, so g−1A = g−1gB = B

as g is a bijection.

Now since Pr(X ∈ B|θ1) = Pr(X ∈ B|θ2) ∀B ∈ σ(X) and the parametrization is

identifiable, we must have θ1 = θ2. Thus ḡθ1 = ḡθ2 iff θ1 = θ2.

We now have proper notation to describe invariance of P under a transformation g

of X:

P is invariant under g if ḡΘ = Θ.

The following set of identities will be useful:

Lemma 2. If P is invariant to g, then

Pr(gX ∈ A|θ) = Pr(X ∈ A|ḡθ)

Pr(X ∈ gA|ḡθ) = Pr(X ∈ A|θ)

Note that each statement follows from the definition, and each implies the other. For

example, to show that the first implies the second, note that

Pr(X ∈ A|θ) = Pr(gX ∈ gA|θ)

= Pr(X ∈ gA|ḡθ).

The first equality follows from g being a bijection, the second from the first identity

in the Lemma.

Example:
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P = {dnorm(x, µ, σ2) : µ ∈ R, σ2 > 0}

g(X) = a+ bX

ḡ(µ, σ2) = (a+ bµ, b2σ2)

A = (−∞, c]

Then we have

Pr(gX ∈ A|θ) = Pr(a+ bX ≤ c|(µ, σ2))

= Pr(X ≤ c|(a+ bµ, b2σ2)) = Pr(X ∈ A|ḡ(θ)).

Going the other way,

Pr(X ∈ gA|ḡθ) = Pr(X ≤ a+ bc|a+ bµ, b2σ2)

= Pr([X − a]/b ≤ c|a+ bµ, b2σ2)

= Pr(X ≤ c|µ, σ2) = Pr(X ∈ A|θ).

Invariant loss:

If the model is invariant under g it is natural to require the loss be invariant in some

sense as well.

• {L(θ, d) : θ ∈ Θ, d ∈ D} gives, for each θ, the pairings of losses to decisions

about θ.

• {L(ḡθ, d) : θ ∈ Θ, d ∈ D} gives, for each θ, the pairings of losses to decisions

about ḡθ.

If estimation of θ and ḡθ are the same problem, then the set of possible losses at θ

should correspond to the possible losses under ḡθ.

Definition 2 (loss invariant under a transformation). Let P be invariant under g,

so ḡΘ = Θ. A loss function L(θ, d) : Θ×D → R+ is invariant if

∀d ∈ D there exists a unique d′ ∈ D : L(θ, d) = L(ḡθ, d′) ∀θ ∈ Θ.
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The decision d′ that corresponds to d is referred to as g̃d, which is a bijection on D.

Invariance of the loss under g̃ then means that

L(θ, d) = L(ḡθ, g̃d) ∀ θ ∈ Θ, d ∈ D.

Nonexample:

P = {dnorm(x, µ, σ2) : µ ∈ R, σ2 > 0}
g(X) = a+ bX

ḡ(µ, σ2) = (a+ bµ, b2σ2)

If loss is squared error loss, then L(θ, d) = (µ − d)2 and L(ḡθ, d′) = (a + bµ − d′)2.

Invariance of loss means for each d, there is a d′ such that these are equal for all θ.

Is this possible? First try setting µ− d = a+ bµ− d′:

µ− d = a+ bµ− d′

d′ = d+ a+ µ(b− 1).

Clearly this will not work if b 6= 1 - there is no d′ that has the same loss profile as d.

Example:

Consider the same example but with standardized loss

L(θ, d) = (µ− d)2/σ2.

Equating losses L(θ, d) to L(ḡθ, d′), one solution is given by

(µ− d)/σ = (a+ bµ− d′)/[bσ]

µ− d = a/b+ µ− d′/b

d′ =a+ bd.

The loss of decision d′ under ḡθ is the same as that of decision d under θ, for all θ.

The loss function is invariant, and the induced transformation on the decision space

is

g̃d = a+ bd.
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We say that a decision problem is invariant under g if the model and loss are invariant

under the induced transformations ḡ and g̃:

Definition 3 (invariant decision problem). A decision problem (Θ, D, L) is invariant

under g if

• the parameter space is invariant under the induced transformation ḡ

• the loss is invariant under the induced transformation g̃

2.2 Invariance under a group:

Typically if a problem is invariant under a particular transformation g, it is also

invariant under a a class of related transformations. This class can always taken

to be a group, meaning that if (Θ, D, L) is invariant under a class C, it is invariant

under a group G that is generated by C.

Definition 4 (group). A collection G of one-to-one transformation of X is a group

if

1. ∀g1, g2 ∈ G, g1g2 ∈ G (closure under composition),

2. ∀g ∈ G, g−1 ∈ G (closure under inversion),

3. the function gx = x is in G.

Example (linear transformations):

Let X = R and let

G = {g : g(x) = a+ bx, a ∈ R, b ∈ R \ {0}}.

Check to see if this is a group:

• Each g is 1-1 (as we don’t allow b = 0).
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• Let gj(x) = aj + bjx, for j ∈ {1, 2}. Then

g1(g2(x)) = a1 + b1(a2 + b2x) = (a1 + a2b1) + (b1b2)x ∈ G.

• Let g(x) = a+ bx. Then

g−1(x) = −a/b+ x/b ∈ G.

So yes, this is a group.

A decision problem is invariant under a group if it is invariant under each function

in the group.

Example (normal mean estimation):

P = {N(µ, σ2) : µ ∈ R, σ2 ∈ R+}.
L(θ, d) = (µ− d)2/σ for d ∈ D = R
G = {g : g(x) = a+ bx, a ∈ R, b ∈ R \ {0}}.
For a single g(x) = a+ bx ∈ G the induced transformations on Θ and D are

• ḡ(µ, σ2) = (a+ bµ, b2σ2);

• g̃d = a+ bd.

We have also shown invariance for each g ∈ G:

• ḡΘ = Θ

• L(θ, d) = L(ḡθ, g̃d) ∀θ ∈ Θ, d ∈ D.

Thus we say the decision problem (Θ, D, L) is invariant under G.

Note that things are essentially unchanged if we consider the n-sample problem:

P = {Nn(µ1, σ2I) : µ ∈ R, σ2 ∈ R+}.

Induced groups:

Note that a group G under which a problem is invariant induces two other collections

of functions:
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• Ḡ = {ḡ : g ∈ G}, transformations on the parameter space;

• G̃ = {g̃ : g ∈ G}, transformations on the decision space.

As you might suspect, these collections turn out to be groups:

Lemma 3. If {Pθ : θ ∈ Θ} is invariant under a group G, then

• Ḡ = {ḡ : g ∈ G} is a group of transformations of Θ onto itself;

• G̃ = {g̃ : g ∈ G} is a group of transformations of D onto itself.

The functions in Ḡ and G̃ are automatically 1-1 and onto.

If you are interested in such things, note that Ḡ is a homomorphic image of G, and

G̃ is a homomorphic image of G and Ḡ.

Example (scale group):

P = {p(x|θ) = e−x/θ/θ : x > 0, θ ∈ Θ = R+}
G = {gc : gc(x) = cx, c ∈ R+}
L(θ, d) = (1− d/θ)2

• Invariance:

– If X ∼ Pθ, θ ∈ Θ and X ′ = gc(X), then X ′ ∼ Pθ′ , θ
′ = cθ ∈ Θ.

– If X ′ ∼ Pθ′ then X ′
d
= gcX for X ∼ Pθ, θ = θ′/c, which is in Θ for all θ′,

c.

• Induced group on Θ: Ḡ = {ḡcθ = cθ : c ∈ R+}.

• Induced group on D: Solve L(θ, d) = L(ḡcθ, d
′) for d′

(1− d/θ)2 = (1− d′/ḡcθ)2

d/θ = d′/cθ

d′ = cd.
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Thus for every d, there is a d′ such that L(θ, d) = L(ḡθ, d′), so the loss is

invariant. Defining d′ = g̃cd, we have G̃ = {g̃c : g̃cd = cd, c ∈ R+}.

Note that G, Ḡ and G̃ are all the same group (the multiplicative group, or scale

group).

Example (location group):

P = {dnorm(x|µ, σ2), µ ∈ R, σ2 ∈ R+}
G = {gc : gc(x) = x+ c, c ∈ R}
L(θ, d) = f(|µ− d|)

• Invariance:

– If X ∼ Pθ, θ ∈ Θ and X ′ = gc(X), then X ′ ∼ Pθ′ , θ
′ = (µ′, σ2′) =

(µ+ c, σ2) ∈ Θ.

– If X ′ ∼ Pθ′ then X ′
d
= gcX for X ∼ Pθ, θ = θ′ − (c, 0), which is in Θ for

all θ′, c.

