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Most of this material comes from Lehmann and Casella [1998] section 5.1, and some

comes from Ferguson [1967], section 2.11.

1 Motivation and definition

Let X ∼ binomial(n, θ), and let X̄ = X/n. Via admissibility of unique Bayes

estimators,

δwθ0(X) = wθ0 + (1− w)X̄

is admissible under squared error loss for all w ∈ (0, 1) and θ0 ∈ (0, 1).

R(θ, δwθ0) = Var[δwθ0|θ] + Bias2[δwθ0|θ]

= (1− w)2Var[X̄] + w2 × (θ − θ0)2

= (1− w)2θ(1− θ)/n+ w2 × (θ − θ0)2.

Risk functions for three such estimators are in Figure 1. Which one would you use?

Requiring admissibility is not enough to identify a unique procedure.
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Figure 1: Three risk functions for estimating a binomial proportion when n = 10,

w = 0.8 and θ0 ∈ {1/4, 2/4, 3/4}.

• This is good - we can require more of our estimator.

• This is bad - what more should we require?

One idea is to avoid a “worst case scenario”, by choosing an estimator with lowest

maximum risk.

Definition 1 (minimax risk, minimax estimator). The minimax risk is defined as

Rm(Θ) = inf
δ

sup
θ
R(θ, δ).

An estimator δm is a minimax estimator of θ if

sup
θ
R(θ, δm) = inf

δ
sup
θ
R(θ, δ) = Rm(Θ).

i.e. supθ R(θ, δm) ≤ supθ R(θ, δ) for all δ ∈ D.
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2 Least favorable prior

Identifying a minimax estimator seems difficult: one would need to minimize the

supremum risk over all estimators.

However, in many cases we can identify a minimax estimator using some intuition:

• Suppose some values of θ are harder to estimate than others.

Example: For the binomial model Var[X/n] = θ(1 − θ)/n, so θ = 1/2 is hard

to estimate well ).

• Consider a prior π(θ) that heavily weights the “difficult” value of θ.

The Bayes estimator δπ will do well for these difficult values, where the supre-

mum risk of most estimators is likely to occur.

R(π, δπ) =
∫
R(θ, δπ)π(dθ) ≤

∫
R(θ, δ)π(dθ) = R(π, δ)

This means that R(θ, δπ) ≤ R(θ, δ) in places of high π-probability, i.e. the

difficult parts of Θ.

Since δπ does well in the difficult region, maybe it is minimax.

Definition 2 (least favorable prior). A prior distribution π is least favorable if

R(π, δπ) ≥ R(π′, δπ′)

for all priors π′ on Θ.

Intuition: δπ is the best you can do under the worst prior.

Analogy: to competitive games.

• You get to choose an estimator δ, your adversary gets to choose a prior π.

• Your adversary wants you to have high loss, you want to have low loss.

• For any π, your best strategy is δπ.

• Your adversary’s best strategy is then for π to be least favorable.
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Bounding the minimax risk:

The least favorable prior provides a lower bound on the minimax risk Rm(Θ).

For any prior π over Θ,

R(π, δ) =

∫
R(θ, δ) π(dθ) ≤

∫ [
sup
θ
R(θ, δ)

]
π(dθ) = sup

θ
R(θ, δ).

Minimizing over all estimators δ ∈ D, we have

inf
δ
R(π, δ) ≤ inf

δ
sup
θ
R(θ, δ)

R(π, δπ) ≤ Rm(Θ)

The Bayes risk of any prior gives a lower bound for minimax risk.

Maximizing over π gives sharpens the lower bound:

sup
π
R(π, δπ) ≤ Rm(Θ).

Finding the LFP and minimax estimator:

For any prior π, we have shown

R(π, δπ) ≤ inf
δ

sup
θ
R(θ, δ).

On the other hand, for any estimator δπ, we have

inf
δ

sup
θ
R(θ, δ) ≤ sup

θ
R(θ, δπ).

Putting these together gives

R(π, δπ) ≤ inf
δ

sup
θ
R(θ, δ) ≤ sup

θ
R(θ, δπ).

