Hypothesis Testing and Model Comparison

Peter Hoff Duke STA 610 Macro effects testing with LM

Macro effects testing with HLM

Testing heterogeneous intercepts

Testing examples

Testing slope heterogeneity

NELS data

nels[1:10,]

##	school	enroll	flp	public	urbanicity	hwh	ses	mscore
## 1	1011	5	3	1	urban	2	-0.23	52.11
## 2	1011	5	3	1	urban	0	0.69	57.65
## 3	1011	5	3	1	urban	4	-0.68	66.44
## 4	1011	5	3	1	urban	5	-0.89	44.68
## 5	1011	5	3	1	urban	3	-1.28	40.57
## 6	1011	5	3	1	urban	5	-0.93	35.04
## 7	1011	5	3	1	urban	1	0.36	50.71
## 8	1011	5	3	1	urban	4	-0.24	66.17
## 1	0 1011	5	3	1	urban	8	-1.07	46.17
## 1	1 1011	5	3	1	urban	2	-0.10	58.76

Macro predictors

flp: percent category of students on the flp

- flp=1 0-5% students on flp;
- flp=2 5-30% students on flp;
- flp=3 > 30% students on flp.

table(tapply(nels\$flp,nels\$school,mean))

1 2 3 ## 226 257 201

enroll: roughly the number of grade-10 students, in hundreds.

```
table(tapply(nels$enroll,nels$school,mes
##
## 0 1 2 3 4 5
## 149 112 118 98 108 99
```

Macro predictors

flp: percent category of students on the flp

- flp=1 0-5% students on flp;
- flp=2 5-30% students on flp;
- flp=3 > 30% students on flp.

table(tapply(nels\$flp,nels\$school,mean))

1 2 3 ## 226 257 201

enroll: roughly the number of grade-10 students, in hundreds.

```
table(tapply(nels$enroll,nels$school,mean))
##
## 0 1 2 3 4 5
## 149 112 118 98 108 99
```

Macro predictors

public: public or private school.

table(tapply(nels\$public,nels\$school,mean))

0 1 ## 168 516

urbanicity: rural, suburban or urban.

table(tapply(nels\$urbanicity,nels\$school,function(x){x[1]}))

1 2 3 ## 125 324 235

Macro predictors

public: public or private school.

```
table(tapply(nels$public,nels$school,mean))
```

```
##
## 0 1
## 168 516
```

urbanicity: rural, suburban or urban.

```
table(tapply(nels$urbanicity,nels$school,function(x){x[1]} ))
##
## 1 2 3
## 125 324 235
```

Macro predictors

public: public or private school.

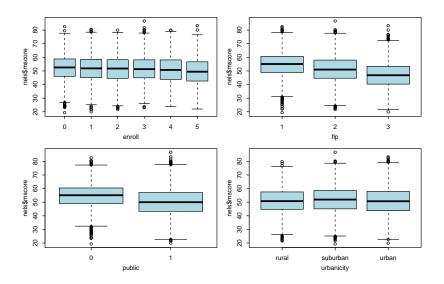
```
table(tapply(nels$public,nels$school,mean))
```

```
##
## 0 1
## 168 516
```

urbanicity: rural, suburban or urban.

```
table(tapply(nels$urbanicity,nels$school,function(x){x[1]} ))
##
## 1 2 3
## 125 324 235
```

Macro effects on mscore



What is wrong with the following?

Heterogeneity due to enroll:

```
anova(lm(mscore~as.factor(enroll),data=nels))
## Analysis of Variance Table
##
## Response: mscore
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(enroll) 5 8660 1732.02 18.14 < 2.2e-16 ***
## Residuals 12968 1238175 95.48
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

Heterogeneity due to urbanicity:

```
anova(lm(mscore~as.factor(urbanicity),data=nels))
```

```
## Analysis of Variance Table
##
## Response: mscore
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(urbanicity) 2 2652 1325.87 13.823 1.008e-06 ***
## Residuals 12971 1244184 95.92
## ---
## Signif. codes: 0 '***' 0.001 '*' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

What is wrong with the following?

Heterogeneity due to enroll:

```
anova(lm(mscore~as.factor(enroll),data=nels))
## Analysis of Variance Table
##
## Response: mscore
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(enroll) 5 8660 1732.02 18.14 < 2.2e-16 ***
## Residuals 12968 1238175 95.48
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

Heterogeneity due to urbanicity:

```
anova(lm(mscore~as.factor(urbanicity),data=nels))
## Analysis of Variance Table
##
## Response: mscore
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(urbanicity) 2 2652 1325.87 13.823 1.008e-06 ***
## Residuals 12971 1244184 95.92
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

What is wrong with the following?

Problem 1: The analyses ignore grouping/assume independence.

Problem 2: Variables are not balanced across predictors:

table(nels\$urbanicity,nels\$enroll)

What is wrong with the following?

Problem 1: The analyses ignore grouping/assume independence.

Problem 2: Variables are not balanced across predictors:

<pre>table(nels\$urbanicity,nels\$enroll)</pre>							
##							
##		0	1	2	3	4	5
##	rural	959	449	369	264	215	93
##	suburban	922	1046	1215	1054	991	886
##	urban	790	659	772	590	782	918

"Controlling" for covariates

```
anova(lm(mscore~as.factor(enroll) +
                as.factor(flp) +
                as.factor(public) +
                                       ,data=nels) )
                as.factor(urbanicity)
## Analysis of Variance Table
##
## Response: mscore
##
                                Sum Sq Mean Sq F value Pr(>F)
                            Df
                             5
  as.factor(enroll)
                                  8660
                                          1732 20.054 < 2.2e-16 ***
##
##
  as.factor(flp)
                             2
                               111662 55831 646.433 < 2.2e-16 ***
## as.factor(public)
                             1
                                  3455
                                          3455 39.998 2.626e-10 ***
## as.factor(urbanicity)
                             2
                                  3471
                                         1735 20.093 1.937e-09 ***
## Residuals
                         12963 1119588
                                            86
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

"Controlling" for covariates

```
anova(lm(mscore~as.factor(urbanicity) +
                as.factor(public) +
                as.factor(flp) +
                as.factor(enroll) ,data=nels) )
## Analysis of Variance Table
##
## Response: mscore
##
                                Sum Sg Mean Sg F value Pr(>F)
                            Df
                             2
##
  as.factor(urbanicity)
                                  2652
                                          1326
                                              15.3514 2.192e-07 ***
##
  as.factor(public)
                             1 61162 61162 708.1572 < 2.2e-16 ***
## as.factor(flp)
                             2
                              61253
                                         30627 354.6062 < 2.2e-16 ***
## as.factor(enroll)
                             5
                                  2181
                                           436
                                                5.0493 0.0001261 ***
## Residuals
                        12963 1119588
                                            86
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
### evaluating enroll - not controlling for other effects
anova(fit.add)
## Analysis of Variance Table
##
## Response: mscore
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(enroll) 5 8660 1732 20.054 < 2.2e-16 ***
## as.factor(flp) 2 111662 55831 646.433 < 2.2e-16 ***
## as.factor(public) 1 3455 3455 39.998 2.626e-10 ***
## as.factor(urbanicity) 2 3471 1735 20.093 1.937e-09 ***
## Residuals 12963 1119588 86
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

```
### evaluating enroll - not controlling for other effects
anova(fit.add)
## Analysis of Variance Table
##
## Response: mscore
##
                           Df
                               Sum Sq Mean Sq F value Pr(>F)
## as.factor(enroll)
                           5
                                8660 1732 20.054 < 2.2e-16 ***
## as.factor(flp)
                           2 111662 55831 646.433 < 2.2e-16 ***
## as.factor(public)
                                3455
                                      3455 39.998 2.626e-10 ***
                            1
## as.factor(urbanicity)
                            2
                                3471
                                        1735 20.093 1.937e-09 ***
## Residuals
                        12963 1119588
                                          86
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
### evaluating enroll - controlling for other effects
anova(fit.menroll,fit.ad)
## Analysis of Variance Table
##
## Model 1: mscore ~ as.factor(flp) + as.factor(public) + as.factor(urbanicity)
## Model 2: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(public) +
## as.factor(urbanicity)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 12968 1121768
## 2 12963 1119588 5 2180.5 5.0493 0.0001261 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
### evaluating enroll - controlling for other effects
anova(fit.menroll,fit.add)
## Analysis of Variance Table
##
## Model 1: mscore ~ as.factor(flp) + as.factor(public) + as.factor(urbanicity)
## Model 2: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(public) +
## as.factor(urbanicity)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 12968 1121768
## 2 12963 1119588 5 2180.5 5.0493 0.0001261 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
### evaluating enroll - controlling for other effects
anova(fit.menroll.fit.add)
## Analysis of Variance Table
##
## Model 1: mscore ~ as.factor(flp) + as.factor(public) + as.factor(urbanicity)
## Model 2: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(public) +
##
      as.factor(urbanicity)
               RSS Df Sum of Sa F Pr(>F)
##
    Res.Df
## 1 12968 1121768
## 2 12963 1119588 5 2180.5 5.0493 0.0001261 ***
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

Type III sums of squares

- put in the term of interest last, or
- use type III sums of squares tests.