• Induced group on Θ: Ḡ = {ḡcθ = θ + (c, 0) : c ∈ R}.

• Induced group on D: Solve L(θ, d) = L(ḡcθ, d
′) for d′

f(|µ− d|) = f(|µ′ − d′|)

µ− d = µ+ c− d′

d′ = d+ c.

Thus for every d, there is a d′ such that L(θ, d) = L(ḡθ, d′), so the loss is

invariant. Defining d′ = g̃cd, we have G̃ = {g̃c : g̃cd = d+ c, c ∈ R+}.

Note that G and G̃ are both the location (additive) group.

The group Ḡ is isomorphic to these groups.
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Example (covariance estimation):

Let X be the n× p matrix with rows X1, . . . ,Xn ∼ i.i.d. Np(µ,Σ).

We say X has a matrix normal distribution, X ∼ Nn×p(1µ
T , I,Σ)

P = distributions of X ∼ Nn×p(1µ
T , I,Σ), µ ∈ Rp, Σ ∈ S+

p .

G = {g : g(x) = 1aT + xBT ,a ∈ Rp,B ∈ Rp×p, invertible}.
L(θ,D) = tr(DΣ−1)− log |DΣ−1| − p (Stein’s loss)

• Invariance:

– If X ∼ Pθ, θ ∈ Θ and X′ = g(X), then

X′ ∼ Pθ′ , θ
′ = (µ′,Σ′) = (a+ Bµ,BΣBT ) ∈ Θ.

– If X′ ∼ Pθ′ then X′
d
= gX for X ∼ Pθ, where

θ = (µ,Σ) = (B−1(µ′ − a),B−1Σ′B−1),

which is in Θ for all θ′, a, B.

• Induced group on Θ: Ḡ = {ḡθ = g(µ,Σ) = (a+Bµ,BΣBT},a = Rp,B invertible}.

• Induced group on D: Solve L(θ,D) = L(ḡθ,D′) for D′

tr(DΣ−1)− log |DΣ−1| = tr(D′B−1TΣ−1B−1)− log |D′B−1TΣ−1B−1|

= tr(B−1D′B−1TΣ−1)− log |B−1D′B−1TΣ−1|,

and so equality for all θ ∈ Θ can be achieved by setting D′ = BDBT . Thus for

every D, there is a D′ such that L(θ,D) = L(ḡθ,D′), so the loss is invariant.

Defining D′ = g̃D, we have G̃ = {g̃ : g̃D = BDBT : B invertible}.

Here, the groups G, Ḡ and G̃ are different.

G and Ḡ are isomorphic to each other, but not to G̃.
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3 Invariant decision rules

Suppose {Θ, D, L} is invariant under a group G.

X Decision problem:

X ∼ Pθ : θ ∈ Θ

Estimate θ with loss L

X ′ Decision problem:

X ′ = gX, θ′ = ḡθ.

X ′ ∼ Pθ′ : θ′ ∈ Θ

Estimate θ′ with loss L

Invariance principle:

X ′ = gX, θ′ = ḡθ , L(θ, d) = L(gθ, g̃d)

• Formal invariance: The models and losses are the same. We would use the

same estimator in either situation.

θ̂′ = δ(x′) = δ(gx)

• Functional invariance:

– When X = x we make decision δ(x) and incur loss L(θ, δ(x)).

– By invariance of loss, estimating θ by δ(x) incurs the same loss as esti-

mating θ′ = ḡθ by g̃δ(x):

L(θ, δ(x)) = L(ḡθ, g̃δ(x)).

This suggests that if we are happy with estimating θ by δ(x), we should

be happy estimating θ′ = ḡθ by g̃δ(x).

θ̂′ = g̃δ(x).

Combining the two requirements gives

δ(gx) = g̃δ(x).
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Definition 5. For decision problem invariant under a group G, an estimator is

equivariant if

δ(gx) = g̃δ(x) ∀g ∈ G.

If we have decided that we want to use an equivariant estimator, the tasks are to

1. characterize the equivariant estimators;

2. identify the equivariance estimator with minimum risk.

That this second task is well defined is suggested by the following theorem:

Theorem 1. The risk of an equivariant decision rule satisfies

R(θ, δ) = R(ḡθ, δ) ∀θ ∈ Θ, ḡ ∈ Ḡ.

Proof.

R(θ, δ) = E[L(θ, δ(X))|θ]

= E[L(ḡθ, g̃δ(X))|θ] (invariance of loss)

= E[L(ḡθ, δ(gX))|θ] (equivariance of δ)

= E[L(ḡθ, δ(X))|ḡθ] (recall Pr(gX ∈ A|θ) = Pr(X ∈ A|gθ))

= R(ḡθ, δ).

Interpretation:

If θ′ = ḡθ, then θ and θ′ should be equally difficult to estimate (i.e. are equally risky).

We can define equivalence classes of equally risky θ-values:

Definition 6. Two points θ0, θ1 ∈ Θ are equivalent if θ1 = ḡθ0 for some ḡ ∈ Ḡ.

The orbit Θ(θ0) of θ0 ∈ Θ is the set of equivalent points:

Θ(θ0) = {ḡ(θ0) : ḡ ∈ Ḡ}.
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The above theorem should then be interpreted as saying that the risk function of an

equivariant estimator is constant on orbits of Θ. In most of our applications, there is

only one orbit of Θ, i.e. the class Ḡ is rich enough so that we can go from any point

in Θ to another via some ḡ ∈ G. In such cases, Ḡ is said to be transitive over Θ.

Corollary 1. If Ḡ is transitive, then the risk function of any equivariant estimator

is constant over the parameter space.

In such cases, the risk function of each equivariant estimator reduces to a single

number, and finding the (uniformly) minimum risk equivariant estimator amounts

to minimizing this single number.

Exercise: Review these ideas in the context of the vector location problem at the

beginning of these notes.

4 Simple examples

Example (location family):

X ∼ Pθ ∈ P = {p0(x− θ) : θ ∈ R}
L(θ, d) = (θ − d)2

G = {g : x→ x+ a, a ∈ R}

This decision problem is invariant under G, with

ga(x) = x+ a, ḡa(θ) = θ + a, g̃a(d) = d+ a.

Also note that Ḡ is transitive over Θ, so any equivariant estimator must have constant

risk. Let’s check this: Any equivariant estimator must satisfy

δ(gx) = g̃δ(X)

δ(x+ a) = δ(x) + a.
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This must hold for all x, a ∈ R. To characterize such estimators as a function of x,

pick a = −x to show that

δ(x) = x+ δ(0) ≡ x+ c.

Finding the best equivariant estimator is then simply finding the value of c that

minimizes the risk. What are the risk functions of such estimators?

R(θ, δ) = R(0, δ)

= E[L(0, X + c)|0]

=

∫
(x+ c)2p0(x) dx = E[X2|0] + 2cE[X|0] + c2

which is minimized by setting c = −E[X|0]. The minimum risk equivariant estimator

is then

δ(x) = x− E[X|0].

If p0 has a zero mean, then we have δ(x) = x.

Exercise: Show that if L(θ, d) = |θ − d|, then the problem is still invariant, and the

best estimator is δ(x) = x− c, where c is the median of p0.

There is an alternative way to interpret this result: As shown above, the best equiv-

ariant estimator is obtained by minimizing E[(X + c)2|0] in c. This expectation can

be rewritten as

E[(X + c)2|0] =

∫
(x′ + c)2p0(x′) dx′

=

∫
(x′ + (dx − x))2p0(x′) dx′ (decision under x is dx = x+ c)

=

∫
((x− θ) + (dx − x))2p0(x− θ) dθ (change of variables: θ = x− x′ )

=

∫
(θ − dx)2p0(x− θ) dθ

=

∫
(θ − dx)2π(θ|x) dθ = R(π, dx|x),
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where π(θ|x) is the generalized Bayes posterior distribution under the uniform “prior”

distribution on R:

π(θ|x) =
π(θ)p(x|θ)∫
π(θ)p(x|θ) dθ

=
p0(x− θ)∫
p0(x− θ) dθ

=
p0(x− θ)∫
p0(x− θ) dx

= p0(x− θ).

The generalized Bayes rule is the minimizer of this generalized Bayes risk. Our

previous calculation has shown that this generalized Bayes rule is δπ(x) = dx = x+c,

where c = −E[X|0]. Re-deriving this from the Bayesian perspective, the generalized

Bayes rule under squared error loss is the posterior mean:

δπ(x) = E[θ|x] =

∫
θπ(θ|x) dθ

=

∫
θp0(x− θ) dθ

=

∫
(x− x′)p0(x′) dx′ (change of variables: x′ = x− θ )

= x−
∫
x′p0(x′) dx′ = x− E[X|0].