Therefore, if R(π, δπ) = supθ R(θ, δπ), then δπ achieves the minimax risk.
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Theorem 1 (LC 5.1.4). Let δπ be (unique) Bayes for π, and suppose R(π, δπ) =

supθ R(θ, δπ). Then

1. δπ is (unique) minimax;

2. π is least favorable;

Proof.

1. For any other estimator δ,

sup
θ
R(θ, δ) ≥

∫
R(θ, δ)π(dθ)

≥
∫
R(θ, δπ)π(dθ) = sup

θ
R(θ, δπ).

If δπ is unique Bayes under π, then the second inequality is strict and δπ is

unique minimax.

2. Let π̃ be a prior over Θ. Then

R(π̃, δπ̃) =

∫
R(θ, δπ̃) π̃(dθ)

≤
∫
R(θ, δπ) π̃(dθ)

≤ sup
θ
R(θ, δπ) = R(π, δπ).

Notes: regarding the condition R(π, δπ) = supθ R(θ, δπ),

• the condition is sufficient but not necessary for δπ to be minimax.

• the condition is very restrictive - it is met only if π(θ : R(θ, δπ) = supθ′ R(θ′, δπ)) =

1.

Bayes estimators that satisfy this condition are sometimes called “equalizer rules:”
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Definition 3. An estimator δπ that is Bayes with respect to π is called an equalizer

rule if supθ R(θ, δπ) = R(θ, δπ) a.e. π.

The theorem implies that equalizer rules are minimax:

Corollary 1 (LC cor 5.1.6). An equalizer rule is minimax.

In the definition of an equalizer rule, it is not enough that R(θ, δπ) is constant a.e.

π. For example, the supremum risk of a Bayes estimator could occur on a set of

π-measure zero, and so R(π, δπ) < supθ R(θ, δπ), in which case the conditions of the

theorem do not hold.

To summarize, a Bayes estimator δπ will be minimax if R(π, δπ) = supθ R(θ, δπ).

Conditions under which this occurs include the cases where

1. δπ has constant risk, or

2. δπ has constant risk a.e. π and achieves its maximum risk on a set of π-

probability 1. Equivalently, π({R(θ, δπ) = supθ R(θ, δπ)}) = 1.

Example(binomial proportion):

Consider estimation of θ with squared error loss based on X ∼ binomial(n, θ). Let’s

try to find a Bayes estimator with constant risk. Such an estimator is minimax, by

the theorem.

The easiest place to start is with the class of conjugate priors. Under θ ∼ beta(a, b),

δab(X) = E[θ|X] =
a+X

a+ b+ n

R(θ, δab) = Var[δab] + Bias2[δab]

=
nθ(1− θ)

(a+ b+ n)2
+

(a− θ(a+ b))2

(a+ b+ n)2
.

Can we make this constant as a function of θ? The numerator is

nθ − nθ2 + (a+ b)2θ2 − 2a(a+ b)θ + c(a, b, n).
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This will be constant in θ if

n = 2a(a+ b)

n = (a+ b)2,

solving for a and b gives

a = b =
√
n/2.

Therefore,

• The estimator δ√n/2(X) = X+
√
n/2

n+
√
n

= X̄
√
n√
n+1

+ 1
2

1√
n+1

is

– constant risk and Bayes, therefore

– an equalizer rule, and therefore

– minimax.

• beta(
√
n/2,

√
n/2) is a least favorable prior.

Risk comparison

R(θ, δ√n/2(X)) =
1

(2(1 +
√
n))2

R(θ, X̄) =
θ(1− θ)

n

At θ = 1/2 (a “difficult” value of θ), we have

R(1/2, X̄) =
1

4

1

n
>

1

4

1

(n+ 2
√
n+ 1)

= R(1/2, δ√n/2(X)).

Notes:

• The region in which R(θ, δ√n/2(X)) < R(θ, X̄) decreases in size with n.