```
library(car)
Anova(fit.add,type=3)
## Anova Table (Type III tests)
##
## Response: mscore
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
Anova Table (Type Ell tests)
## Anova Table (Type Ell tests)
##
## Anova Table (Type Ell tests)
## Anova (Table (Type (T
```

Type III sums of squares

- put in the term of interest last, or
- use type III sums of squares tests.

```
library(car)
Anova(fit.add,type=3)
## Anova Table (Type III tests)
##
## Response: mscore
## Sinctor(enroll) 3206322 1 37123.9724 < 2.2e-16 ***
## as.factor(enroll) 2181 5 5.0493 0.0001261 ***
## as.factor(flp) 57424 2 332.4354 < 2.2e-16 ***
## as.factor(public) 5121 1 59.2872 1.461e-14 ***
## as.factor(urbanicity) 3471 2 20.0932 1.937e-09 ***
## Residuals 1119588 12963
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' :</pre>
```

Type III sums of squares

- put in the term of interest last, or
- use type III sums of squares tests.

```
library(car)
Anova(fit.add,type=3)
## Anova Table (Type III tests)
##
## Response: mscore
## Sifactor(enroll) Sum Sq Df F value Pr(>F)
## (Intercept) 3206322 1 37123.9724 < 2.2e-16 ***
## as.factor(enroll) 2181 5 5.0493 0.0001261 ***
## as.factor(flp) 57424 2 332.4354 < 2.2e-16 ***
## as.factor(public) 5121 1 59.2872 1.461e-14 ***
## as.factor(urbanicity) 3471 2 20.0932 1.937e-09 ***
## Residuals 1119588 12963
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

Type III sums of squares

- put in the term of interest last, or
- use type III sums of squares tests.

```
library(car)
Anova(fit.add.tvpe=3)
## Anova Table (Type III tests)
##
## Response: mscore
##
                          Sum Sq
                                     Df
                                           F value
                                                      Pr(>F)
  (Intercept)
                          3206322
                                      1 37123.9724 < 2.2e-16 ***
##
##
  as.factor(enroll)
                            2181
                                      5
                                            5.0493 0.0001261 ***
##
  as.factor(flp)
                           57424
                                      2
                                          332.4354 < 2.2e-16 ***
  as.factor(public)
                            5121
                                           59.2872 1.461e-14 ***
##
                                      1
  as.factor(urbanicity)
                            3471
                                           20.0932 1.937e-09 ***
##
## Residuals
                          1119588 12963
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

Alternatively, without the car package, you can use drop1:

```
drop1(fit.add.test="F")
## Single term deletions
##
## Model:
## mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(public) +
       as.factor(urbanicity)
##
##
                                                AIC
                                                     F value
                                                                Pr(>F)
                         Df Sum of Sa
                                          RSS
## <none>
                                      1119588 57857
## as.factor(enroll)
                                 2181 1121768 57872
                                                      5.0493 0.0001261 ***
                          5
## as.factor(flp)
                          2
                                57424 1177012 58502 332.4354 < 2.2e-16 ***
## as.factor(public)
                          1
                                 5121 1124708 57914 59.2872 1.461e-14 ***
## as.factor(urbanicity) 2
                                 3471 1123059 57893 20.0932 1.937e-09 ***
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

The ANOVA model above can be expressed as

$$y_{i,j} = \mu + a_{e(j)} + b_{f(j)} + c_{p(j)} + d_{u(j)} + \epsilon_{i,j}$$

$$a_{e(j)} \in \{a_1, \ldots, a_5\}, e(j)$$
 is enrollment category of j
 $b_{f(j)} \in \{b_1, b_2, b_3\}, f(j)$ is flp category of j
etc.

The previous tests all assumed $\{\epsilon_{i,j}\}\sim~~iid~N(0,\sigma^2)$, and specifically,

$$\operatorname{Cov}\left[\begin{pmatrix}\epsilon_{1,j}\\ \vdots\\ \epsilon_{n,j}\end{pmatrix}\right] = \begin{pmatrix}\sigma^2 & 0 & \cdots & 0\\ 0 & \sigma^2 & \cdots & 0\\ \vdots & & & \vdots\\ 0 & 0 & \cdots & \sigma^2\end{pmatrix}$$

Why, in general, might we question this assumption?

The ANOVA model above can be expressed as

$$y_{i,j} = \mu + a_{e(j)} + b_{f(j)} + c_{p(j)} + d_{u(j)} + \epsilon_{i,j}$$

$$a_{e(j)} \in \{a_1, \dots, a_5\}, e(j)$$
 is enrollment category of j
 $b_{f(j)} \in \{b_1, b_2, b_3\}, f(j)$ is flp category of j
etc.

The previous tests all assumed $\{\epsilon_{i,j}\}\sim~$ iid $N(0,\sigma^2)$, and specifically,

$$\operatorname{Cov}\left[\begin{pmatrix}\epsilon_{1,j}\\ \vdots\\ \epsilon_{n,j}\end{pmatrix}\right] = \begin{pmatrix}\sigma^2 & 0 & \cdots & 0\\ 0 & \sigma^2 & \cdots & 0\\ \vdots & & & \vdots\\ 0 & 0 & \cdots & \sigma^2\end{pmatrix}$$

Why, in general, might we question this assumption?

The ANOVA model above can be expressed as

$$y_{i,j} = \mu + a_{e(j)} + b_{f(j)} + c_{p(j)} + d_{u(j)} + \epsilon_{i,j}$$

$$a_{e(j)} \in \{a_1, \dots, a_5\}, e(j)$$
 is enrollment category of j
 $b_{f(j)} \in \{b_1, b_2, b_3\}, f(j)$ is flp category of j
etc.

The previous tests all assumed $\{\epsilon_{i,j}\} \sim iid N(0, \sigma^2)$, and specifically,

$$\operatorname{Cov}\left[\begin{pmatrix}\epsilon_{1,j}\\ \vdots\\ \epsilon_{n,j}\end{pmatrix}\right] = \begin{pmatrix}\sigma^2 & 0 & \cdots & 0\\ 0 & \sigma^2 & \cdots & 0\\ \vdots & & & \vdots\\ 0 & 0 & \cdots & \sigma^2\end{pmatrix}$$

Why, in general, might we question this assumption?

The ANOVA model above can be expressed as

$$y_{i,j} = \mu + a_{e(j)} + b_{f(j)} + c_{p(j)} + d_{u(j)} + \epsilon_{i,j}$$

$$a_{e(j)} \in \{a_1, \dots, a_5\}, e(j)$$
 is enrollment category of j
 $b_{f(j)} \in \{b_1, b_2, b_3\}, f(j)$ is flp category of j
etc.

The previous tests all assumed $\{\epsilon_{i,j}\} \sim iid N(0, \sigma^2)$, and specifically,

$$\operatorname{Cov}\left[\begin{pmatrix}\epsilon_{1,j}\\ \vdots\\ \epsilon_{n,j}\end{pmatrix}\right] = \begin{pmatrix}\sigma^2 & 0 & \cdots & 0\\ 0 & \sigma^2 & \cdots & 0\\ \vdots & & & \vdots\\ 0 & 0 & \cdots & \sigma^2\end{pmatrix}$$

Why, in general, might we question this assumption?

The ANOVA model above can be expressed as

$$y_{i,j} = \mu + a_{e(j)} + b_{f(j)} + c_{p(j)} + d_{u(j)} + \epsilon_{i,j}$$

$$a_{e(j)} \in \{a_1, \ldots, a_5\}, e(j)$$
 is enrollment category of j
 $b_{f(j)} \in \{b_1, b_2, b_3\}, f(j)$ is flp category of j
etc.

The previous tests all assumed $\{\epsilon_{i,j}\} \sim iid N(0, \sigma^2)$, and specifically,

$$\operatorname{Cov}\left[\begin{pmatrix}\epsilon_{1,j}\\ \vdots\\ \epsilon_{n,j}\end{pmatrix}\right] = \begin{pmatrix}\sigma^2 & 0 & \cdots & 0\\ 0 & \sigma^2 & \cdots & 0\\ \vdots & & & \vdots\\ 0 & 0 & \cdots & \sigma^2\end{pmatrix}$$

Why, in general, might we question this assumption?

To account for school heterogeneity, we could fit a school-specific intercept:

$$y_{i,j} = (\mu + a_j) + a_{e(j)} + b_{f(j)} + c_{p(j)} + d_{u(j)} + \epsilon_{i,j}$$

In the absence of macro effects, OLS/ANOVA was a reasonable approach:

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

- \bar{y}_j provides an unbiased estimate of $\mu_j = \mu + a_j$
- F-test from ANOVA is a valid test of heterogeneity across groups.

Could we use OLS/ANOVA in the presence of macro effects?