The best equivariant estimator (under both squared error and absolute loss) is there-

fore equal to the generalized Bayes estimator under the improper prior π(θ) ∝ 1. It is

no coincidence that this prior has invariance properties from a Bayesian perspective.

We will see further examples of this in the upcoming material.

Note: To make the above change of variables, you can do it the “calculus way” via

substitution (be sure to change the limits of integration), or the “probability way”.

For this latter approach, note that we want to compute the expectation of θ with

respect to the density p0(x− θ). Letting X ′ = x− θ, computing the expectation of

θ is the same as computing the expectation of x − X ′. The pdf for x′ is obtained

from that of θ via the usual change of variables formula: px′(x
′) = pθ(θ(x

′))| dθ
dx′
| =

p0(x− [x− x′])× 1 = p0(x′).
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Exercise: Obtain the UMRE estimator for the vector location problemX ∼ p0(x−θ)

under the group G = {ga : x→ x+ a,a ∈ Rp}.

Example (covariance estimation):

Let X1, . . . ,Xn ∼ i.i.d. Np(µ,Σ), µ ∈ R,Σ ∈ S+
p .

Then S =
∑

(X i − X̄)(X i − X̄)T ∼ Wishart(n− 1,Σ),Σ ∈ S+
p .

Consider estimating Σ based on S, under Stein’s loss L(θ,D) = tr(DΣ−1)−log |DΣ−1|−
p. It is straightforward to show that the estimation problem is invariant under trans-

formations in G = {g : S→ BSBT : B ∈ Rp×p, nonsingular}. These transformations

induce the following groups on Θ = D = S+
p :

• Ḡ = {ḡ : Σ→ BΣBT ,B ∈ Rp×p, nonsingular};

• G̃ = {g̃ : D→ BDBT ,B ∈ Rp×p, nonsingular};

Note that all groups are the same, and operate on the same space.

An equivariant estimator must satisfy

δ(gS) = g̃δ(S)

δ(BSBT ) = Bδ(S)BT ∀S,B.

To characterize the equivariant estimators, choose B = S−1/2, where S1/2S1/2 = S.

This gives

δ(I) = S−1/2δ(S)S−1/2

δ(S) = S1/2δ(I)S1/2.

We still need to characterize the possibilities for δ(I). Recall an orthogonal p × p

matrix U satisfies UUT = UTU = I. This identity, plus equivariance of δ implies

δ(I) = δ(UIUT ) = Uδ(I)UT

for any orthogonal matrix U. This implies that δ(I) = cI for some scalar c > 0. We

therefore have that any equivariant estimator δ must satisfy

δ(S) = cS
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for some c > 0.

Since Ḡ acts on the parameter space transitively, we should be able to obtain a

UMRE estimator by identifying the value of c that minimizes the (constant) risk:

R(Σ, cS) = R(I, cS) = E[tr(cS)− log |cS||I]− p

= c× tr(E[S|I])− p log c− E[log |S||I]− p

= c(n− 1)p− p log c+ k.

This is minimized in c by c = 1/(n− 1), and so the best equivariant estimator based

on S (under this loss) is the unbiased estimator δ(S) = S/[n− 1].

Example (binomial proportion):

X ∼ binary(n, θ), θ ∈ [0, 1].

L(θ, d) = (θ − d)2

G = {g0(x), g1(x)}, g0(x) = x, g1(x) = n− x.

Model: X ∼ binary(n, θ) ⇒ g1(X) = n − X ∼ binary(n, 1 − θ), so the model is

invariant.

Parameter space: ḡ1(θ) = 1− θ.

Decision space: If d′ = g̃1(d) = 1− d

L(ḡ(θ), g̃(d)) = ([1− θ]− [1− d])2

= (θ − d)2 = L(θ, d)

The orbit of θ0 ∈ Θ is only {θ0, 1 − θ0}. Ḡ is not rich enough to be transitive - we

might then expect that equivariant estimators are not generally constant risk. Let’s

check: An estimator is equivariant if

δ(g1X) = g̃1δ(X)

δ(n−X) = 1− δ(X).
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The class of equivariant estimators is quite large, and includes (for example) the

Bayes estimators under all priors symmetric about 1/2. These estimators do not

have constant risk, and there is no best decision rule in this class. Invariance is not

a big help in discriminating among procedures.

5 Procedures for finding UMRE estimators

Lehmann and Casella [1998] sections 3.1 and 3.3 present some techniques for finding

UMREEs for location, scale and location-scale problems specifically, but they don’t

discuss how these techniques tie together or generalize. Berger [1985] section 6.5

discusses a general method for finding UMREEs, but doesn’t go into much detail,

or show many examples. We’ll try to tie the material from both of these sources

together.

5.1 Location models

Let X ∼ Pθ ∈ P = {p(x|θ) : p0(x1 − θ, . . . , xn − θ), θ ∈ Θ = R}.

Here, p0 is a known probability density on Rn. Some possibilities include

• an i.i.d. model : p0(x) =
∏n

i=1 f0(xi)

• an independence model: p0(x) =
∏n

i=1 fi(xi)

• a dependence model: p0(x) =
∏n

i=1 fi(xi|xi−1)

Model invariance and induced groups:

X ∼ Pθ, θ ∈ Θ.

X ′ = gX = X + a1, a ∈ R.
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By the usual change of variables formula, the joint density of X is

px′(x
′) = p(x(x′)|θ)× |dx/dx′|

= p(x′1 − a, . . . , x′n − a|θ)

= p0(x′1 − (θ + a), . . . , x′n − (θ + a))

= p(x′|θ + a) ∈ P .

It is also clear that such a transformation doesn’t reduce the model, and so

• P is invariant under the additive group G = {g : x→ x+ a, a ∈ R};

• the induced group on Θ is Ḡ = {ḡ : θ → θ + a, a ∈ R}.

Note that Ḡ is a transitive group on Θ.

Consider estimation of θ under a loss of the form

L(θ, d) = ρ(d− θ)

where ρ is an increasing function with ρ(0) = 0. It is straightforward to show that

such an L is invariant, with

G̃ = {g̃ : d→ d+ a, a ∈ R}.

Definition 7 (LC 1.2). Under the model P and loss L, the problem of estimating θ

is said to be location invariant.

For this problem, an equivariant estimator is one that satisfies

δ(gx) = g̃δ(x)

δ(x+ a1) = δ(x) + a.

As Ḡ is transitive, we already know from our general results that R(θ, δ) is constant

in θ. LC prove this result for this special case:

Theorem (LC 3.1.4). For the invariant location problem, the bias, variance and risk

of any equivariant estimator are constant as a function of θ ∈ R.
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Exercise: Prove this theorem.

Thus the risk function of any estimator is determined by its risk at any value of θ.

A convenient choice is θ = 0. Finding the UMREE then amounts to

1. calculating R(0, δ) for each equivariant estimator δ,

2. selecting the δ that minimizes the risk.

5.2 Characterizing equivariance

Before we compare risk functions, we need to characterize a form for all equivari-

ant estimators. The first thing to notice is that the difference between any two

equivariant estimators is an invariant function of x:

Let δ and δ0 be equivariant. Then

u(x) ≡ δ(x)− δ0(x)

u(gx) = δ(gx)− δ0(gx)

= g̃δ(x)− g̃δ0(x) (by equivariance)

= δ(x) + a− δ0(x)− a

= δ(x)− δ0(x) = u(x).

This leads to the following characterization of equivariant estimators:

Theorem (LC 3.1.6). Let δ0 be an equivariant estimator. Then δ is equivariant iff

δ(x) = δ0(x) + u(x),

for some u(x) such that u(gx) = u(x) ∀g ∈ G.

Proof. We have shown that if δ and δ0 are equivariant, then their difference is invari-

ant. Now suppose δ0 is equivariant and u is invariant, and let δ(x) = δ0(x) + u(x).

Then

δ(x+ a1) = δ(gx) = δ0(gx) + u(gx)

= g̃δ0(x) + u(x)

= δ0(x) + a+ u(x) = δ(x) + a,
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and so such a δ is equivariant.

Maximal invariants:

The next step to characterizing the location equivariant estimators is to characterize

the invariant functions u(x). Here is the lemma presented in LC:

Lemma (LC 3.1.7). A function u(x) satisfies u(x+ a) = u(x) iff

• for n > 1, it is a function of the differences y1 = x1−xn, . . . , yn−1 = xn−1−xn;

• for n = 1, it is a constant.

Proof. For n = 1, if it is constant it is invariant. If it is invariant, then u(x) =

u(x− x) = u(0) ∀x ∈ R, and so it is constant.