• The least favorable prior is not unique: Under any prior π,

δπ(x) = E[θ|X] =

∫
θx+1(1− θ)n−xπ(dθ)∫
θx(1− θ)n−xπ(dθ)

,

and so the estimator only depends on the first n+ 1 moments of θ under π.
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• The minimax estimator is sensitive to the loss function: Under

L(θ, δ) = (θ − δ)2/[θ(1− θ)],

X/n is minimax (it is an equalizer rule under under θ ∼beta(1,1)).

Example (difference in proportions):

Consider estimation of θy − θx based on X ∼ binomial(n, θx), Y ∼ binomial(n, θy).

Can we derive the estimator from the one-sample case? Consider the difference of

minimax estimators:

Y +
√
n/2

n+
√
n
− X +

√
n/2

n+
√
n

=
Y −X
n+
√
n
.

Unfortunately, it turns out that this is not minimax. However, it will turn out that

the minimax estimator is of the form δ(X, Y ) = c× (Y −X) for some c ∈ (0, 1/n).

Starting from this vantage point, let’s apply our strategy:

• Does c(Y −X) have constant risk for some c ∈ (0, 1/n)?

• If so, is the constant risk estimator also Bayes?

The risk of such an estimator is

R(θ, δc) = Var[δc] + (E[c(Y −X)]− (θy − θx))2

= c2n[θx(1− θx) + θy(1− θy)] + (cn− 1)2(θy − θx)2.

By inspection, this will not be constant in (θx, θy) for any c, so the hope that δc will

be a constant risk Bayes estimator fails. However, recall that the condition of the

theorem does not require that δc be constant risk, just that it is Bayes with respect

to a prior π such that δc

1. has constant risk a.e. π;

2. achieves its supremum risk on a set of π-probability 1.
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With this in mind, maybe we can find a subset Θ0 of the parameter space Θ = [0, 1]2

such that δc is constant risk for some c. If so, then it will be constant risk a.e. π for

any π such that π(Θ0) = 1, and possibly minimax.

Staring at the risk function R(θ, δc) long enough suggests looking at the set Θ0 =

{θ : θx + θy = 1} ⊂ Θ. On this set, θy(1 − θy) = θx(1 − θx) and θy − θx = 1 − 2θx,

and the risk function reduces to

R(θ, δc) = c2n(2θx(1− θx)) + (cn− 1)2(1− 2θx)
2.

Is there a value of c for which δc is constant risk on Θ0?

dR(θx, δc)

dθx
=

d

dθx
c2n(2(θx − θ2x)) + (cn− 1)2(1− 4θx + 4θ2x)

= c2n(2(1− 2θx))− (cn− 1)24(1− 2θx).

Solving for c, we have

c2n = 2(cn− 1)2

±
√
nc =

√
2(cn− 1)

±
√
n/2 = (n− 1/c)

1/c =

√
2n±

√
n√

2

c =

√
2√

2n±
√
n

=
1

n

√
2n√

2n± 1

Using the “−” solution could give estimators outside the parameter space, so let’s

consider the “+” solution:

c =
1

n

√
2n√

2n+ 1

δc(X, Y ) =

√
2n√

2n+ 1
(Y −X)/n,

i.e. δc is a shrunken version of the UMVUE. By construction, this estimator has

constant risk on {θ : θx + θy = 1}. For it to be minimax, we need it to
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1. be Bayes with respect to a prior on Θ0;

2. achieve its supremum risk over Θ on Θ0.

We’ll check the second condition first: Recall the risk function is:

R(θ, δc) = c2n[θx(1− θx) + θy(1− θy)] + (cn− 1)2(θy − θx)2

= c2n(θx(1− θx) + θy(1− θy) + (θy − θx)2),

where we are using the fact that 2(cn− 1)2 = c2n for our risk-equalizing value of c.

Taking derivatives, we have that the maximum risk occurs when

c2n[(1− 2θx) + (θx − θy)] = c2n(1− θx − θy) = 0

c2n[(1− 2θy) + (θy − θx)] = c2n(1− θx − θy) = 0,

which are both satisfied when θx + θy = 1. You can take second derivatives to show

that such points maximize the risk.