To account for school heterogeneity, we could fit a school-specific intercept:

$$y_{i,j} = (\mu + a_j) + a_{e(j)} + b_{f(j)} + c_{p(j)} + d_{u(j)} + \epsilon_{i,j}$$

In the absence of macro effects, OLS/ANOVA was a reasonable approach:

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

• \bar{y}_j provides an unbiased estimate of $\mu_j = \mu + a_j$

• *F*-test from ANOVA is a valid test of heterogeneity across groups. Could we use OLS/ANOVA in the presence of macro effects?

To account for school heterogeneity, we could fit a school-specific intercept:

$$y_{i,j} = (\mu + a_j) + a_{e(j)} + b_{f(j)} + c_{p(j)} + d_{u(j)} + \epsilon_{i,j}$$

In the absence of macro effects, OLS/ANOVA was a reasonable approach:

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

- \bar{y}_j provides an unbiased estimate of $\mu_j = \mu + a_j$
- *F*-test from ANOVA is a valid test of heterogeneity across groups.

Could we use OLS/ANOVA in the presence of macro effects?

To account for school heterogeneity, we could fit a school-specific intercept:

$$y_{i,j} = (\mu + a_j) + a_{e(j)} + b_{f(j)} + c_{p(j)} + d_{u(j)} + \epsilon_{i,j}$$

In the absence of macro effects, OLS/ANOVA was a reasonable approach:

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

- \bar{y}_j provides an unbiased estimate of $\mu_j = \mu + a_j$
- F-test from ANOVA is a valid test of heterogeneity across groups.

Could we use OLS/ANOVA in the presence of macro effects?

To account for school heterogeneity, we could fit a school-specific intercept:

$$y_{i,j} = (\mu + a_j) + a_{e(j)} + b_{f(j)} + c_{p(j)} + d_{u(j)} + \epsilon_{i,j}$$

In the absence of macro effects, OLS/ANOVA was a reasonable approach:

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

• \bar{y}_j provides an unbiased estimate of $\mu_j = \mu + a_j$

• *F*-test from ANOVA is a valid test of heterogeneity across groups. Could we use OLS/ANOVA in the presence of macro effects?

Analysis of Variance Table ## ## Response: mscore ## Df Sum Sq Mean Sq F value Pr(>F) ## as.factor(school) 683 342385 501.30 6.8118 < 2.2e-16 *** ## Residuals 12290 904450 73.59 ## ---## Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' ;

School-specific fixed effects explain all heterogeneity in means across schools.

There is nothing left for the other factors to explain.

Attempted solution with fixed effects

```
anova(fit_ols)
## Analysis of Variance Table
##
## Response: mscore
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(school) 683 342385 501.30 6.8118 < 2.2e-16 ***
## Residuals 12290 904450 73.59
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

School-specific fixed effects explain *all* heterogeneity in means across schools.

There is nothing left for the other factors to explain.

Attempted solution with fixed effects

```
anova(fit_ols)
## Analysis of Variance Table
##
## Response: mscore
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(school) 683 342385 501.30 6.8118 < 2.2e-16 ***
## Residuals 12290 904450 73.59
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

School-specific fixed effects explain *all* heterogeneity in means across schools.

There is nothing left for the other factors to explain.

$$y_{i,j} = (\mu + a_j) + a_{e(j)} + b_{f(j)} + c_{p(j)} + d_{u(j)} + \epsilon_{i,j}$$

 $a_1, \dots, a_m \sim iid \ N(0, \tau^2)$

As we've discussed, the random intercept induces a covariance within schools, and the above model is *equivalent to*

$$y_{i,j} = \mu + a_{e(j)} + b_{f(j)} + c_{p(j)} + d_{u(j)} + \epsilon_{i,j}$$

where

$$\operatorname{Cov}\left[\begin{pmatrix}\epsilon_{1,j}\\\vdots\\\epsilon_{n,j}\end{pmatrix}\right] = \begin{pmatrix}\sigma^{2} + \tau^{2} & \tau^{2} & \cdots & \tau^{2}\\\tau^{2} & \sigma^{2} + \tau^{2} & \cdots & \tau^{2}\\\vdots & & & \vdots\\\tau^{2} & \tau^{2} & \cdots & \sigma^{2} + \tau^{2}\end{pmatrix}$$

$$y_{i,j} = (\mu + a_j) + a_{e(j)} + b_{f(j)} + c_{p(j)} + d_{u(j)} + \epsilon_{i,j}$$
$$a_1, \dots, a_m \sim iid \ N(0, \tau^2)$$

As we've discussed, the random intercept induces a covariance within schools, and the above model is *equivalent to*

$$y_{i,j} = \mu + a_{e(j)} + b_{f(j)} + c_{p(j)} + d_{u(j)} + \epsilon_{i,j}$$

where

$$\operatorname{Cov}\left[\begin{pmatrix}\epsilon_{1,j}\\ \vdots\\ \epsilon_{n,j}\end{pmatrix}\right] = \begin{pmatrix}\sigma^2 + \tau^2 & \tau^2 & \cdots & \tau^2\\ \tau^2 & \sigma^2 + \tau^2 & \cdots & \tau^2\\ \vdots & & \vdots\\ \tau^2 & \tau^2 & \cdots & \sigma^2 + \tau^2\end{pmatrix}$$
$$\operatorname{Cor}[v_{i,i}, v_{i,k}] = \frac{\tau^2}{\tau^2}$$

$$y_{i,j} = (\mu + a_j) + a_{e(j)} + b_{f(j)} + c_{p(j)} + d_{u(j)} + \epsilon_{i,j}$$

 $a_1, \dots, a_m \sim iid \ N(0, \tau^2)$

As we've discussed, the random intercept induces a covariance within schools, and the above model is *equivalent to*

$$y_{i,j} = \mu + a_{e(j)} + b_{f(j)} + c_{p(j)} + d_{u(j)} + \epsilon_{i,j}$$

where

$$\operatorname{Cov}\left[\begin{pmatrix}\epsilon_{1,j}\\ \vdots\\ \epsilon_{n,j}\end{pmatrix}\right] = \begin{pmatrix}\sigma^2 + \tau^2 & \tau^2 & \cdots & \tau^2\\ \tau^2 & \sigma^2 + \tau^2 & \cdots & \tau^2\\ \vdots & & & \vdots\\ \tau^2 & \tau^2 & \cdots & \sigma^2 + \tau^2\end{pmatrix}$$

 $\operatorname{Cor}[y_{i,j}, y_{i,k}] = \frac{\tau^2}{\tau^2 + \sigma^2}$

$$y_{i,j} = (\mu + a_j) + a_{e(j)} + b_{f(j)} + c_{p(j)} + d_{u(j)} + \epsilon_{i,j}$$

 $a_1, \dots, a_m \sim iid \ N(0, \tau^2)$

As we've discussed, the random intercept induces a covariance within schools, and the above model is *equivalent to*

$$y_{i,j} = \mu + a_{e(j)} + b_{f(j)} + c_{p(j)} + d_{u(j)} + \epsilon_{i,j}$$

where

$$\operatorname{Cov}\left[\begin{pmatrix}\epsilon_{1,j}\\ \vdots\\ \epsilon_{n,j}\end{pmatrix}\right] = \begin{pmatrix}\sigma^2 + \tau^2 & \tau^2 & \cdots & \tau^2\\ \tau^2 & \sigma^2 + \tau^2 & \cdots & \tau^2\\ \vdots & & & \vdots\\ \tau^2 & \tau^2 & \cdots & \sigma^2 + \tau^2\end{pmatrix}$$

$$\operatorname{Cor}[y_{i,j}, y_{i,k}] = \frac{\tau^2}{\tau^2 + \sigma^2}$$

```
fit0<-lmer( mscore ~ 1 + (1|school),data=nels)</pre>
fit0
## Linear mixed model fit by REML ['lmerMod']
## Formula: mscore ~ 1 + (1 | school)
##
     Data: nels
## REML criterion at convergence: 93914.62
## Bandom effects:
## Groups Name
                         Std.Dev.
## school (Intercept) 4.866
## Residual
                         8.585
## Number of obs: 12974, groups: school, 684
## Fixed Effects:
## (Intercept)
##
         50.94
s2.hat<-sigma(fit0)^2
t2.hat<-as.numeric(VarCorr(fit0)$school)
s2.hat
## [1] 73.70822
t2 hat
## [1] 23.6768
### TCC
t2.hat/(t2.hat+s2.hat)
## [1] 0.2431257
```

```
fit1<-lmer( mscore ~ as.factor(enroll) + (1|school),data=nels)
s2.hat<-sigma(fit1)^2
t2.hat<-as.numeric(VarCorr(fit1)$school)
s2.hat
## [1] 73.71874
t2.hat
## [1] 23.3493
### ICC
t2.hat/(t2.hat+s2.hat)
## [1] 0.2405457</pre>
```

```
fit2<-lmer( mscore ~ as.factor(enroll) +as.factor(flp) + (1|school),data=nels)</pre>
```

```
s2.hat<-sigma(fit2)^2
t2.hat<-as.numeric(VarCorr(fit2)$school)</pre>
```

s2.hat

[1] 73.76314

t2.hat

[1] 13.73191

```
### ICC
```

t2.hat/(t2.hat+s2.hat)

[1] 0.156945

```
fit3<-lmer( mscore ~ as.factor(enroll) +as.factor(flp) + as.factor(public) +</pre>
   (1|school).data=nels)
s2.hat<-sigma(fit3)^2
t2.hat <- as.numeric(VarCorr(fit3)$school)
s2.hat
## [1] 73.77206
t2.hat
## [1] 13.4839
### ICC
t2.hat/(t2.hat+s2.hat)
## [1] 0.1545327
```

```
fit4<-lmer( mscore ~ as.factor(enroll) +as.factor(flp) + as.factor(public) +</pre>
  as.factor(urbanicity) + (1|school).data=nels)
s2.hat<-sigma(fit4)^2
t2.hat <- as.numeric(VarCorr(fit4)$school)
s2.hat
## [1] 73.77562
t2.hat
## [1] 13.20577
### ICC
t2.hat/(t2.hat+s2.hat)
## [1] 0.151823
```

Notice: As we add macro predictors,

- $\hat{\tau}^2$ decreases, $\hat{\sigma}^2$ remains roughly the same;
- the within-group correlation decreases.