For n > 1

• Suppose u is a function of the differences, i.e. u(x) = h(y(x)). Letting x′ =

x+ a,

y(x′) = ([x1 + a]− [xn + a], . . . , [xn−1 + a]− [xn + a])

= (x1 − xn, . . . , xn−1 − xn) = y(x)

u(x′) = u(x+ a) = h(y(x′))

= h(y(x)) = u(x).

• Suppose u is invariant. Then

u(x) = u(x− xn)

= u(x1 − xn, . . . , xn−1 − xn, 0)

= h(y(x)).

We have shown that any function u(x) invariant under the additive group must be

a function of the differences. Of course, the differences themselves are invariant. We
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say that the differences y(x) are a maximal invariant statistic. More generally, we

have the following definitions and result:

Let G be a group on X .

Definition. A function u : X → U is invariant if

u(gx) = u(x) ∀g ∈ G, x ∈ X .

Definition. A function y : X → Y is a maximal invariant if it is invariant and if

for any two points x1, x2 ∈ X ,

y(x1) = y(x2)⇒ x2 = gx1 for some g ∈ G.

In other words,

• invariant functions are constant on orbits of X .

• a maximal invariant function identifies the orbits of X , i.e. takes on a different

value on each orbit.

Exercise: Draw a picture of how a maximal invariant partitions the sample space. A

simple example is the case of x ∈ R2 and G = {g : x→ x+ (a, a), a ∈ R}.

This last characteristic of maximal invariants implies the following:

Theorem 2. A function u(x) is invariant iff it is a function of a maximal invariant

y(x).

Proof.

If u is a function of y then u is certainly invariant.

To go the other direction, we need to show that

if u is invariant, then

y(x) = y(x′) implies that u(x) = u(x′).
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This would mean that u(x) only changes as y(x) changes.

So let u be invariant and suppose y(x) = y(x′).

Since y is maximal invariant, this means x′ = gx for some g ∈ G.

But since u is invariant, we have u(x′) = u(gx) = u(x).

Exercise (scale group):

Find a maximal invariant function of x for the multiplicative group G = {g : x →
ax, a > 0}.

Returning to the location problem, we have shown the following:

• If δ0 is any equivariant estimator, δ(x) is equivariant iff

δ(x) = δ0(x) + u(x)

for some invariant u(x);

• If u(x) is invariant, then it is a function of the differences y, which is a maximal

invariant, so

u(x) = v(y(x)).

LC combine these results into the following theorem:

Theorem (LC 3.1.8). If δ0 is any equivariant estimator, then δ is equivariant iff

δ(x) = δ0(x)− v(y),

where v(y) is some function of the differences y1 = x1 − xn, . . . , yn−1 = xn−1 − xn.

Example:

If n = 1 then the maximal invariant is constant, and so all equivariant estimators

are of the form δ(x) = δ0(x) + c, where c is constant in x and δ0 is an arbitrary

equivariant estimator. One such estimator is δ0(x) = x, giving our previous result

that the equivariant estimators are δ(x) = x+ c, c ∈ R.
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We are now in a position to construct the minimum risk equivariant estimator.

Recall, our objective is to minimize R(θ, δ) among equivariant estimators. We’ll do

this under squared error loss (see LC for more general loss functions).

R(θ, δ) = R(0, δ) = E0[L(0, δ0(X)− v(Y ))]

= E0[(δ0(X)− v(Y ))2]

= E0[ E0[(δ0(X)− v(Y ))2|Y ] ].

Now suppose for each y, we choose v∗(y) as the minimizer of the inner expectation:

v∗(y) minimizes E0[(δ0(X)− v(y))2|Y = y] over all functions v.

Then clearly δ0(X) − v∗(Y ) minimizes the unconditional risk, and is therefore the

UMRE estimator. In a sense, what we have done here is find the best equivariant

estimator on each orbit of G (recall, v is constant on orbits), and the maximal

invariant y defines the orbits.

Can we find such a v∗?

E0[(δ0(X)− v(y))2|Y = y] = E0[δ2
0(x)− 2δ0(x)v(y) + (y)|Y = y]

= E0[δ2
0(x)|y]− 2v(y)E0[δ0(x)|y] + v(y)2.

The unique minimize of the conditional expectation is therefore

v∗(y) = E0[δ0(x)|y],

and so the UMREE can be expressed as

δ0(x) = δ0(x)− E0[δ0(x)|y].

All that remains is to pick a convenient δ0 for which the conditional expectation can

be easily calculated.

LC give this derivation in a theorem that is applicable to more general loss functions,

but the basic idea is the same.
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Theorem (LC 3.1.10, LC 3.1.11). Let L(θ, d) = ρ(d− θ), where ρ is convex and not

monotone. If δ0 is an equivariant estimator with finite risk, then the unique UMRE

estimator is given by

δ(x) = δ0(x)− v∗(y),

where v∗(y) is the minimizer of E0[ρ(δ0(x)− v(y))|y].

Corollary (LC 3.1.12).

• If ρ(d− θ) = (d− θ)2, then v∗(y) = E0[δ0(X)|y].

• If ρ(d− θ) = |d− θ|, then v∗(y) is any median of δ0(X) under p0(x|y).

5.3 The Pitman location estimator

The UMREE under squared error loss is

δ(x) = δ0(x)− E0[δ0(X)|y],

where δ0(x) is an arbitrary equivariant estimator. The choice of δ0 will not affect

δ, it will only affect our ability to calculate E0[δ0(X)|y]. Let’s try a very simple

equivariant estimator:

δ0(x) = xn.

Note that

δ0(gx) = δ0(x+ a)

= xn + a

= δ0(x) + a = g̃δ0(x),

and so this estimator is equivariant. Now we just need to calculate the conditional

expectation:

E[Xn|X1 −Xn, . . . , Xn−1 −Xn].
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The joint density of (X1−Xn, . . . , Xn−1−Xn, Xn) = (Y1, . . . , Yn−1, Xn) can be found

from the change of variables formula:

py,xn(y1, . . . , yn−1, xn) = px(x1(y, xn), . . . , xn−1(y, xn), xn)|d(y, xn)/dx|.

Now

• |d(y, xn)/dx| = 1

• xi = yi + xn, i = 1, . . . n− 1.

so we have

py,xn(y1, . . . , yn−1, xn) = p0(y1 + xn, . . . , yn−1 + xn, xn).

The conditional density for Xn given Y1, . . . , Yn−1 is

pxn|y(xn|y) =
p0(y1 + xn, . . . , yn−1 + xn, xn)∫
p0(y1 + x, . . . , yn−1 + x, x) dx

,

and so the desired conditional expectation is

E[Xn|Y1, . . . , Yn−1] =

∫
xp0(y1 + x, . . . , yn−1 + x, x) dx∫
p0(y1 + x, . . . , yn−1 + x, x) dx

.

Now do a change of variables: Let x = xn− θ, where xn is the observed value of Xn,

and θ is the variable of integration:

E[Xn|Y1, . . . , Yn−1] =

∫
(xn − θ)p0(y1 + xn − θ, . . . , yn−1 + xn − θ, xn − θ) dθ∫

p0(y1 + xn − θ, . . . , yn−1 + xn − θ, xn − θ) dθ
.

Now recall yi = xi − xn for i = 1, . . . , n− 1:

E[Xn|y] =

∫
(xn − θ)p0(x1 − θ, . . . , xn − θ) dθ∫

p0(x1 − θ, . . . , xn − θ) dθ

= xn −
∫
θp0(x1 − θ, . . . , xn − θ) dθ∫
p0(x1 − θ, . . . , xn − θ) dθ

δ(x) = xn − E[Xn|y]

=

∫
θp0(x1 − θ, . . . , xn − θ) dθ∫
p0(x1 − θ, . . . , xn − θ) dθ

.
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This is known as the Pitman estimator of θ. Note that it is equal to the generalized

Bayes estimator under the prior measure π(θ) ∝ 1, θ ∈ R. Under this “prior,”

π(θ|x) =
π(θ)p0(x1 − θ, . . . , xn − θ)∫
π(θ)p0(x1 − θ, . . . , xn − θ) dθ

=
p0(x1 − θ, . . . , xn − θ)∫
p0(x1 − θ, . . . , xn − θ) dθ

, so

Eπ[θ|x] =

∫
θp0(x1 − θ, . . . , xn − θ) dθ∫
p0(x1 − θ, . . . , xn − θ) dθ

.

Example (normal model):

X1, . . . , Xn ∼ i.i.d. N(θ, σ2), σ2 known.