So far, we have shown

• δc has constant risk on Θ0 = {θ : θx + θy = 1}

• δc achieves its maximum risk on this set.

To show that it is minimax, what remains is to show that it is Bayes with respect

to a prior π on Θ0. If it is, then the condition of Theorem 1 will be met and δc will

therefore be minimax.

To find a prior on Θ0 for which δc is Bayes, it is helpful to note two things:

• On Θ0, Y + n−X ∼ binomial(2n, θy);

• On Θ0, the Bayes estimator of θy − θx = 2θy − 1 is given by

E[2θy − 1|X, Y ] = 2E[θy|X, Y ]− 1.
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Considering this last point, δc(x, y) =
√
2n√

2n+1
(y − x)/n is Bayes for 2θy − 1 if

E[2θy − 1|X, Y ] = 2E[θy|X, Y ]− 1 =

√
2n√

2n+ 1
(y − x)/n

E[θy|X, Y ] =
1

2

√
2n√

2n+ 1

y − x
n

+
1

2

=
y − x

2n+
√

2n
+

1

2

2n+
√

2n

2n+
√

2n

=
y − x

2n+
√

2n
+
n+

√
n/2

2n+
√

2n

=
(y + n− x) +

√
n/2

2n+
√

2n
.

Now writing Ỹ = Y + n−X and ñ = 2n and using note 1 above (which shows Ỹ ∼
binom(ñ, θy)), we see that the condition on the posterior expectation is that

E[θy|Ỹ ] =
Ỹ + a

ñ+ a+ b

where a = b =
√
n/2. A prior on Θ0 that makes this true is the beta(

√
n/2,

√
n/2)

prior on θy. Therefore, δc is a Bayes estimator under a prior on the set Θ0, the set

on which it achieves its maximum risk. To summarize:

1. δc is constant risk on Θ0;

2. δc achieves its maximum risk over Θ on the subset Θ0;

3. δc is Bayes for a prior on Θ0.

Therefore, supθ R(θ, δc) = R(π, δc) for a prior π for which δc is Bayes. By the theorem,

it follows that δc is minimax.

3 Least favorable prior sequence

In many problems there are no least favorable priors, and the main theorem from

above is of no help.
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Example(normal mean, known variance):

X1, . . . Xn ∼ i.i.d. normal(θ, σ2) , σ2 known.

R(θ, X̄) = σ2/n is constant risk, so seems potentially minimax.

But no prior π over Θ gives δπ(X) = X̄.

You can also see that there is no least favorable prior: Under any prior π,

R(π, δπ) < R(π, X̄) = σ2/n,

but you can find priors whose Bayes risk is arbitrarily close to σ2/n (i.e., the set of

Bayes risks is not closed).

However, X̄ is a limit of Bayes estimators: Let πτ2 denote the N(0, τ 2) prior distri-

bution on θ. As τ 2 ↑ ∞,

δτ2 = n/σ2

n/σ2+1/τ2
X̄ → X̄

R(πτ2 , δτ2) = 1
n/σ2+1/τ2

↑ σ2/n = R(θ, X̄).

More generally, consider

• (πk, δk), a sequence of prior distributions such that R(πk, δk) ↑ R;

• δ, an estimator such that supθ R(θ, δ) = R.

For each k, we have R(πk, δk) ≤ Rm

However, we always have Rm ≤ supθ R(θ, δ).

Putting these together gives

R(πk, δk) ≤ Rm ≤ sup
θ
R(θ, δ).

If R(πk, δk) ↑ supθ R(θ, δ), then we must have Rm = supθ R(θ, δ), and so δ must be

minimax.

Definition 4. A sequence {πk} of priors is least favorable if for every prior π,

R(π, δπ) ≤ lim
k→∞

R(πk, δk).
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Theorem 2 (LC thm 5.1.2). Let {πk} be sequence of prior distributions and δ an

estimator such that R(πk, δk)→ supθ R(θ, δ). Then

1. δ is minimax, and

2. {πk} is least favorable.

Proof.

