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This material is similar to that in Lehmann and Casella [1998], section 1.1 and

Ferguson [1967], sections 1.1-1.4.

1 Statistical inference

X ∼ P , P ∈ P , infer P from X

X ∼ Pθ, θ ∈ Θ, infer θ from X

This is induction: reasoning from the specific (X) to the general (θ).
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Examples:

1. survey sampling:

• θ: a population characteristic

• Pθ: a distribution depending on θ and the sampling mechanism

• X: a sample characteristic

2. experiment

• θ: a physical quantity

• Pθ: a distribution depending on θ and the measurement process

• X: a measurement

In both cases, the goal is to infer something about θ from X.

2 The estimation problem

Data : X ∈ X , to-be observed (e.g. X = (X1, . . . , Xn)).

Model : X ∼ Pθ, θ ∈ Θ (e.g. X1, . . . , Xn ∼ i.i.d. p(x|θ)).

Estimand : g(θ), some known function of θ (e.g., g(θ) = θ or g(θ) =
∫
h(x)Pθ(dx)).

Goal : Identify a good estimator δ(x) of g(θ).

What is an estimator δ?
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δ is a σ(X )-measurable function.

δ(·) is the estimator.

δ(x) is the estimate when X = x.

Ideally, δ(X) is “close” to g(θ) when X ∼ Pθ.

Example (mean estimation):

X = (X1, . . . , Xn), X1, . . . , Xn ∼ i.i.d.Pθ

µ(θ) =

∫
xPθ(dx) = population mean

Some estimators:

δ1(X) = X̄

δ2(X) = n
n+1

X̄ + 1
n+1

µ0

δ3(X) = µ0

Will any of these be “close” to θ? How do we define “close”?

MSE(θ, δ) =

∫
(δ(X)− µ(θ))2Pθ(dX)

= EX|θ[(δ(X)− µ(θ))2]

= EX|θ[(δ(X)− EX|θ[δ(X)])2] + (EX|θ[δ(X)]− µ(θ))2

= VarX|θ[δ(X)] + Bias2X|θ[δ(X)]

MSE is the average squared distance between the estimator and the estimand, where

the “average” is with respect to the population Pθ.

If
∫
X2Pθ(dX) <∞ let σ2(θ) = VarX|θ[X]. The MSE of δw(X) = wX̄ + (1−w)µ0 is

MSE(θ, δw) = w2σ
2(θ)

n
+ (1− w)2(µ(θ)− µ0)

2

See Figure 1. For the three estimators above, we have
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Figure 1: Some MSE functions when σ2(θ)/n = 1, constant for all µ.

MSE(θ, δ1) = σ2(θ)
n

MSE(θ, δ2) = ( n
n+1

)2 σ
2(θ)
n

+ 1
(n+1)2

(µ(θ)− µ0)
2.

MSE(θ, δ3) = (µ(θ)− µ0)
2

Discuss: How do these estimators differ asymptotically? When would each be appro-

priate? How would you pick w?

3 The testing problem

Data : X ∈ X , to-be observed (e.g. X = (X1, . . . , Xn)).
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Model : X ∼ Pθ, θ ∈ Θ (e.g. X1, . . . , Xn ∼ i.i.d. p(x|θ)).

Hypotheses : H0 : θ ∈ Θ0, H1 : θ 6∈ Θ0.

Goal : Identify a good test function δ(X) of H0 versus H1.

What is a test function?

δ : X → [0, 1].

δ(x) is the probability with which you reject H0 and accept H1 when X = x.

A nonrandomized test is one for which δ(X) ∈ {0, 1} with probability 1.

Ideally, δ(X) is small (with high probability) when θ ∈ Θ0, and large (with high

probability) when θ ∈ Θ0.

Example (simple versus simple hypotheses):

X1, . . . , Xn ∼ i.i.d. pθ(x), θ ∈ {0, 1}

• p0 is the standard normal density (H0 : θ = 0);

• p1 is the standard Cauchy density (H1 : θ = 1).

Consider tests of the form

δc(x) =

{
1 if

∏n
i=1{p1(xi)/p0(xi)} > c

0 if
∏n

i=1{p1(xi)/p0(xi)} < c,

where c ∈ {0} ∪ R+ ∪ {∞} (this class is equal to the set of admissible tests).