Let’s find the “posterior” that corresponds to the equivariant estimator:

π(θ|x) ∝ p0(x− θ1)

=
n∏
i=1

(2πσ2)−1/2 exp(−(xi − θ)2/[2σ2])

∝θ exp{θx̄n/σ2 − 1
2
θ2n/σ2}

∝θ dnorm(θ, x̄,
√
σ2/n).

So the UMREE under squared error loss is the generalized Bayes estimator based

on this posterior, δ(x) = x̄, the same as the UMVUE. Note that since the UMREE

doesn’t depend on σ2, it must also be UMREE in the case that σ2 is unknown.

Example (exponential model):

Let X1, . . . , Xn ∼ i.i.d. exponential(θ, b), with b known. In this case,

π(θ|x) ∝ p0(x− θ1)

=
n∏
i=1

1(xi > θ) exp{−(xi − θ)/b}/b

∝θ 1(x(1) > θ)enθ/b

E[θ|x] =

∫ x(1)

−∞ θenθ/b dθ∫ x(1)

−∞ enθ/b dθ
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Using integration by parts, the numerator is

b
n
θenθ/b − b2

n2 e
nθ/b|x(1)−∞ = b

n
x(1)e

nx(1)/b − b2

n2 e
nx(1)/b,

whereas the denominator is

b
n
enθ/b|x(1)−∞ = b

n
enx(1)/b,

giving the UMREE as δ(x) = x(1) − b/n, the same as the UMVUE. However, note

that the UMREE depends on the scale parameter b. Thus there won’t exist an

UMREE for this group when b is unknown.

Example (uniform):

Let X1, . . . , Xn ∼ i.i.d. uniform(θ − 1/2, θ + 1/2).

The UMREE is (X(1) +X(n))/2.

There is no UMVUE (see LC Example 2.1.9).

5.4 Scale models

Invariant scale problem

Let X1, . . . , Xn ∼ i.i.d. Pσ ∈ P = {p1(x1/σ, . . . , xn/σ)/σn, σ > 0}.
Using the usual change of variables formula, it can be shown that this model is

invariant under transformations

G = {g : x→ bx, b > 0},

which induce the following group of transformations on the parameter space:

Ḡ = {ḡ : σ → bσ, b > 0}.

Consider estimation of σr under a loss of the form

L(σ, d) = γ(d/σr).

Examples:
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• standardized power loss: L(σ, d) = |d− σr|p/σpr = | d
σr − 1|p;

• Stein’s loss: L(σ, d) = (d/σr)− log(d/σr)− 1.

Note that

• limd→∞ L(σ, d) =∞, limd→0 L(σ, d) = 1 for power loss, but

• limd→∞ L(σ, d) =∞, limd→0 L(σ, d) =∞ for Stein’s loss.

Any of these loss functions are invariant, with the induced group on D being

G̃ = {g̃ : d→ brd, d > 0}.

Equivariant estimation

An equivariant estimator for this problem is one that satisfies

δ(gx) = g̃δ(x)

δ(bx) = brδ(x).

Notice that Ḡ and G̃ act transitively and commutatively on Θ and D.

Exercise: Prove the following theorem:

Theorem. Let δ0 be an equivariant estimator. Then δ is equivariant iff

δ(x) = u(x)δ0(x),

for some u(x) such that u(gx) = u(x) ∀g ∈ G.

Now let’s characterize the invariant functions u(x). Recall our theorem:

Theorem. Any invariant function is a function of the maximal invariant.

What is the maximal invariant for this multiplicative group?

What function of x contains all of the information, except the “scale”?
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Theorem. For G = {g : x→ bx, b > 0} acting on x ∈ Rn, a maximal invariant is

z(x) = (x1/xn, . . . , xn−1/xn, xn/|xn|).

Proof. Clearly z(bx) = z(x). Now let’s show it is maximal, i.e.

z(x′) = z(x)⇒ x′ = bx for some b > 0.

So suppose z(x′) = z(x).

Then z′i = x′i/x
′
n = xi/xn = zi, i = 1, . . . , n− 1.

This implies x′i = (x′n/xn)xi = bxi, i = 1, . . . , n− 1.

Note that b = (x′n/xn) > 0 because z′n = x′n/|x′n| = xn/|xn| = zn.

Finally, we trivially have x′n = (x′n/xn)xn = bxn.

Thus x′ = bx.

Our characterization of equivariant estimators is therefore as follows:

Theorem (LC Theorem 3.3.1). Let δ0 be any equivariant estimator of σr. Then δ

is equivariant iff there exists a function w(z) such that

δ(x) = δ0(x)/w(z).

Based on this representation, we can identify the UMREE via a conditioning argu-

ment as before. For simplicity, let’s consider estimation of σr with scaled squared-

error loss (p = 2).

R(σ2, δ) = R(1, δ) = E1L(1, δ)

= E1[(δ0(x)/w(z)− 1)2]

= E1[E1[(δ0(x)/w(z)− 1)2|z]]

The optimal w(z) can be found by having w(z) minimize the conditional expectation

for each z.

E1[(δ0(x)/w(z)− 1)2|z] = E1[ δ
2

w2 − 2 δ0
w

+ 1|z]

= E1[δ2
0|z]/w2 − 2E1[δ0|z]/w + 1
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Taking derivatives, the minimum in w satisfies

−2E1[δ2
0|z]/w3 + 2E1[δ0|z]/w2 = 0

w(z) = E1[δ2
0|z]/E1[δ0|z].

Therefore, the UMREE under scaled squared error satisfies

δ(x) =
δ0(x)E1[δ0(x)|z]

E1[δ2
0(x)|z]

.

Similar calculations show that the UMREE under Stein’s loss is

δ(x) =
δ0(x)

E1[δ0(x)|z]
.

In either case, the remaining task is to choose δ0(x) and calculate its conditional

moments, given z.

Example (normal variance, known mean):

X1, . . . , Xn ∼ i.i.d. N(0, σ2),

A good strategy for picking δ0(x) is to choose

• a really simple estimator (so conditional calculations are easy), or

• a really good estimator (so maybe the adjustment to δ0 will be simple).

Consider δ0(x) =
∑
x2
i , which is equivariant.∑

x2
i is a complete sufficient statistic,

z(x) is ancillary (has a distribution that doesn’t depend on σ2)∑
x2
i is independent of z(x) by Basu’s theorem.

Thus E1[δ|z] = E1[δ], E1[δ2|z] = E1[δ2],

Stein’s loss:

The estimator under Stein’s loss is

δ0(x)

E1[δ0(x)|z]
=

δ0(x)

E1[δ0(x)]
=

∑
x2
i

n
,
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which is also the UMVUE.

Scaled squared error loss:

The estimator under scaled squared error loss is

δ0(x)E1[δ0(x)]

E1[δ2
0(x)]

.

The expectations can be calculated from the moments of the gamma distribution,

giving the UMREE as

δ(x) =

∑
x2
i

n+ 2

Bayesian representation:

The conditional expectations are more tedious in the absence of a complete sufficient

statistic. For such cases, let’s pick a simple equivariant estimator to begin with:

δ0(x) = |xn|r.

The UMREE is based on conditional moments of |Xn| given z. To calculate these

moments, we need the conditional density of |Xn| given z. To make notation easier,

let’s denote the maximal invariant as

(z, s) = (x1/xn, . . . , xn−1/xn, xn/|xn|).

Note that s is the sign of xn.

Pr(|Xn| ≤ t|z, s) =

∫ t
−t pz,xn,s(z, x, s) dx∫∞
−∞ pz,xn,s(z, x, s) dx

=

∫ t
−t pz,xn(z, x)ps|xn(s|x) dx∫∞
−∞ pz,xn(z, x)ps|xn(s|x) dx

.

Now note that

ps|xn(s|x) = 1(x > 0) if s = 1

= 1(x < 0) if s = −1 .
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Let’s suppose the observed value of xn is positive, i.e. s = 1. In this case,

Pr(|Xn| ≤ t|z, s) =

∫ t
0
pz,xn(z, x) dx∫∞

0
pz,xn(z, x) dx

Therefore, when s = 1 the conditional density of T = |Xn| is

pt|z,s(t|z, s = 1) =
pz,xn(z, t)∫∞

0
pz,xn(z, t) dt

,

where we have replaced x by t in the denominator. Now we need to find pz,xn(z, xn):

pz,xn(z1, . . . , zn−1, xn) = p1(x1(z, xn), . . . , xn(z, xn)× |dx/d(z, xn)|

= p1(z1xn, . . . , zn−1xn, xn)|xn|n−1.