1. For any estimator δ′,

sup
θ
R(θ, δ′) ≥ R(πk, δ

′) ≥ R(πk, δk)

sup
θ
R(θ, δ′) = lim

k→∞
sup
θ
R(θ, δ′) ≥ lim

k→∞
R(πk, δk) = sup

θ
R(θ, δ)

2. For any prior π,

R(π, δπ) ≤ R(π, δ) ≤ sup
θ
R(θ, δ) = lim

k→∞
R(πk, δk).

Example (normal mean, known variance):

Let X1, . . . ,Xn ∼ i.i.d. Np(θ, σ
2I), where σ2 known. Let πk(θ) be such that θ ∼

Np(0, τ
2
k I), τ 2k ↑ ∞. Then the Bayes estimator under πk is

δk =
n/σ2

n/σ2 + 1/τ 2
X̄.

Under average square-error loss,

R(πk, δk) =
1

n/σ2 + 1/τ 2k
↑ σ2/n = R(θ, X̄),

and so X̄ is minimax by Theorem 2.

Alert! This result should seem a bit odd to you - X̄ is inadmissible for p ≥ 3. How

can it be dominated if it is minimax? We even have the following theorem:

13



Peter Hoff Minimax estimation November 12, 2013

Theorem 3 (LC lemma 5.2.21). Any unique minimax estimator is admissible.

Proof.

If δ is unique minimax, and δ′ any other estimator, then

sup
θ
R(θ, δ) < sup

θ
R(θ, δ′)⇒ ∃θ0 : R(θ0, δ) < R(θ0, δ

′),

so δ can’t be dominated. Alternatively by contradiction, if δ′ were to dominate δ

then δ′ would be minimax, contradicting that δ is unique minimax.

So how can X be minimax and not admissible? The only possibility left by the

theorem is that X is not unique minimax. In fact, for p ≥ 3, estimators of the form

δ(x) =

(
1− c(|x|)σ

2(p− 2)

x · x

)
x

are minimax as long as c : R+ → [0, 2] is nondecreasing (LC theorem 5.5.5). For

these estimators, the supremum risk occurs in the limit as |θ| → ∞.

Example (normal mean, unknown variance):

Let X1, . . . , Xn ∼ i.i.d. N(θ, σ2), σ2 ∈ R+ unknown. Under squared error loss,

sup
θ,σ2

R((θ, σ2), X̄) =∞.

In fact, we can prove that every estimator has infinite maximum risk:

sup
θ,σ2

R((θ, σ2), δ) = sup
σ2

sup
θ
R((θ, σ2), δ)

≥ sup
σ2

σ2/n =∞,

where the inequality holds because X̄ is minimax in the known variance case. There-

fore, every estimator is trivially minimax, with maximum risk of infinity.

Here is a not-entirely satisfying solution to this problem: Assume σ2 ≤M , M known.
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Applying exactly the same argument as above, we have

sup
θ,σ2

R((θ, σ2), δ) = sup
σ2:σ2≤M

sup
θ
R((θ, σ2), δ)

≥ sup
σ2:σ2≤M

σ2/n = M/n,

and so X̄ is minimax with maximum risk M/n.

Note that the value of M doesn’t affect the estimator - X̄ is minimax no matter

what M is. Does this mean that X̄ is the minimax estimator for σ2 ∈ R+? Here are

some thoughts:

• For p = 1, X̄ is unique minimax for θ ∈ R, σ2 ∈ (0,M ] for all M . For σ2 ∈ R+,

it is still minimax, although not unique.

• For p > 2, X̄ is minimax, but not unique minimax for σ2 ∈ (0,M ] or even

known σ2.

A better “solution” to this “problem” is to change the loss function to L((θ, σ2), d) =

(θ − d)2/σ2, “standardized squared-error loss.”

Exercise: Show that X̄ is minimax under standardized squared-error loss.

4 Nonparametric problems

The normal mean, unknown variance problem above gave some indication that we

can deal with “nuisance parameters” (such as the variance σ2) when obtaining a

minimax estimator for a parameter of interest (such as the mean θ). What about

more general nuisance parameters?