How should we evaluate such tests? Suppose we lose $1 if the test makes an incorrect

decision. Let

LR(X) =
n∏
i=1

p1(Xi)/p0(Xi).
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Our expected loss for a given test δc is then

Pr(δc(X) 6= θ)|θ) = Pr(LR(X) < c|θ = 1)1(θ = 1) + Pr(LR(X) > c|θ = 0)1(θ = 0).

See Figure 2.

Discuss: How would you choose c? How does this relate to p-values, level and power?
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Figure 2: Expected loss under θ ∈ {0, 1} for n = 5 on the left, n = 25 on the right.

4 Loss, decision rules and risk
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4.1 Statistical decision problems

A statistical decision problem consists of

1. an unobservable process P from which observable dataX are sampled (X ∼ P );

2. a statistical model P = {Pθ : θ ∈ Θ} which we hope includes P ;

3. a decision/loss structure: {Θ, D, L}:

Θ, the parameter space, indexes the possible processes;

D, the decision space, is the set of decisions available;

L : Θ × D → R, the loss function, denotes the loss incurred for each

combination of decision and parameter value.

Example (testing):

Θ0 ∪Θ1 = Θ, Θ0 ∩Θ1 = φ

D = {d0, d1} = { “say Θ0”, “say Θ1” }

A simple loss function:

d0 d1

θ ∈ Θ0 0 l0

θ ∈ Θ1 l1 0

Example (estimation):

D = g(Θ)

L(θ, g(θ)) = 0 ∀θ ∈ Θ

L(θ, d) ≥ 0 ∀(θ, d) ∈ Θ× g(Θ)

Decision process:

1. X ∼ Pθ , θ unknown.
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2. Decision maker sees X.

3. Decision maker makes decision d ∈ D, which may depend on X.

4.2 Decision rules and risk

Definition (decision rule). A non-randomized decision rule is a function δ : X → D.

We will refer to the set of decision rules as D, so d ∈ D, δ ∈ D and δ(x) ∈ D.

Intuitively, a decision rule δ prescribes a course of action for every observable dataset

X ∈ X . One way to evaluate the performance of a decision rule is in terms of its

pre-experimental expected loss, or risk R(θ, δ).

R(θ, δ) = EX|θ[L(θ, δ)]

=

∫
X
L(θ, δ(X))Pθ(dX)

= pre-experimental expected loss

= average loss under repeated use of δ, under θ

Ideal: Use a δ(X) with a low risk at the true value of θ.

Problem: We may know R(θ, δ) for all θ and δ, but we don’t know which θ is true.

Thus when evaluating different decision rules, we must consider their risk as a func-

tion of θ.

4.3 Why risk?

Throughout this class we will evaluate estimators based on their risk, which is their

expected loss:

R(θ, δ) = EX|θ[L(θ, δ(X))].
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You may wonder to yourself, “why not evaluate based on median loss, or some

quantile of the distribution of L(θ, δ(X))?” Well, if you are a fan of evaluating

procedures based on hypothetical repetitions, then risk can be related to the long-

run average (or total) loss. Otherwise, it turns out there is some philosophical

justification for evaluating procedures based on expected loss, which you may or

may not find more compelling.

Let us assume that, if θ were known to you, that you could provide a preference

ordering to the possible decisions. In a testing situation for example, if we knew

θ ∈ Θ0 then we would prefer the decision d0 =“say θ ∈ Θ0” to d1=“say θ 6∈ Θ0,” so

we write

d0 ≺ d1.

In an estimation problem, we generally prefer the decision d0 =“say θ = θ0” to

d1 =“say θ = θ1” if θ0 is closer in some way to θ1. For example, in the case that

Θ = D = R and θ = 0 we prefer d1 to d2 if |d1| < |d2|. At the very least, we wouldn’t

prefer d2 to d1, and so we write

d1 � d2.

Based on our preferences over D, we might have preferences over randomized deci-

sions. Again, suppose we are estimating θ, and are considering how bad different

decisions are when θ = 0. Two examples of randomized decisions are the following:

D1 =

{
.1 w.p. .9

.6 w.p. .1
D2 =

{
.2 w.p. .7

.3 w.p. .3

If it is really important that that we don’t say θ is over 1/2 when θ = 0, then we

might prefer D2 to D1. On the other hand, maybe we stand to gain greatly if the

decision is within a 10th of θ, in which case we may prefer D1.

Both of these randomized decisions correspond to probability distributions over the

decision space. Calling them P1 and P2, we either

• prefer P1 (so P1 ≺ P2), or
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• prefer P2 (so P2 ≺ P1) or

• are indifferent (so P1 ∼ P2).