The conditional density of t is then

pt|z,s(t|z, s = 1) =
p1(z1t, . . . , znt, t)t

n−1∫∞
0
p(z1t, . . . , znt, t)tn−1 dt

,

The conditional expectation of |Xn|r given z and s = 1 is then

E1[|Xn|r|z, s = 1] =

∫∞
0
trp(z1t, . . . , znt, t)t

n−1 dt∫∞
0
p(z1t, . . . , znt, t)tn−1 dt

That’s it! Except this result is hard to interpret. Let’s make the result easier to

understand with a change variables: Letting t = xnv, where xn is the observed value

of Xn, we have

E1[|Xn|r|z, s = 1] =

∫∞
0
xrnv

rp(z1xnv, . . . , znxnv, xnv)xn−1
n vn−1|xn| dv∫∞

0
p(z1xnv, . . . , znxnv, xnv)xn−1

n vn−1|xn| dv

Recalling zixn = xi, i = 1, . . . , n− 1, and canceling some xn’s gives

E1[|Xn|r|z, s = 1] =
|xn|r

∫∞
0
vrp(x1v, . . . , xnv)vn−1 dv∫∞

0
p(x1v, . . . , xnv)vn−1 dv

.
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Similar calculations show that the result is the same for s = −1. From this we can

obtain the result in LC 3.19: Under scaled squared error loss, the UMREE is given

by

δ(x) = |xn|r
E1[|Xn|r|z, s]
E1[|Xn|2r|z, s]

= |xn|r
|xn|r

∫∞
0
vrp(x1v, . . . , xnv)vn−1 dv

|xn|2r
∫∞

0
v2rp(x1v, . . . , xnv)vn−1 dv

=

∫∞
0
vn+r−1p(x1v, . . . , xnv) dv∫∞

0
vn+2r−1p(x1v, . . . , xnv) dv

.

This is known as Pitman’s estimator of σr. As you may be able to tell, this estimator

is related to a generalized Bayes estimator of σ. To see this consider the change of

variables σ = 1/v, |dv/dσ| = σ−2:

δ(x) =

∫∞
0
vn+r−1p(x1v, . . . , xnv) dv∫∞

0
vn+2r−1p(x1v, . . . , xnv) dv

=

∫∞
0
σ−n−r+1p(x1/σ, . . . , xn/σ)σ−2 dσ∫∞

0
σ−n−2r+1p(x1/σ, . . . , xn/σ)σ−2 dσ

=

∫∞
0
σ−r[p(x1/σ, . . . , xn/σ)/σn]σ−1 dσ∫∞

0
σ−2r[p(x1/σ, . . . , xn/σ)/σn]σ−1 dσ

=

∫∞
0
σ−rp(x|σ)π(σ)dσ∫∞

0
p(x|σ)π(σ)dσ

×
(∫∞

0
σ−2rp(x|σ)π(σ)dσ∫∞
0
p(x|σ)π(σ)dσ

)−1

= E[σ−r|x]/E[σ−2r|x],

where π(σ) is the (improper) prior π(σ) = 1/σ. To see that this is in fact the Bayes

estimator under this prior and scaled squared error loss, recall the Bayes estimator

δπ(x) is obtained as the minimizer of the posterior risk:

R(π, d|x = E[(d− σr)2/σ2r|x]

= E[d2/σ2r − d/σr + 1|x]

= d2E[σ−2r|x]− dE[σ−r|x] + 1.

Taking derivatives, we see that this is minimized by

d =
E[σ−r|x]

E[σ−2r|x]
.
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Thus the UMREE is equal to the Bayes estimator under the improper prior π(σ) =

1/σ.

6 Location-scale models via invariant measure

In both of the last two examples, the UMREE could be derived as a generalized

Bayes estimator under an improper prior. This result holds more generally: If the

induced group Ḡ on Θ is transitive, then there is a “formula” for the UMREE, and

it can be obtained by turning the Bayesian crank of posterior risk minimization.

Theorem (Eaton [1989]). If G acts properly on X and Ḡ acts transitively on Θ, the

UMREE is given by

δ(x) = arg min
d

∫
Ḡ
L(d, ḡθ0)p(x|ḡθ0)µr(dḡ)

where µr is the right-invariant measure on Ḡ and θ0 is any point in Θ.

Before discussing what right-invariant measure is, we first consider the similarities

between the UMREE δ given above and posterior risk minimization: Having seen

x, the best equivariant decision is obtained as the minimizer of some integral. Also

note that in the above integral,

• as ḡ ranges over Ḡ, ḡθ0 ranges over Θ;

• as Ḡ is transitive, the range of ḡθ0 is all of Θ.

Therefore, the integral over Ḡ can essentially be viewed as an integral over Θ. To be

more precise, define the right-invariant prior as follows:
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Definition (Right-invariant prior measure). The right invariant prior measure cor-

responding to a group Ḡ on Θ is defined as

πr(A) = µr(ḡ : ḡθ0 ∈ A) =

∫
1(ḡθ0 ∈ A) µr(dḡ) ∀A ∈ σ(Θ),

where θ0 is any point in Θ and µr is the right-invariant measure on Ḡ.

Conceptually, πr is the distribution of ḡθ0 when ḡ is selected randomly from µr. As

we will soon see, the choice of θ0 has no effect on πr (this is due to the transitivity

of the group and the right invariance of µr). This invariant prior allows us to view

the UMREE as a Bayesian procedure.

Corollary. Let Ḡ act transitively on Θ. Then the UMREE is given by

δ(x) = arg min
d
R(πr, d|x) =

∫
Θ

L(d, θ)πr(dθ|x)

where

πr(θ|x) =
p(x|θ)πr(θ)∫
p(x|θ′) πr(dθ′)

is the posterior density of θ based on the right-invariant prior πr on Θ.

Proof. The UMREE is given by the minimizer of∫
Ḡ
L(d, ḡθ0)p(x|ḡθ0)µr(dḡ).

Letting θ = ḡθ0, this integral is the same as∫
Θ

L(d, θ)p(x|θ)πr(dθ)

by the definition of πr, and is proportional as a function of θ to the posterior risk.
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6.1 Invariant measure

To make use of these results we need to be able to obtain the right-invariant measure

for an invariant estimation problem. The right-invariant measure µr on Ḡ is a measure

such that for any g0 ∈ Ḡ and measurable A ⊂ Ḡ

µr(Aḡ
−1
0 ) = µr(A).

The easiest way (for me) to think about this is in the case that µr is a probability

measure, and we are sampling a ḡ from Ḡ according to µr. In this situation, for a

right-invariant (probability) measure µr

Pr(ḡ ∈ A) = µr(A) = µr(Aḡ
−1
0 ) = Pr(ḡḡ0 ∈ A),

that is, the probability that ḡ is in A is the same as the probability that ḡḡ0 is in A.

Example (additive group):

Let Ḡ = {ḡ : θ → θ + a, a ∈ R}. Then

• if ḡ : θ → θ + a and ḡ0 : θ → θ + a0 then ḡḡ0 : θ → θ + (a+ a0);

• Ḡ is isomorphic to R.

µr is right-invariant on R means

µr(A− a0) = µr(A) ∀a0 ∈ R, A ⊂ B(R)

Clearly Lebesgue measure on R is right-invariant.

The induced prior πr in this case is given by the distribution of θ0 + a where a ∼ µL.

Clearly, πr = µL = µr.

Example (multiplicative group):

Let Ḡ = {ḡ : θ → aθ, a > 0}. Then

• if ḡ : θ → aθ and ḡ0 : θ → a0θ then ḡḡ0 : θ → aa0θ;

• Ḡ is isomorphic to R+.
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µr is right-invariant on R means

µr(A/a0) = µr(A) ∀a0 ∈ R, A ⊂ B(R)

Lebesgue measure on R+ is not right-invariant. For example, letting A = (0, c) we

have µL(A/a0) = µL(A)/a0 6= µL(A) unless a0 = 1. However, consider the measure µ

with density 1/a with respect to Lebesgue measure µL. Pick any B = (b1, b2) ⊂ R+,

and let a′ = aa0 ( so a = a′/a0). Then

µ(B/a0) =

∫ b2/a0

b1/a0

1
a
µL(da)

=

∫ b2

b1

1
a′/a0
| da
da′
|µL(da)

=

∫ b2

b1

a0
a′

1
a0
µL(da′)

=

∫ b2

b1

1
a′
µL(da′) = µ(B),

so µ is right-invariant (you can use a π − λ argument to show that µ(B/a0) = µ(B)

for any Borel set). The relabeling µ as µr, we have for any B ∈ B(R)

µr(B) =

∫
B

a−1 µL(da).

The induced prior πr in this case is given by the distribution of aθ0 where a ∼ µr.

by the invariance of µr, we have πr = µr.