Let X ∼ P ∈ P .

Suppose we want to estimate θ = g(P ), some functional of P .

Suppose δ is minimax for θ = g(P ) when P ∈ P0 ⊂ P .

When will it also be minimax for P ∈ P?
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Theorem (LC 5.1.15). If δ is minimax for θ under P ∈ P0 ⊂ P and

sup
P∈P0

R(P, δ) = sup
P∈P

R(P, δ),

then δ is minimax for θ under P ∈ P.

Proof. For any other estimator δ′,

sup
P∈P

R(P, δ′) ≥ sup
P∈P0

R(P, δ′)

≥ sup
P∈P0

R(P, δ) = sup
P∈P

R(P, δ).

Example: (Difference in binomial proportions)

p(x, y|θ) = dbinom(x, n, θx)× dbinom(y, n, θy)

P = {p(x, y|θ) : θ = (θx, θy) ∈ [0, 1]2}
P0 = {p(x, y|θ) : θ = (1− θy, θy), θy ∈ [0, 1]}
For estimation of θy − θx on P0, we showed that

• c× (Y −X), with c = 1
n

√
2n/(
√

2n+ 1), is constant risk on P0.

• c× (Y −X) is Bayes w.r.t. a beta(
√
n/2,

√
n/2) prior on θy,

and so c× (Y −X) is minimax on P0. We then showed that c× (Y −X)/n achieved

its maximum risk on P0, and so by the theorem it is minimax.

Example: (Population mean, bounded variance)

Let P = {P : Var[X|P ] ≤M}, M known.

Is X̄ minimax for θ = E[X|P ]?

Let P0 = {dnorm(x, θ, σ) : θ ∈ R, σ2 ≤M}. Then

1. X̄ is minimax for P0;

2. supP∈P0
R(P, X̄) = supP∈P R(P, X̄) = M/n.
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Thus X̄ is minimax (and unique minimax in the univariate case, as shown in LC

5.2).

Example: (Population mean, bounded range)

Let X1, . . . , Xn ∼ i.i.d. P ∈ P , where P ([0, 1]) = 1 ∀P ∈ P .

Least favorable perspective: Our previous experience tells us to find a minimax

estimator that is best under the worst conditions. What are the worst conditions?

Guess: The most difficult situation is where each P is as “spread out” as possible.

Let P0 = {binary(x, θ) : θ ∈ [0, 1]} .

As we’ve already derived, the minimax estimator for E[Xi|θ] = Pr(Xi = 1|θ) = θ

based on X1, . . . , Xn ∼i.i.d. binary(θ) is

δ(X) =
nX̄ +

√
n/2

n+
√
n

=

√
n√

n+ 1
X̄ +

1√
n+ 1

1

2
.

To use the lemma to show this is minimax for P , we need to show

sup
P∈P

R(P, δ) = sup
P∈P0

R(P, δ).

Let’s calculate the risk of δ for P ∈ P :

Var[δ(X)] =
n

(
√
n+ 1)2

Var[X|P ]/n = Var[X|P ]/(
√
n+ 1)2

E[δ(X)] =

√
n√

n+ 1
θ +

1√
n+ 1

1

2

= θ − 1√
n+ 1

θ +
1

2(
√
n+ 1)

= θ +
1/2− θ√
n+ 1

Bias2(δ|P ) =
(θ − 1/2)2

(
√
n+ 1)2

,

and so

R(P, δ) =
1

(
√
n+ 1)2

× [Var[X|P ] + (θ − 1/2)2].

Where does this risk achieve its maximum value? Note that

sup
P∈P

R(P, δ) = sup
θ∈[0,1]

sup
P∈Pθ

R(P, δ),
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where Pθ = {P ∈ P : E[X|P ] = θ}. To do the inner supremum, note that for any

P ∈ Pθ,

Var[X|P ] = E[X2]− E[X]2

≤ E[X]− E[X]2

= E[X](1− E[X])

= θ(1− θ)

with equality only if P is the binary(θ) measure. Therefore, for each θ supremum risk

is attained at the binary(θ) distribution, and so the maximum risk of δ is attained

on the submodel P0. To summarize,

sup
P∈P

R(P, δ) = sup
θ∈[0,1]

sup
P∈Pθ

R(P, δ) = sup
θ∈[0,1]

sup
P∈Pθ∩P0

R(P, δ) = sup
P∈P0

R(P0, δ).