Questions: For a given set of macro variables,

- Is there evidence of (strong) within class correlation?
 - If not, we can test for macro variables with ANOVA.
 - * If so, how do we evaluate the effects of the macro variables?

- Develop tests of within-class correlation in the presence of macro variables equivalently, test of excess across school heterogeneity
- 2. Develop tests of macro effects in the presence of within-class correlation
- 3. More generally, select appropriate model from among LMs and HLMs.

Notice: As we add macro predictors,

- $\hat{\tau}^2$ decreases, $\hat{\sigma}^2$ remains roughly the same;
- the within-group correlation decreases.

Questions: For a given set of macro variables,

- Is there evidence of (strong) within class correlation?
 - If not, we can test for macro variables with ANOVA.
 - * If so, how do we evaluate the effects of the macro variables?

- Develop tests of within-class correlation in the presence of macro variables equivalently, test of excess across action heterogeneity.
- 2. Develop tests of macro effects in the presence of within-class correlation
- 3. More generally, select appropriate model from among LMs and HLMs.

Notice: As we add macro predictors,

- $\hat{\tau}^2$ decreases, $\hat{\sigma}^2$ remains roughly the same;
- the within-group correlation decreases.

Questions: For a given set of macro variables,

- Is there evidence of (strong) within class correlation?
 - If not, we can test for macro variables with ANOVA.
 - * If so, how do we evaluate the effects of the macro variables?

- Develop tests of within-class correlation in the presence of macro variables equivalently, test of excess across action heterogeneity
- 2. Develop tests of macro effects in the presence of within-class correlation
- 3. More generally, select appropriate model from among LMs and HLMs.

Notice: As we add macro predictors,

- $\hat{\tau}^2$ decreases, $\hat{\sigma}^2$ remains roughly the same;
- the within-group correlation decreases.

Questions: For a given set of macro variables,

- Is there evidence of (strong) within class correlation?
 - If not, we can test for macro variables with ANOVA.
 - If so, how do we evaluate the effects of the macro variables?

- Develop tests of within-class correlation in the presence of macro variables equivalently, test of paces across school heterogenalty.
- 2. Develop tests of macro effects in the presence of within-class correlation
- 3. More generally, select appropriate model from among LMs and HLMs.

Notice: As we add macro predictors,

- $\hat{\tau}^2$ decreases, $\hat{\sigma}^2$ remains roughly the same;
- the within-group correlation decreases.

Questions: For a given set of macro variables,

- Is there evidence of (strong) within class correlation?
 - If not, we can test for macro variables with ANOVA.
 - If so, how do we evaluate the effects of the macro variables?

- Develop tests of within-class correlation in the presence of macro variables equivalently, test of excess across action heterogeneity
- 2. Develop tests of macro effects in the presence of within-class correlation
- 3. More generally, select appropriate model from among LMs and HLMs.

Notice: As we add macro predictors,

- $\hat{\tau}^2$ decreases, $\hat{\sigma}^2$ remains roughly the same;
- the within-group correlation decreases.

Questions: For a given set of macro variables,

- Is there evidence of (strong) within class correlation?
 - If not, we can test for macro variables with ANOVA.
 - If so, how do we evaluate the effects of the macro variables?

- Develop tests of within-class correlation in the presence of macro variables equivalently, test of excess across school heterogeneity
- 2. Develop tests of macro effects in the presence of within-class correlation
- 3. More generally, select appropriate model from among LMs and HLMs.

Notice: As we add macro predictors,

- $\hat{\tau}^2$ decreases, $\hat{\sigma}^2$ remains roughly the same;
- the within-group correlation decreases.

Questions: For a given set of macro variables,

- Is there evidence of (strong) within class correlation?
 - If not, we can test for macro variables with ANOVA.
 - If so, how do we evaluate the effects of the macro variables?

- Develop tests of within-class correlation in the presence of macro variables equivalently, test of macross across school heterogeneity.
- 2. Develop tests of macro effects in the presence of within-class correlation
- 3. More generally, select appropriate model from among LMs and HLMs.

Notice: As we add macro predictors,

- $\hat{\tau}^2$ decreases, $\hat{\sigma}^2$ remains roughly the same;
- the within-group correlation decreases.

Questions: For a given set of macro variables,

- Is there evidence of (strong) within class correlation?
 - If not, we can test for macro variables with ANOVA.
 - If so, how do we evaluate the effects of the macro variables?

- 1. Develop tests of within-class correlation *in the presence of macro variables* equivalently, test of excess across-school heterogeneity
- 2. Develop tests of macro effects in the presence of within-class correlation
- 3. More generally, select appropriate model from among LMs and HLMs.

Notice: As we add macro predictors,

- $\hat{\tau}^2$ decreases, $\hat{\sigma}^2$ remains roughly the same;
- the within-group correlation decreases.

Questions: For a given set of macro variables,

- Is there evidence of (strong) within class correlation?
 - If not, we can test for macro variables with ANOVA.
 - If so, how do we evaluate the effects of the macro variables?

- 1. Develop tests of within-class correlation *in the presence of macro variables* equivalently, test of *excess across-school heterogeneity*
- 2. Develop tests of macro effects in the presence of within-class correlation
- 3. More generally, select appropriate model from among LMs and HLMs.

Notice: As we add macro predictors,

- $\hat{\tau}^2$ decreases, $\hat{\sigma}^2$ remains roughly the same;
- the within-group correlation decreases.

Questions: For a given set of macro variables,

- Is there evidence of (strong) within class correlation?
 - If not, we can test for macro variables with ANOVA.
 - If so, how do we evaluate the effects of the macro variables?

- 1. Develop tests of within-class correlation *in the presence of macro variables* equivalently, test of *excess across-school heterogeneity*
- 2. Develop tests of macro effects in the presence of within-class correlation
- 3. More generally, select appropriate model from among LMs and HLMs.

Notice: As we add macro predictors,

- $\hat{\tau}^2$ decreases, $\hat{\sigma}^2$ remains roughly the same;
- the within-group correlation decreases.

Questions: For a given set of macro variables,

- Is there evidence of (strong) within class correlation?
 - If not, we can test for macro variables with ANOVA.
 - If so, how do we evaluate the effects of the macro variables?

- 1. Develop tests of within-class correlation *in the presence of macro variables* equivalently, test of *excess across-school heterogeneity*
- 2. Develop tests of macro effects in the presence of within-class correlation
- 3. More generally, select appropriate model from among LMs and HLMs.

Notice: As we add macro predictors,

- $\hat{\tau}^2$ decreases, $\hat{\sigma}^2$ remains roughly the same;
- the within-group correlation decreases.

Questions: For a given set of macro variables,

- Is there evidence of (strong) within class correlation?
 - If not, we can test for macro variables with ANOVA.
 - If so, how do we evaluate the effects of the macro variables?

- 1. Develop tests of within-class correlation *in the presence of macro variables* equivalently, test of *excess across-school heterogeneity*
- 2. Develop tests of macro effects in the presence of within-class correlation
- 3. More generally, select appropriate model from among LMs and HLMs.

Notice: As we add macro predictors,

- $\hat{\tau}^2$ decreases, $\hat{\sigma}^2$ remains roughly the same;
- the within-group correlation decreases.

Questions: For a given set of macro variables,

- Is there evidence of (strong) within class correlation?
 - If not, we can test for macro variables with ANOVA.
 - If so, how do we evaluate the effects of the macro variables?

- 1. Develop tests of within-class correlation *in the presence of macro variables* equivalently, test of *excess across-school heterogeneity*
- 2. Develop tests of macro effects in the presence of within-class correlation
- 3. More generally, select appropriate model from among LMs and HLMs.