We defined the induced prior πr by πr(A) = µr(ḡ : ḡθ0 ∈ A), and claimed that πr

didn’t depend on the value of θ0. Let’s make sure this is correct. Define two measures

based on µr as follows:

π0(A) = µr({ḡ : ḡθ0 ∈ A})

π1(A) = µr({ḡ : ḡθ1 ∈ A}).
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The claim is that these two measures are equal regardless of what the values of θ0, θ1

are. To see this, note that Ḡ is transitive, and so there exists an h̄ ∈ Ḡ such that

θ1 = h̄θ0. Therefore,

{ḡ : ḡθ1 ∈ A} = {ḡ : ḡh̄θ0 ∈ A}

= {ḡ : ḡθ0 ∈ A}h̄−1

since if ḡθ0 ∈ A, then ḡh̄−1 is a transformation such that ḡh̄−1h̄θ0 = ḡθ0 ∈ A. Now

by the right invariance of µr, we have

π1(A) = µr({ḡ : ḡθ0 ∈ A}h̄−1)

= µr({ḡ : ḡθ0 ∈ A}) = π0(A).

6.2 Equivariant estimation for location-scale families

Now we consider location scale models generated by a known density p01 on Rp.

P = {p(x|µ, σ) = p01(x− µ1)/σ)/σp : {µ, σ} ∈ R× R+}.

You can check that such models are invariant under functions of the form

g : x→ ax+ b

ḡ : (µ, σ)→ (aµ+ b, aσ)

for a > 0, b ∈ R.

A technicality: The group G = {g : x→ ax+ b, a > 0, b ∈ R} does not act properly

on X = R. However, it does act properly on the subset of R for which
∑

(xi−x̄)2 > 0.

If this happens with probability 1 under p01, then the above theorem will still work.

To apply the theorem, we need to find the right-invariant prior µr on Ḡ and the

induced right-invariant prior πr on Θ = {(µ, σ) : µ ∈ R, σ > 0}. This is not too

hard:
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Lemma. The right-invariant measure on Ḡ = {ḡ : (µ, σ)→ (aµ+ b, aσ)} satisfies

µr(A×B) =

∫
A

∫
B

a−1 db da,

so that µr has density 1/a with respect to Lebesgue measure on R× R+.

Now recall the induced right-invariant prior πr on (µ, σ) is the measure of ḡθ0 when

ḡ ∼ µr, for any θ0. Taking θ0 = (0, 1) and indexing g : x→ ax+ b1, we have that

(µ, σ) ∼ πr ⇔ (µ, σ)
d
= ḡab((0, 1)) = (b, a).

In other words, the invariant prior for (µ, σ) is the same as the invariant measure of

(b, a).

Corollary. The right-invariant prior on Θ = {(µ, σ) : µ ∈ R, σ > 0} has density

π(µ, σ) = 1/σ with respect to Lebesgue measure on R× R+.

Alternatively, the prior density in terms of (µ, σ2) is given by

π(µ, σ2) = 1/σ2.

We are now in a position to obtain the best equivariant estimator of any function of

(µ, σ2) under an invariant loss. Via the theorem, the best equivariant estimator is

the minimizer of he posterior risk under the right-invariant prior.

Example (normal model): Let X1, . . . , Xn ∼ N(µ, σ2), µ ∈ R, σ2 > 0.

The posterior distribution of (µ, σ2) under πr can be computed as

π(µ, σ2) ∝ p(x|µ, σ2)× πr(µ, σ2)

∝ (σ2)−n/2 exp(−1
2

∑
(xi − µ)2/σ2)× (σ2)−1

∝ (σ2)−n/2 exp(−1
2
[(n− 1)s2 + n(µ− x̄)2]/σ2)× (σ2)−1(

(σ2)−(n+1)/2 exp(−(n− 1)s2/[2σ2])
)
×
(
(σ2)−1/2 exp(−n(µ− x̄)2/[2σ2])

)
,

where s2 =
∑

(xi − x̄)2/(n− 1). The term on the left is proportional to an inverse-

gamma((n−1)/2, (n−1)s2/2) density for σ2, and the term on the right is proportional
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to a normal(x̄, σ2/n) density for µ (conditional on σ2. This implies that under πr,

the joint distribution of (µ, σ2) can be described as

µ|x̄, σ2 ∼ normal(x̄, σ2/n)

1/σ2|x̄ ∼ gamma((n− 1)/2, (n− 1)s2/2).

The marginal posterior density of µ|x̄ can be obtained by integrating the joint density

over σ2, which gives
µ− x̄
s/
√
n
|X1, . . . , Xn ∼ tn−1.

It is interesting to compare this posterior distribution to that of the sampling distri-

bution of the t-statistic for a fixed value of (µ, σ2):

µ− x̄
s/
√
n
|µ, σ2 ∼ tn−1.

Application (variance estimation): Consider estimation of σ2 under the invariant loss

L((µ, σ2), d) = (d− σ2)2/σ4.

The posterior risk is

E[(d− σ2)2/σ4|x] = E[(d2/σ4 − 2d/σ2 + 1|x]

= d2E[(σ2)−2]− 2dE[(σ2)−1] + 1.

Now let γ = 1/σ2, and let a = (n − 1)/2 and b = (n − 1)s2/2, so that γ|x ∼
gamma(a, b). The posterior risk in terms of moments of γ is

d2E[γ2|x]− 2dE[γ|x] + 1
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which is minimized in d by

d̂x =
E[γ|x]

E[γ2|x]

=
a/b

a/b2 + (a/b)2

=
ba

a+ a2

=
b

1 + a

=
1
2
(n− 1)s2

1
2
(n− 1) + 1

=
(n− 1)s2

n+ 1
=

∑
(xi − x̄)2

n+ 1
.

6.3 Finding the invariant measure

7 Location-scale models Lehmann-style

X1, . . . , Xn ∼ i.i.d. Pθ ∈ P = {p01([x1 − µ]/σ, . . . , [xn − µ]/σ)/σn : θ = (µ, σ) ∈
R× R+}
This model is invariant to transformations

G = {g : x→ a1 + bx, a ∈ R, b > 0},

which induce the following group of transformations on Θ :

Ḡ = {ḡ : (µ, σ2)→ (a+ bµ, b2σ2), a ∈ R, b > 0}.

Equivariant estimation of σr:

Suppose we have an invariant loss under the group G̃ = {g̃ : d → brd, b > 0}. An

equivariant estimator must satisfy

δ(gx) = g̃δ(x)

δ(a1 + bx) = brδ(x).

In particular, δ must be invariant under the additive group:

δ(a1 + x) = δ(x).
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We know that any function invariant under a group must be a function of the maximal

invariant for that group, which in this case is the differences:

δ(x) = δ̃(y(x))

y = (x1 − xn, . . . , xn−1 − xn).

Thus to find the best EE of σ, we can restrict ourselves to EE based on y.

What is the joint density of y? First find the joint density of (y, xn), and then

integrate over xn:

py,xn(y, xn|mu, σ) = px(x1(y, xn), . . . , x1(y, xn))|dx/d(y, xn)|

= p01([y1 + xn − θ]/σ, . . . , [yn−1 + xn − θ]/σ, [xn − θ]/σ)/σn

p(y|µ, σ) =

∫ ∞
−∞

p01([y1 + xn − θ]/σ, . . . , [yn−1 + xn − θ]/σ, [xn − θ]/σ)/σndxn.

Now let u = (xn − θ)/σ, for which dx = σdu , giving

p(y|µ, σ) =

∫ ∞
−∞

p01(y1/σ + u, . . . , yn−1/σ + u, u)/σn−1du

= f(y1/σ, . . . , yn−1/σ)/σn−1.

Thus Y ∼ Pσ ∈ P = {f(y1/σ, . . . , yn−1/σ)/σn−1, σ > 0}.
This family is a scale family, and so the best equivariant estimator based on Y can

be obtained from our previous results. In particular:

Characterization: If δ0 is an equivariant estimator of σr, then δ is equivariant iff

δ(y) = δ0(y)/w(z),

where w(z) = (y1/yn−1, . . . , yn−2/yn−1, yn−1/|yn−1|).

Optimality: The UMREE estimator is δ0(y)/w∗(z), where w∗(z) minimizes

Eσ=1[L(1, δ0(y)/w(z))|z].
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Example (normal variance):

Consider estimation of σ2 with scaled squared error loss.

The distribution of the yi’s doesn’t depend on µ, and

the distribution of the zi’s doesn’t depend on µ or σ.

Therefore z is ancillary, and independent of the complete sufficient statistic (x̄,
∑

(xi−
x̄)2).