Now consider our preferences over all such distributions on D. Some would call us

irrational if our preferences did not form a partial ordering, that is if they did not

satisfy the following condition:

If P1 � P2 and P2 � P3 then P1 � P3

These same people might also call us irrational if our preferences didn’t satisfy the

following additional “axioms of rationality”:

A1: If P1 � P2 then

λP1 + (1− λ)P3 � λP2 + (1− λ)P3 ∀λ ∈ (0, 1], P3.

A2: If P1 < P2 < P3 then there exists λa and λb in (0,1) such that

λaP1 + (1− λa)P3 � P2 � λbP1 + (1− λb)P3.

The first axiom seems reasonable, although it has been critiqued because it suggests

that aversion to uncertainty is irrational (see Allais’ paradox). Axiom 2 essentially

says that there is no decision infinitely preferable than another.

If our preferences over probability distributions on D are rational, then the following

representation holds:

Theorem 1. If a partial ordering on distributions over D satisfies A1 and A2, then

there exists a function L(θ, d) such that

P1 � P2 ⇔ ED|P2 [L(θ,D)] ≤ ED|P2 [L(θ,D)].

In words, rationality implies your preferences over random decisions can be thought

of as a preference to minimize risk.

Now let’s relate this back to statistical decision making. Each estimator/test/decision

function δ is a function from X to D, and so if X ∼ Pθ, then each δ(X) corresponds
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to a probability distribution Pδ over D. The theorem says that if we have rational

preferences over distributions on D, then our preferences among estimators will cor-

respond to their risks (see Ferguson [1967, Section 1.4] for a bit more discussion and

a proof of the theorem).

5 Statistical decision theory

Statistical decision theory concerns the evaluation of decision rules based on their

risk functions.

Example (mean estimation):

X = (X1, . . . , Xn), X1, . . . , Xn ∼ i.i.d.Pθ

µ(θ) =

∫
xPθ(dx) = population mean

• D = µ(Θ)

• L(θ, d) = (µ(θ)− d)2 ∀d ∈ µ(Θ) (squared error/quadratic loss)

• R(θ, δ) = EX|θ[(µ(θ)− d)2] = MSE(θ, δ).

Some estimators:

• δ1(X) = X̄

• δ2(X) = n
n+1

X̄ + 1
n+1

µ0

• δ3(X) = µ0
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Could one of these (or another estimator) uniformly minimize the risk across θ ∈ Θ?

Consider the risk of δ3(X):

R(θ, δ3) = 0 θ ∈ µ−1(µ0)

R(θ, δ3) = (µ(θ)− µ0)
2 ≥ 0 in general

δ3 is typically unbeatable if µ(θ) = µ0, but is a poor estimator for away from µ0.

Example (testing): Recall our class of tests for simple-versus-simple hypotheses:

δc(x) =

{
1 if

∏n
i=1{p1(xi)/p0(xi)} > c

0 if
∏n

i=1{p1(xi)/p0(xi)} < c.

Is there a choice of c that minimizes the risk

Pr(δc(X) 6= θ)|θ) = Pr(LR(X) < c|θ = 1)1(θ = 1) + Pr(LR(X) > c|θ = 0)1(θ = 0),

for both values of θ?

Which estimator has the best risk function?

Generally, there is no estimator or decision rule with uniformly minimum risk: If

there were such an rule, it would have to have the same risk as the rule δ(X) = g(θ0)

(which generally has zero risk) for every θ0 ∈ Θ. The question “which rule has

the best risk function” is therefore ill-posed. There are two basic strategies for

formulating well-posed versions of this question:

1. Global risk comparisons (LC chapters 4 and 5, LR chapter 8)

(a) Admissible rules: Consider only rules that are not globally dominated.

(b) Bayes risk: Compare risk functions averaged over Θ.

(c) Minimax risk: Compare supremums of risk functions.

2. Decision rule restrictions
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(a) Invariant rules:

• UMRE estimation (LC chapter 3);

• UMPI tests (LR chapter 6).

(b) Unbiased rules:

• UMRU estimation (LC chapter 2);

• UMPU tests (LR chapter 4).

One shouldn’t look at these as five approaches as unrelated. Sometimes the UMRE

is UMRU. Sometimes the UMRU is minimax. Interestingly, in many situations the

admissible rules are the Bayes rules, and minimax, equivariant and unbiased rules

can often be interpreted as Bayes rules, or approximately so, under particular prior

distributions. These connections are what we will study in 581.
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