Testing for excess heterogeneity

Consier two competing models:

 M_0 : No excess heterogeneity

$$y_{i,j} = \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_{i,j} + \epsilon_{i,j}$$
$$\{\epsilon_{i,j}\} \sim \text{ iid } N(0, \sigma^2)$$

*M*₁: Excess heterogeneity

$$y_{i,j} = \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_{i,j} + a_j + \epsilon_{i,j}$$

$$\{\epsilon_{i,j}\} \sim \quad iid \quad N(0, \sigma^2)$$

$$\{a_j\} \sim \quad iid \quad N(0, \tau^2)$$

Testing for excess heterogeneity

Consier two competing models:

M₀: No excess heterogeneity

$$y_{i,j} = \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \epsilon_{i,j}$$
$$\{\epsilon_{i,j}\} \sim iid \ N(0, \sigma^2)$$

*M*₁: Excess heterogeneity

$$y_{i,j} = \beta^T \mathbf{x}_{i,j} + a_j + \epsilon_{i,j}$$

$$\{\epsilon_{i,j}\} \sim iid \ N(0, \sigma^2)$$

$$\{a_j\} \sim iid \ N(0, \tau^2)$$

Testing for excess heterogeneity

Consier two competing models:

*M*₀: No excess heterogeneity

$$y_{i,j} = \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \epsilon_{i,j}$$
$$\{\epsilon_{i,j}\} \sim iid \ N(0, \sigma^2)$$

*M*₁: Excess heterogeneity

$$y_{i,j} = \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_{i,j} + \mathbf{a}_j + \epsilon_{i,j}$$

$$\{\epsilon_{i,j}\} \sim iid \ N(0,\sigma^2)$$

$$\{\mathbf{a}_j\} \sim iid \ N(0,\tau^2)$$

Suppose you would like a model selection procedure such that

if model M_0 were true,

you have a 95% chance of saying it is true.

If this is what you want, then a level .05 hypothesis test is for you.

 H_0 : No excess heterogeneity - model M_0 is true.

 H_1 : Excess heterogeneity - model M_1 is true.

Suppose you would like a model selection procedure such that

if model M_0 were true,

you have a 95% chance of saying it is true.

If this is what you want, then a level .05 hypothesis test is for you.

 H_0 : No excess heterogeneity - model M_0 is true.

 H_1 : Excess heterogeneity - model M_1 is true.

Suppose you would like a model selection procedure such that

if model M_0 were true,

you have a 95% chance of saying it is true.

If this is what you want, then a *level .05 hypothesis test* is for you.

 H_0 : No excess heterogeneity - model M_0 is true.

 H_1 : Excess heterogeneity - model M_1 is true.

Suppose you would like a model selection procedure such that

if model M_0 were true,

you have a 95% chance of saying it is true.

If this is what you want, then a level .05 hypothesis test is for you.

 H_0 : No excess heterogeneity - model M_0 is true.

 H_1 : Excess heterogeneity - model M_1 is true.

Suppose you would like a model selection procedure such that

if model M_0 were true,

you have a 95% chance of saying it is true.

If this is what you want, then a level .05 hypothesis test is for you.

 H_0 : No excess heterogeneity - model M_0 is true.

 H_1 : Excess heterogeneity - model M_1 is true.

A popular tool for comparing nested models is the *likelihood ratio test (LRT)*:

Reject
$$H_0$$
 if $\Lambda(\mathbf{y}) = \frac{p(\mathbf{y}|\hat{\theta}_1)}{p(\mathbf{y}|\hat{\theta}_0)}$ is large.

- $p(\mathbf{y}|\hat{ heta}_1)$ is the maximized prob density of data under H_1
- $p(\mathbf{y}|\hat{\theta}_0)$ is the maximized prob density of data under H_0
- $\Lambda(\mathbf{y})$ is the likelihood ratio statistic.

Reject
$$H_0$$
 if $\lambda(\mathbf{y}) = 2 \times \left(\log p(\mathbf{y}|\hat{ heta}_1) - \log p(\mathbf{y}|\hat{ heta}_0)\right)$ is large.

- $\log
 ho(\mathbf{y}|\hat{ heta}_1)$ is the maximized log likelihood for M_1
- $p(\mathbf{y}|\hat{ heta}_0)$ is the maximized log likelhiood for M_0
- λ(y) is the log-likelihood ratio statistic.

A popular tool for comparing nested models is the *likelihood ratio test (LRT)*:

Reject
$$H_0$$
 if $\Lambda(\mathbf{y}) = \frac{p(\mathbf{y}|\hat{ heta}_1)}{p(\mathbf{y}|\hat{ heta}_0)}$ is large.

- $p(\mathbf{y}|\hat{ heta}_1)$ is the maximized prob density of data under H_1
- $p(\mathbf{y}|\hat{ heta}_0)$ is the maximized prob density of data under H_0
- $\Lambda(\mathbf{y})$ is the likelihood ratio statistic.

Reject
$$H_0$$
 if $\lambda(\mathbf{y}) = 2 \times \left(\log p(\mathbf{y}|\hat{\theta}_1) - \log p(\mathbf{y}|\hat{\theta}_0)\right)$ is large.

- $\log
 ho(\mathbf{y}|\hat{ heta}_1)$ is the maximized log likelihood for M_1
- $p(\mathbf{y}|\hat{ heta}_0)$ is the maximized log likelhiood for M_0
- λ(y) is the log-likelihood ratio statistic.

A popular tool for comparing nested models is the *likelihood ratio test (LRT)*:

Reject
$$H_0$$
 if $\Lambda(\mathbf{y}) = \frac{p(\mathbf{y}|\hat{ heta}_1)}{p(\mathbf{y}|\hat{ heta}_0)}$ is large.

- $p(\mathbf{y}|\hat{ heta}_1)$ is the maximized prob density of data under H_1
- $p(\mathbf{y}|\hat{ heta}_0)$ is the maximized prob density of data under H_0
- $\Lambda(\mathbf{y})$ is the likelihood ratio statistic.

Reject
$$H_0$$
 if $\lambda(\mathbf{y}) = 2 \times \left(\log p(\mathbf{y}|\hat{\theta}_1) - \log p(\mathbf{y}|\hat{\theta}_0)\right)$ is large.

- $\log
 ho(\mathbf{y}|\hat{ heta}_1)$ is the maximized log likelihood for M_1
- $p(\mathbf{y}|\hat{ heta}_0)$ is the maximized log likelhiood for M_0
- λ(y) is the log-likelihood ratio statistic.

A popular tool for comparing nested models is the *likelihood ratio test (LRT)*:

Reject
$$H_0$$
 if $\Lambda(\mathbf{y}) = \frac{p(\mathbf{y}|\hat{ heta}_1)}{p(\mathbf{y}|\hat{ heta}_0)}$ is large.

- $p(\mathbf{y}|\hat{ heta}_1)$ is the maximized prob density of data under H_1
- $p(\mathbf{y}|\hat{ heta}_0)$ is the maximized prob density of data under H_0
- $\Lambda(\mathbf{y})$ is the likelihood ratio statistic.

Reject
$$H_0$$
 if $\lambda(\mathbf{y}) = 2 \times \left(\log p(\mathbf{y}|\hat{ heta}_1) - \log p(\mathbf{y}|\hat{ heta}_0)\right)$ is large.

- $\log
 ho(\mathbf{y}|\hat{ heta}_1)$ is the maximized log likelihood for M_1
- $p(\mathbf{y}|\hat{ heta}_0)$ is the maximized log likelhiood for M_0
- λ(y) is the log-likelihood ratio statistic.

A popular tool for comparing nested models is the *likelihood ratio test (LRT)*:

Reject
$$H_0$$
 if $\Lambda(\mathbf{y}) = \frac{p(\mathbf{y}|\hat{ heta}_1)}{p(\mathbf{y}|\hat{ heta}_0)}$ is large.

- $p(\mathbf{y}|\hat{ heta}_1)$ is the maximized prob density of data under H_1
- $p(\mathbf{y}|\hat{ heta}_0)$ is the maximized prob density of data under H_0
- $\Lambda(\mathbf{y})$ is the likelihood ratio statistic.

$$\mathsf{Reject} \,\, \mathit{H}_0 \,\, \mathsf{if} \,\, \lambda(\mathbf{y}) = 2 \times \left(\log p(\mathbf{y} | \hat{\theta}_1) - \log p(\mathbf{y} | \hat{\theta}_0) \right) \,\, \mathsf{is large}.$$

- log $p(\mathbf{y}|\hat{ heta}_1)$ is the maximized log likelihood for M_1
- $p(\mathbf{y}|\hat{\theta}_0)$ is the maximized log likelhiood for M_0
- $\lambda(\mathbf{y})$ is the log-likelihood ratio statistic.

A popular tool for comparing nested models is the *likelihood ratio test (LRT)*:

Reject
$$H_0$$
 if $\Lambda(\mathbf{y}) = \frac{p(\mathbf{y}|\hat{ heta}_1)}{p(\mathbf{y}|\hat{ heta}_0)}$ is large.

- $p(\mathbf{y}|\hat{ heta}_1)$ is the maximized prob density of data under H_1
- $p(\mathbf{y}|\hat{ heta}_0)$ is the maximized prob density of data under H_0
- $\Lambda(\mathbf{y})$ is the likelihood ratio statistic.