Thus δ is minimax on P0, achieves its maximum risk there, and so is minimax over

all of P .

Exercise: Adapt this result to the case that P [a, b] = 1 for all P ∈ P , for arbitrary

−∞ < a < b <∞.

5 Minimax and admissibility

We already showed a unique minimax estimator can’t be dominated:

Theorem (LC lemma 5.2.19). Any unique minimax estimator is admissible.

This is reminiscent of our theorem about admissibility of unique Bayes estimators,

which has a similar proof: If δ′ were to dominate δ, then it would be as good as δ in

terms of both Bayes risk and maximum risk, and so such a δ can’t be either unique

Bayes or unique minimax.

What about the other direction? We have shown in some important cases that

admissibility of an estimator implies it is Bayes, or close to Bayes. Does admissibility

imply minimax? The answer is yes for constant risk estimators:
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Theorem (LC lemma 5.2.21). If δ is constant risk and admissible, then it is mini-

max.

Proof.

Let δ′ be another estimator.

Since δ is not dominated, there is a θ0 s.t. R(θ0, δ) ≤ R(θ0, δ
′)

But since δ is constant risk,

sup
θ
R(θ, δ) = R(θ0, δ) ≤ R(θ0, δ

′) ≤ sup
θ
R(θ, δ′).

Exercise: Draw a diagram summarizing some of the relationships between admissible,

Bayes and minimax estimators we’ve covered so far.

6 Superefficiency and sparsity

Let X1, . . . , Xn ∼ i.i.d. N(θ, 1), where θ ∈ R. A version of Hodges estimator for θ is

given by

δH(x) =

{
X̄ if |x̄| > 1/n1/4

0 if |x̄| < 1/n1/4

or more compactly, δH(x) = x̄× 1(|x̄| > 1/n1/4).

Exercise: Show that the asymptotic distribution of δH(x) is given by

√
n(δH(X)− θ) ·∼ N(0, v(θ)),

where

v(θ) =

{
1 if θ 6= 0

0 if θ = 0

The asymptotic variance of
√
n(δH(X)−θ) makes δH seem useful in many situations:

Often we are trying to estimate a parameter that could potentially be zero, or very
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close to zero. For such parameters, δH seems to be “as good” as X̄ asymptotically

for all θ, and “much better” than X̄ at the special value θ = 0. In particular, for

θ = 0 we have

Pr0(δH(X) = 0)→ 1.

This seems much better than simple consistency at θ = 0, which would require

Pr0(|δH(X)| < ε)→ 1.

for every ε > 0. An estimator consistent at θ = 0 never actually has to be zero,

whereas the Hodges estimator is more and more likely to actually be zero as n→∞.

However, there is a price to pay. Let’s compare the maximum of the risk function

for δH to that of X̄, under squared error loss. Letting cn = 1/n1/4, we have for any

θ̃ ∈ R,

sup
θ

Eθ[(δH − θ)2] ≥ Eθ̃[(δH − θ̃)
2]

≥ Eθ̃[(δH − θ̃)
21(|X̄| < cn)]

= Eθ̃[θ̃
21(|X̄| < cn)]

= θ̃2Prθ̃(|X̄| < cn)

= θ̃2Prθ̃(−cn < X̄ < cn)

= θ̃2Prθ̃(
√
n(−θ̃ − cn) <

√
n(X̄ − θ̃) <

√
n(−θ̃ + cn))

= θ̃2 × [Φ(
√
n(−θ̃ + cn))− Φ(

√
n(−θ̃ − cn))].