Note that

(xi − x̄) = (xi − xn) + (xn − x̄)

= yi −
∑

yi/n

for i = 1, . . . , n, with yn = 0. Thus
∑

(xi − x̄)2

• is a function of y;

• is an equivariant estimator of σ2.

Taking δ0(y) =
∑

(xi − x̄)2, the remaining step is to find the optimal w(z). Based

on our previous results, our best estimator will have the form

δ(y) = δ0(y)E1[δ0(y)|z]/E1[δ2
0(y)|z].

However, recall that y is independent of z. Therefore, these conditional expectations

are unconditional expectations (constants). We can either calculate them, or note

that the estimator must be of the form

δ(y) = c
∑

(xi − x̄)2,

and then minimize the risk in c. Taking this latter approach, we find that the

UMREE is

δ(x) =
∑

(xi − x̄)2/(n+ 1).

Note that this result says that (under this loss), the MLE and the UMVUE are

inadmissible.
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Equivariant estimation of µ:

Now let’s consider estimation of µ under a loss of the form

L((µ, σ2), d) = ρ((d− µ)/σ).

Such a loss is invariant under the group

G̃ = {g̃ : d→ a+ bd, a ∈ R+, b > 0}.

An equivariant estimator must then satisfy

δ(a1 + bx) = a+ bδ(x).

In several cases, the best equivariant estimator under the additive group with the

scale parameter known

• doesn’t depend on the scale;

• is invariant under the linear group.

In these cases, the estimator is also best equivariant of the location problem. To

make this more concrete, consider the following strategy:

1. For each fixed σ, find the minimum risk estimator δσ(x) satisfying

δσ(x+ a1) = δσ(x) + a for the model

Pσ = {p([x1 − µ]/σ, . . . , [xn − µ]/σ)/σn, µ ∈ R}

= {pσ(x1 − µ, . . . , xn − µ), µ ∈ R}.

2. If this estimator δσ doesn’t depend on σ, then

• it is a valid estimator for the unknown scale problem;

• it has minimum risk among all estimators equivariant under Ga = {g :

x→ x+ 1a, a ∈ R}.
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3. If it is also equivariant under the larger group G = {g : x → a1 + bx, a ∈
R+, b > 0}, then it must be UMREE for this problem: Any other estimator

equivariant under G is also equivariant under Ga, and thus must have worse

risk than δσ.

Example: normal mean

Recall that when σ2 was known, the UMREE for the additive group was δ(x) = x̄.

This is true for each σ2 > 0, and so x̄ has minimum risk among all estimators

satisfying

δ(a1 + x) = a+ δ(x).

However, it also satisfies

δ(a1 + bx) = a+ bδ(x),

and so it is minimum risk among all such estimators as well.

Nonexample: exponential distribution

Here, p(x|b, µ) = 1(x > µ)e(x−µ)/b/b, µ ∈ R, b > 0.

Recall that when b was known, the UMREE for the additive group was δb(x) =

x(1) − b/n. However, this is not a valid estimator when b is unknown.

8 Invariant testing

Consider two competing location models:

P0 = {f0(x1 − µ, . . . , xn − µ) : µ ∈ R}

P1 = {f1(x1 − µ, . . . , xn − µ) : µ ∈ R}.

For example f0 could be the product of standard normal densities, and f1 could be

the product of t-densities (with known degrees of freedom).

Note that each of these models is invariant under the location group G = {g : x →
x+ a1, a ∈ R}.
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We can combine these models into one big model:

P = {fk(x1 − µ, . . . , xn − µ) : µ ∈ R, k ∈ {0, 1}}.

Let θ = {µ, k} ∈ R × {0, 1}. Now since each of P0 and P1 are invariant under G,

then

X ∼ Pθ, θ = (µ, 0)⇒X + a1 ∼ Pθ′ , θ
′ = (µ+ a, 0)

X ∼ Pθ, θ = (µ, 1)⇒X + a1 ∼ Pθ′ , θ
′ = (µ+ a, 1)

Therefore G induces a group Ḡ on θ = (µ, k) with elements ḡ of the form

ḡ : (µ, k)→ (µ+ a, k).

Notice

• P is invariant under Ḡ

• Ḡ is not transitive on Θ = R× {0, 1}.

Now consider the problem of deciding between P0 and P1 with zero-one loss:

L(θ, d) = 1(d 6= k).

Is this loss invariant? For it to be invariant, we need to be able to find a class of

functions g̃ such that

L(ḡθ, g̃d) = L(θ, d)

L((µ+ a, k), g̃d) = L((µ, k), d)

1(g̃d 6= k) = 1(d 6= k).

This will be satisfied for all a, d, k if g̃d = d. An equivariant estimator in this case is

one for which

δ(gx) = g̃δ(x) = δ(x),
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that is, the equivariant estimators are invariant.

Invariant tests:

You can view a decision rule δ as a test function:

• δ : x→ {0, 1}

• δ(x) = 0 = “say f0”, δ(x) = 1 = “say f1”

An equivariant decision rule in this case is an invariant test. You can motivate

invariant tests as follows: Consider evaluating

H0 : X ∼ Pθ, θ ∈ Θ0

H1 : X ∼ Pθ, θ ∈ Θ1

Suppose both parameter spaces are invariant under (g, ḡ), so that

ḡΘ0 = Θ0, ḡΘ1 = Θ1.

In this case,

• if X ∼ Pθ, θ ∈ Θ0 and X ′ = gX, then X ′ ∼ Pθ′ , θ
′ ∈ Θ0;

• if X ∼ Pθ, θ ∈ Θ1 and X ′ = gX, then X ′ ∼ Pθ′ , θ
′ ∈ Θ1.

The truth of the statement “θ ∈ Θ0” doesn’t depend on whether or not your data is

X or gX. This suggests test functions φ(x) : X → [0, 1] of the form

φ(gx) = φ(x).

Such tests are called invariant tests.

UMP invariant test

Returning to our location model, we would like to test P0 versus P1, i.e.

H0 : θ ∈ R× {0}

H1 : θ ∈ R× {1}.
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This is a “composite versus composite” hypothesis test, but at this point all we

know how to test (optimally) are simple versus simple tests. Let’s try a simple

versus simple version of the above test:

H̃0; θ = (µ0, 0)

H̃1 : θ = (µ1, 1).

We can find an optimal invariant test of this simple versus simple test based on the

following:

• all invariant tests must be a function of the maximal invariant y;

• a MP test of a simple versus simple hypothesis test based on data y can be

obtained using the NP lemma.

By the NP lemma, the MP level-α test of H̃0 versus H̃1 based on data y has the

form

φ(y) =

{
1 if p(y|µ1,k=1)

p(y|µ0,k=0)
> c

0 if p(y|µ1,k=1)
p(y|µ0,k=0)

< c

where c is chosen to set the level. To find the specific form of the test, we need to

compute the density of y under the two hypotheses. Recall that we have done this

calculation before:

p(y, xn|µ0, k = 0) = p(x1(y, xn), . . . , xn(y, xn)|µ0, k = 0)| dx
d(y,xn)

|

= f0(y1 + xn − µ0, . . . , yn−1 + xn − µ0, xn − µ0)

p(y|µ0, k = 0) =

∫ ∞
−∞

f0(y1 + xn − µ0, . . . , yn−1 + xn − µ0, xn − µ0) dxn

=

∫ ∞
−∞

f0(y1 + xn, . . . , yn−1 + xn, xn) dxn

The important thing to note is that this density doesn’t depend on the value of µ0.

Similarly,

p(y|µ1, k = 1) =

∫ ∞
−∞

f1(y1 + xn, . . . , yn−1 + xn, xn) dxn
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which doesn’t depend on µ1. The MP test of H̃0 versus H̃1 is then to reject H̃0 when∫∞
−∞ f1(y1 + xn, . . . , yn−1 + xn, xn) dxn∫∞
−∞ f0(y1 + xn, . . . , yn−1 + xn, xn) dxn

> c,

where c is set based on the distribution of y under H̃0. Since neither the test statistic

nor the value of c depend on µ0 or µ1, the MP test is the same for all µ0 ∈ R, µ1 ∈ R.

Thus the test is the UMP invariant test for the composite versus composite test H0

versus H1.

Exercise: Show that the above rejection criterion can be expressed as∫∞
−∞ f1(x1 − µ, . . . , xn − µ) dµ∫∞
−∞ f0(x1 − µ, . . . , xn − µ) dµ

> c,

and that the ratio of integrals can be expressed as

p(x|k = 1)

p(x|k = 0)
=

∫
p(x|µ, k = 1)π(µ)dµ∫
p(x|µ, k = 0)π(µ)dµ

where π(µ) ∝ 1 is an improper “prior” for µ.
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