Reject
$$H_0$$
 if $\lambda(\mathbf{y}) = 2 \times \left(\log p(\mathbf{y}|\hat{\theta}_1) - \log p(\mathbf{y}|\hat{\theta}_0)\right)$ is large.

- log $p(\mathbf{y}|\hat{ heta}_1)$ is the maximized log likelihood for M_1
- $p(\mathbf{y}|\hat{ heta}_0)$ is the maximized log likelhiood for M_0
- λ(y) is the log-likelihood ratio statistic.

A popular tool for comparing nested models is the *likelihood ratio test (LRT)*:

Reject
$$H_0$$
 if $\Lambda(\mathbf{y}) = \frac{p(\mathbf{y}|\hat{ heta}_1)}{p(\mathbf{y}|\hat{ heta}_0)}$ is large.

- $p(\mathbf{y}|\hat{ heta}_1)$ is the maximized prob density of data under H_1
- $p(\mathbf{y}|\hat{ heta}_0)$ is the maximized prob density of data under H_0
- $\Lambda(\mathbf{y})$ is the likelihood ratio statistic.

$$\mathsf{Reject} \,\, H_0 \,\, \mathsf{if} \,\, \lambda(\mathbf{y}) = 2 \times \left(\log p(\mathbf{y} | \hat{\theta}_1) - \log p(\mathbf{y} | \hat{\theta}_0) \right) \,\, \mathsf{is large}.$$

- log $p(\mathbf{y}|\hat{ heta}_1)$ is the maximized log likelihood for M_1
- $p(\mathbf{y}|\hat{ heta}_0)$ is the maximized log likelhiood for M_0
- $\lambda(\mathbf{y})$ is the log-likelihood ratio statistic.

A popular tool for comparing nested models is the *likelihood ratio test (LRT)*:

Reject
$$H_0$$
 if $\Lambda(\mathbf{y}) = \frac{p(\mathbf{y}|\hat{ heta}_1)}{p(\mathbf{y}|\hat{ heta}_0)}$ is large.

- $p(\mathbf{y}|\hat{ heta}_1)$ is the maximized prob density of data under H_1
- $p(\mathbf{y}|\hat{ heta}_0)$ is the maximized prob density of data under H_0
- $\Lambda(\mathbf{y})$ is the likelihood ratio statistic.

$$\mathsf{Reject} \,\, H_0 \,\, \mathsf{if} \,\, \lambda(\mathbf{y}) = 2 \times \left(\log p(\mathbf{y} | \hat{\theta}_1) - \log p(\mathbf{y} | \hat{\theta}_0) \right) \,\, \mathsf{is large}.$$

- log $p(\mathbf{y}|\hat{ heta}_1)$ is the maximized log likelihood for M_1
- $p(\mathbf{y}|\hat{ heta}_0)$ is the maximized log likelhiood for M_0
- $\lambda(\mathbf{y})$ is the log-likelihood ratio statistic.

A popular tool for comparing nested models is the *likelihood ratio test (LRT)*:

Reject
$$H_0$$
 if $\Lambda(\mathbf{y}) = \frac{p(\mathbf{y}|\hat{ heta}_1)}{p(\mathbf{y}|\hat{ heta}_0)}$ is large.

- $p(\mathbf{y}|\hat{ heta}_1)$ is the maximized prob density of data under H_1
- $p(\mathbf{y}|\hat{ heta}_0)$ is the maximized prob density of data under H_0
- $\Lambda(\mathbf{y})$ is the likelihood ratio statistic.

$$\mathsf{Reject} \,\, H_0 \,\, \mathsf{if} \,\, \lambda(\mathbf{y}) = 2 \times \left(\log p(\mathbf{y} | \hat{\theta}_1) - \log p(\mathbf{y} | \hat{\theta}_0) \right) \,\, \mathsf{is large}.$$

- log $p(\mathbf{y}|\hat{ heta}_1)$ is the maximized log likelihood for M_1
- $p(\mathbf{y}|\hat{ heta}_0)$ is the maximized log likelhiood for M_0
- $\lambda(\mathbf{y})$ is the log-likelihood ratio statistic.

Macro effects testing with LM Macro effects testing with HLM Testing heterogeneous intercepts Testing examples Testing slope heterogeneity

Example: NELS data

```
### model 0
fit0<-lm(mscore ~ as.factor(flp) , data=nels)
logLik(fit0)
## 'log Lik.' -47375.64 (df=4)
### model 1
fit1<-lmer(mscore ~ as.factor(flp) + (1|school), data=nels,REML=FALSE)
logLik(fit1)
## 'log Lik.' -46811.34 (df=5)
### log liklihood statistic
lrt.stat<- 2*( logLik(fit1) - logLik(fit0) )
lrt.stat
## 'log Lik.' 1128.586 (df=5)</pre>
```

The LRT statistic seems pretty big!

Example: NELS data

```
### model 0
fit0<-lm(mscore ~ as.factor(flp) +
                  as.factor(enroll) +
                  as.factor(public) +
                  as.factor(urbanicity) , data=nels)
logLik(fit0)
## 'log Lik.' -47326.85 (df=12)
### model 1
fit1<-lmer(mscore ~ as.factor(flp) +</pre>
                     as.factor(enroll) +
                     as.factor(public) +
                     as.factor(urbanicity) + (1|school) , data=nels.REML=FALSE)
logLik(fit1)
## 'log Lik.' -46797.62 (df=13)
### log liklihood statistic
lrt.stat<- 2*( logLik(fit1) - logLik(fit0) )</pre>
lrt.stat
## 'log Lik.' 1058.465 (df=13)
```

Still pretty big!

How big is big? A level α test is one where we

reject
$$H_0$$
 if $\lambda(\mathbf{y}) = 2 \times \left(\log p(\mathbf{y}|\hat{\theta}_1) - \log p(\mathbf{y}|\hat{\theta}_0)\right)$ is bigger than λ_{α}

- the distribution of $\lambda(\mathbf{y})$ under H_0 ,
- the desired type I error rate α .

How big is big? A level α test is one where we

reject
$$\mathcal{H}_0$$
 if $\lambda(\mathbf{y}) = 2 imes \left(\log p(\mathbf{y}|\hat{ heta}_1) - \log p(\mathbf{y}|\hat{ heta}_0)
ight)$ is bigger than λ_lpha

- the distribution of $\lambda(\mathbf{y})$ under H_0 ,
- the desired type I error rate α .

How big is big? A level α test is one where we

reject
$$\mathcal{H}_0$$
 if $\lambda(\mathbf{y}) = 2 imes \left(\log p(\mathbf{y}|\hat{ heta}_1) - \log p(\mathbf{y}|\hat{ heta}_0)
ight)$ is bigger than λ_lpha

- the distribution of $\lambda(\mathbf{y})$ under H_0 ,
- the desired type I error rate α .

How big is big? A level α test is one where we

reject
$$\mathcal{H}_0$$
 if $\lambda(\mathbf{y}) = 2 imes \left(\log p(\mathbf{y}|\hat{ heta}_1) - \log p(\mathbf{y}|\hat{ heta}_0)
ight)$ is bigger than λ_lpha

- the distribution of $\lambda(\mathbf{y})$ under H_0 ,
- the desired type I error rate α.

How big is big? A level α test is one where we

reject
$$\mathcal{H}_0$$
 if $\lambda(\mathbf{y}) = 2 imes \left(\log p(\mathbf{y}|\hat{ heta}_1) - \log p(\mathbf{y}|\hat{ heta}_0)
ight)$ is bigger than λ_lpha

- the distribution of $\lambda(\mathbf{y})$ under H_0 ,
- the desired type I error rate α.

$$y_{1,A}, \ldots, y_{n_A,A} \sim iid \ N(\mu, \sigma^2)$$

$$y_{1,B}, \ldots, y_{n_B,B} \sim iid \ N(\mu, \sigma^2)$$

then the distribution of the t-statistic

$$t(\mathbf{y}_A, \mathbf{y}_B) = rac{ar{y}_B - ar{y}_A}{s_p \sqrt{1/n_A + 1/n_B}}$$

has a t-distribution.

lf

$$y_{1,A}, \dots, y_{n_A,A} \sim iid \ N(\mu, \sigma^2)$$
$$y_{1,B}, \dots, y_{n_B,B} \sim iid \ N(\mu, \sigma^2)$$

then the distribution of the t-statistic

$$t(\mathbf{y}_A,\mathbf{y}_B) = rac{ar{y}_B - ar{y}_A}{s_p \sqrt{1/n_A + 1/n_B}}$$

has a *t*-distribution.

lf

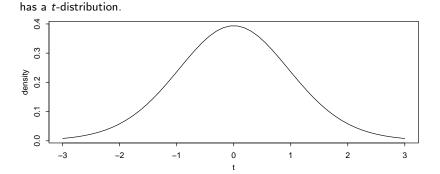
$$y_{1,A}, \dots, y_{n_A,A} \sim iid \ N(\mu, \sigma^2)$$

$$y_{1,B}, \dots, y_{n_B,B} \sim iid \ N(\mu, \sigma^2)$$

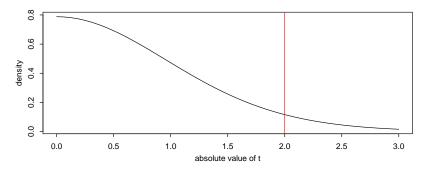
then the distribution of the t-statistic

lf

$$t(\mathbf{y}_A,\mathbf{y}_B) = rac{ar{y}_B - ar{y}_A}{s_p \sqrt{1/n_A + 1/n_B}}$$



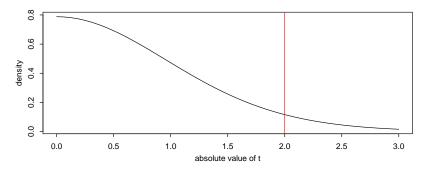
A typical t-test rejects if $|t(\mathbf{y}_A, \mathbf{y}_B)| > 2$.