Letting θ̃ = θ0/
√
n, we have for example

√
n(−θ̃ + cn) =

√
n(−θ0/

√
n+ 1/n1/4) = −θ0 + n1/4,

and so

sup
θ
R(θ, δH) ≥ θ20

n
× [Φ(−θ0 + n1/4)− Φ(−θ0 − n1/4)].

Note that this holds for any θ0 ∈ R. On the other hand, the risk of X̄ is constant,

1/n for all θ. Therefore,

supθ R(θ, δH)

supθ R(θ, X̄)
≥ θ20 × [Φ(−θ0 + n1/4)− Φ(−θ0 − n1/4)].
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Figure 2: Risk functions of δH for n ∈ {25, 100, 250}, with the risk bound in blue.

You can play around with various values of θ0 to see how big you can make this

bound for a given n. The thing to keep in mind is that the inequality holds for all n

and θ0. As n→∞, the normal CDF term goes to one, so

lim
n→∞

supθ R(θ, δH)

supθ R(θ, X̄)
≥ θ20.

As this holds for all θ0, we have

lim
n→∞

supθ R(θ, δH)

supθ R(θ, X̄)
=∞.

Yikes! So the Hodges estimator becomes infinitely worse than X̄ as n→∞.

Is this asymptotic result relevant for finite-sample comparisons of estimators? A

semi-closed form expression for the risk of δH is given by Lehmann and Casella

[1998, page 442]. A plot of the finite-sample risk of δH is shown in Figure 2.

Related to this calculation is something of more modern interest, the problem of
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variable selection in regression. Consider the following model:

X1, . . . ,Xn ∼ i.i.d.PX

ε1, . . . , εn ∼ i.i.d.N(0, 1)

yi = βTX i + εi.

You may have attended one or more seminars where someone presented an estimator

β̂ of β with the following property:

Pr(β̂j = 0|β)→ 1 as n→∞ ∀β : βj = 0.

Again, such an estimator β̂j is not just consistent at βj = 0, it actually equals

0 with increasingly high probability as n → ∞. This property has been coined

“sparsistency” by people studying asymptotics of model selection procedures.

This special consistency at βj = 0 seems similar to the properties of Hodges estimator

when θ = 0. What does the behavior at 0 imply about the risk function elsewhere? It

is difficult to say anything about the entire risk function for all such estimators, but

we can gain some general insight by looking at the supremum risk. Let βn = β0/
√
n,

where β0 is arbitrary.

sup
β

Eβ[||β̂ − β||2] ≥ Eβn [||β̂ − βn||2]

≥ Eβn [||β̂ − βn||2 × 1(β̂ = 0)]

= ||βn||2 Pr(β̂ = 0|βn) =
1

n
||β0||2 Pr(β̂ = 0|βn)

Now consider the risk of the OLS estimator:

Eβ[||β̂ols − β||2] = EPX [tr((XTX)−1)] ≡ vn

So we have
supβ R(β, β̂)

supβ R(β, β̂ols)
≥ ||β0||2

Pr(β̂ = 0|βn)

nvn
,

which holds for all n and all β0. Now you should believe that nvn converges to

some number v∞ > 0. What about Pr(β̂ = 0|βn)? Now βn → 0 as n → ∞, and
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so it seems that since β̂ has the sparsistency property, eventually β̂ will equal 0

with high probability. Next quarter you will learn about contiguity of sequences of

distributions and will be able to show that

lim
n→∞

Pr(β̂ = 0|β = βn) = lim
n→∞

Pr(β̂ = 0|β = 0) = 1.

The first equality is due to contiguity, the second to the sparsistency property of β̂.

This result gives

lim
n→∞

supβ R(β, β̂)

supβ R(β, β̂ols)
≥ ||β0||2/v∞.

Since this result holds for all β0, the limit is in fact infinite. The result is that, in

terms of supremum risk (under squared error loss) a sparsistent estimator becomes

infinitely worse than the OLS estimator. This result is due to Leeb and Pötscher

[2008] (see also Pötscher and Leeb [2009]).

Discuss:

• Is supremum risk an appropriate comparison?

• Is squared error an appropriate loss?

• When would you use a sparsistent estimator?
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