 $\Pr(|t(\mathbf{y}_A, \mathbf{y}_B)| > 2) \approx 0.05$

- 2 is the critical value of the test;
- 0.05 is the (approximate) level of the test.

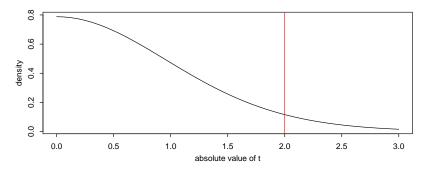
A typical t-test rejects if $|t(\mathbf{y}_A, \mathbf{y}_B)| > 2$.



 $\Pr(|t(\mathbf{y}_A, \mathbf{y}_B)| > 2) \approx 0.05$

- 2 is the critical value of the test;
- 0.05 is the (approximate) level of the test.

A typical t-test rejects if $|t(\mathbf{y}_A, \mathbf{y}_B)| > 2$.



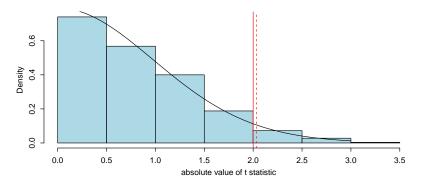
 $\Pr(|t(\mathbf{y}_A, \mathbf{y}_B)| > 2) \approx 0.05$

- 2 is the critical value of the test;
- 0.05 is the (approximate) level of the test.

Null distribution example: t-test empirical validation

```
n<-20 ; ATSTAT<-NULL
for(i in 1:S)
{
    yA<-rnorm(n)
    yB<-rnorm(n)
    ATSTAT<-c(ATSTAT, abs(t.test(yA,yB,pooled=TRUE)$stat))
}</pre>
```

Null distribution example: t-test empirical validation



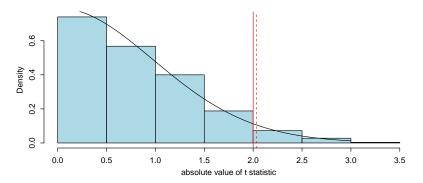
```
quantile(ATSTAT,probs=.95)
```

95% ## 2.032179

qt(.975,2*(n-1))

[1] 2.024394

Null distribution example: t-test empirical validation



```
quantile(ATSTAT,probs=.95)
## 95%
## 2.032179
qt(.975,2*(n-1))
```

[1] 2.024394

LRT:

Reject
$$H_0$$
 if $\lambda(\mathbf{y}) = 2 \times \left(\log p(\mathbf{y}|\hat{\theta}_1) - \log p(\mathbf{y}|\hat{\theta}_0)\right)$ is greater than \boldsymbol{c} ,

where c is the value such that

$$\Pr(\lambda(\mathbf{y}) > \boldsymbol{c} | \boldsymbol{H}_0) = 0.05.$$

LRT:

Reject
$$H_0$$
 if $\lambda(\mathbf{y}) = 2 \times \left(\log p(\mathbf{y}|\hat{\theta}_1) - \log p(\mathbf{y}|\hat{\theta}_0)\right)$ is greater than \boldsymbol{c} ,

where c is the value such that

$$\Pr(\lambda(\mathbf{y}) > \mathbf{c}|H_0) = 0.05.$$

LRT:

Reject
$$H_0$$
 if $\lambda(\mathbf{y}) = 2 \times \left(\log p(\mathbf{y}|\hat{\theta}_1) - \log p(\mathbf{y}|\hat{\theta}_0)\right)$ is greater than \boldsymbol{c} ,

where c is the value such that

$$\Pr(\lambda(\mathbf{y}) > \frac{\mathbf{c}}{|H_0|} = 0.05.$$

LRT:

Reject
$$H_0$$
 if $\lambda(\mathbf{y}) = 2 \times \left(\log p(\mathbf{y}|\hat{\theta}_1) - \log p(\mathbf{y}|\hat{\theta}_0)\right)$ is greater than \boldsymbol{c} ,

where c is the value such that

$$\Pr(\lambda(\mathbf{y}) > \boldsymbol{c} | H_0) = 0.05.$$

Statistical folklore says the following: If

- M_0 is nested in M_1 (M_0 is a special case of M_1), and
- *M*₀ is true, then

 $\lambda(\mathbf{y}) \stackrel{.}{\sim} \chi^2_d$

where d is the difference in the number of parameters between M_1 and M_0 .

qchisq(.95,1)
[1] 3 8/1/50

Statistical folklore says the following: If

- M_0 is nested in M_1 (M_0 is a special case of M_1), and
- M_0 is true, then

$$\lambda(\mathbf{y}) \stackrel{.}{\sim} \chi^2_d$$

where d is the difference in the number of parameters between M_1 and M_0 .

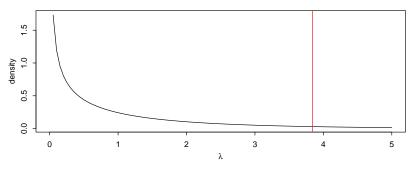
qchisq(.95,1)

Statistical folklore says the following: If

- M_0 is nested in M_1 (M_0 is a special case of M_1), and
- *M*₀ is true, then

$$\lambda(\mathbf{y}) \stackrel{.}{\sim} \chi^2_d$$

where d is the difference in the number of parameters between M_1 and M_0 .



qchisq(.95,1)

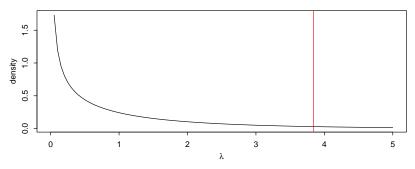
[1] 3.841459

Statistical folklore says the following: If

- M_0 is nested in M_1 (M_0 is a special case of M_1), and
- *M*₀ is true, then

$$\lambda(\mathbf{y}) \stackrel{.}{\sim} \chi^2_d$$

where d is the difference in the number of parameters between M_1 and M_0 .



qchisq(.95,1)

[1] 3.841459

 M_0 : No fixed effect of $x_{i,j}$

$$y_{i,j} = eta_0 + a_j + \epsilon_{i,j}$$

 $a_j \sim N(0, \tau^2)$

 M_1 : Yes fixed effect of $x_{i,j}$

$$y_{i,j} = \beta_0 + \beta_1 x_{i,j} + a_j + \epsilon_{i,j}$$
$$a_j \sim N(0, \tau^2)$$

Distribution of LRT: The change in the number of parameters is d = 1. Presumably,

$$\lambda(\mathbf{y}) \stackrel{\cdot}{\sim} \chi_1^2$$

The $\stackrel{\cdot}{\sim}$ means "approximately distributed as."

 M_0 : No fixed effect of $x_{i,j}$

$$y_{i,j} = eta_0 + a_j + \epsilon_{i,j}$$

 $a_j \sim N(0, \tau^2)$

 M_1 : Yes fixed effect of $x_{i,j}$

$$y_{i,j} = eta_0 + eta_1 x_{i,j} + eta_j + \epsilon_{i,j}$$

 $a_j \sim N(0, \tau^2)$

Distribution of LRT: The change in the number of parameters is d = 1. Presumably,

$$\lambda(\mathbf{y}) \stackrel{\cdot}{\sim} \chi_1^2$$

The $\stackrel{.}{\sim}$ means "approximately distributed as."

 M_0 : No fixed effect of $x_{i,j}$

$$egin{aligned} y_{i,j} &= eta_0 + eta_j + \epsilon_{i,j} \ eta_j &\sim & m{N}(0, au^2) \end{aligned}$$

 M_1 : Yes fixed effect of $x_{i,j}$

$$y_{i,j} = eta_0 + eta_1 x_{i,j} + eta_j + \epsilon_{i,j}$$

 $a_j \sim N(0, \tau^2)$

Distribution of LRT: The change in the number of parameters is d = 1. Presumably,

 $\lambda(\mathbf{y}) \stackrel{.}{\sim} \chi_1^2$

The $\stackrel{.}{\sim}$ means "approximately distributed as."

 M_0 : No fixed effect of $x_{i,j}$

$$y_{i,j} = eta_0 + a_j + \epsilon_{i,j}$$

 $a_j \sim N(0, \tau^2)$

 M_1 : Yes fixed effect of $x_{i,j}$

$$y_{i,j} = eta_0 + eta_1 x_{i,j} + eta_j + \epsilon_{i,j}$$

 $a_j \sim N(0, \tau^2)$

Distribution of LRT: The change in the number of parameters is d = 1. Presumably,

$$\lambda(\mathbf{y}) \stackrel{.}{\sim} \chi_1^2$$

The $\stackrel{\cdot}{\sim}$ means "approximately distributed as."

 M_0 : No fixed effect of $x_{i,j}$

$$y_{i,j} = eta_0 + a_j + \epsilon_{i,j}$$

 $a_j \sim N(0, \tau^2)$

 M_1 : Yes fixed effect of $x_{i,j}$

$$y_{i,j} = eta_0 + eta_1 x_{i,j} + eta_j + \epsilon_{i,j}$$

 $a_j \sim N(0, \tau^2)$

Distribution of LRT: The change in the number of parameters is d = 1. Presumably,

$$\lambda(\mathbf{y}) \stackrel{.}{\sim} \chi_1^2$$

The $\dot{\sim}$ means "approximately distributed as."

 M_0 : No fixed effect of $x_{i,j}$

$$egin{aligned} y_{i,j} &= eta_0 + eta_j + \epsilon_{i,j} \ eta_j &\sim & m{N}(0, au^2) \end{aligned}$$

 M_1 : Yes fixed effect of $x_{i,j}$

$$y_{i,j} = eta_0 + eta_1 x_{i,j} + eta_j + \epsilon_{i,j}$$

 $a_j \sim N(0, \tau^2)$

Distribution of LRT: The change in the number of parameters is d = 1. Presumably,

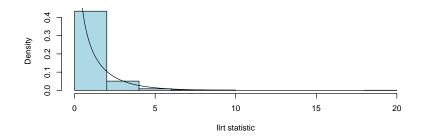
$$\lambda(\mathbf{y}) \stackrel{.}{\sim} \chi_1^2$$

The \sim means "approximately distributed as."

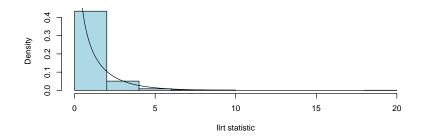
Null distribution for LRT: Empirical evaluation

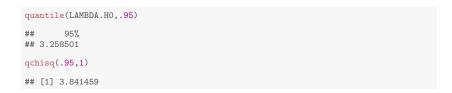
```
m<-20 : n<-10
beta0 < -1; beta1 < -0
g<-rep(1:m.times=rep(n.m))
I.AMBDA, HO<-NULL.
for(s in 1:S)
  a<-rnorm(m)
  x<-rnorm(m*n)
  v < -a[g] + beta0 + beta1*x + rnorm(m*n)
  fit0<-lmer(y ~ 1 + (1|g), REML=FALSE )</pre>
  fit1<-lmer(y ~ x + (1|g), REML=FALSE )</pre>
  lambda<-2*( logLik(fit1) - logLik(fit0) )</pre>
  LAMBDA.HO<-c(LAMBDA.HO,lambda)
```

Null distribution for LRT: Empirical evaluation



Null distribution for LRT: Empirical evaluation





 M_0 :

$$\mathbf{y}_{j} = \mathbf{X}_{j}\boldsymbol{\beta} + \boldsymbol{\epsilon}_{j} , \quad \operatorname{Cov} \begin{bmatrix} \begin{pmatrix} \epsilon_{1,j} \\ \vdots \\ \epsilon_{n,j} \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \sigma^{2} & 0 & \cdots & 0 \\ 0 & \sigma^{2} & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & \sigma^{2} \end{pmatrix}$$

 M_1 :

$$\mathbf{y}_{j} = \mathbf{X}_{j}\boldsymbol{\beta} + \epsilon_{j} , \quad \operatorname{Cov} \begin{bmatrix} \epsilon_{1,j} \\ \vdots \\ \epsilon_{n,j} \end{bmatrix} = \begin{pmatrix} \sigma^{2} + \tau^{2} & \tau^{2} & \cdots & \tau^{2} \\ \tau^{2} & \sigma^{2} + \tau^{2} & \cdots & \tau^{2} \\ \vdots & & & \vdots \\ \tau^{2} & \tau^{2} & \cdots & \sigma^{2} + \tau^{2} \end{pmatrix}$$

Q: What is the difference in the number of parameters?

 M_0 :

$$\mathbf{y}_{j} = \mathbf{X}_{j}\boldsymbol{\beta} + \boldsymbol{\epsilon}_{j} , \quad \operatorname{Cov} \begin{bmatrix} \begin{pmatrix} \epsilon_{1,j} \\ \vdots \\ \epsilon_{n,j} \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \sigma^{2} & 0 & \cdots & 0 \\ 0 & \sigma^{2} & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & \sigma^{2} \end{pmatrix}$$

 M_1 :

$$\mathbf{y}_{j} = \mathbf{X}_{j}\boldsymbol{\beta} + \epsilon_{j} , \quad \mathsf{Cov} \begin{bmatrix} \begin{pmatrix} \epsilon_{1,j} \\ \vdots \\ \epsilon_{n,j} \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \sigma^{2} + \tau^{2} & \tau^{2} & \cdots & \tau^{2} \\ \tau^{2} & \sigma^{2} + \tau^{2} & \cdots & \tau^{2} \\ \vdots & & & \vdots \\ \tau^{2} & \tau^{2} & \cdots & \sigma^{2} + \tau^{2} \end{pmatrix}$$

Q: What is the difference in the number of parameters?

 M_0 :

$$\mathbf{y}_{j} = \mathbf{X}_{j}\boldsymbol{\beta} + \boldsymbol{\epsilon}_{j} , \quad \operatorname{Cov} \begin{bmatrix} \begin{pmatrix} \epsilon_{1,j} \\ \vdots \\ \epsilon_{n,j} \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \sigma^{2} & 0 & \cdots & 0 \\ 0 & \sigma^{2} & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & \sigma^{2} \end{pmatrix}$$

 M_1 :

$$\mathbf{y}_{j} = \mathbf{X}_{j}\boldsymbol{\beta} + \epsilon_{j} , \quad \mathsf{Cov} \begin{bmatrix} \begin{pmatrix} \epsilon_{1,j} \\ \vdots \\ \epsilon_{n,j} \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \sigma^{2} + \tau^{2} & \tau^{2} & \cdots & \tau^{2} \\ \tau^{2} & \sigma^{2} + \tau^{2} & \cdots & \tau^{2} \\ \vdots & & & \vdots \\ \tau^{2} & \tau^{2} & \cdots & \sigma^{2} + \tau^{2} \end{pmatrix}$$

Q: What is the difference in the number of parameters?

 M_0 :

$$\mathbf{y}_{j} = \mathbf{X}_{j}\boldsymbol{\beta} + \boldsymbol{\epsilon}_{j} , \quad \operatorname{Cov} \begin{bmatrix} \begin{pmatrix} \epsilon_{1,j} \\ \vdots \\ \epsilon_{n,j} \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \sigma^{2} & 0 & \cdots & 0 \\ 0 & \sigma^{2} & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & \sigma^{2} \end{pmatrix}$$

 M_1 :

$$\mathbf{y}_{j} = \mathbf{X}_{j}\boldsymbol{\beta} + \epsilon_{j} , \quad \mathsf{Cov} \begin{bmatrix} \begin{pmatrix} \epsilon_{1,j} \\ \vdots \\ \epsilon_{n,j} \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \sigma^{2} + \tau^{2} & \tau^{2} & \cdots & \tau^{2} \\ \tau^{2} & \sigma^{2} + \tau^{2} & \cdots & \tau^{2} \\ \vdots & & & \vdots \\ \tau^{2} & \tau^{2} & \cdots & \sigma^{2} + \tau^{2} \end{pmatrix}$$

Q: What is the difference in the number of parameters?

 M_0 :

$$\mathbf{y}_{j} = \mathbf{X}_{j}\boldsymbol{\beta} + \boldsymbol{\epsilon}_{j} , \quad \operatorname{Cov} \begin{bmatrix} \begin{pmatrix} \epsilon_{1,j} \\ \vdots \\ \epsilon_{n,j} \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \sigma^{2} & 0 & \cdots & 0 \\ 0 & \sigma^{2} & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & \sigma^{2} \end{pmatrix}$$

 M_1 :

$$\mathbf{y}_{j} = \mathbf{X}_{j}\boldsymbol{\beta} + \epsilon_{j} , \quad \mathsf{Cov} \begin{bmatrix} \begin{pmatrix} \epsilon_{1,j} \\ \vdots \\ \epsilon_{n,j} \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \sigma^{2} + \tau^{2} & \tau^{2} & \cdots & \tau^{2} \\ \tau^{2} & \sigma^{2} + \tau^{2} & \cdots & \tau^{2} \\ \vdots & & & \vdots \\ \tau^{2} & \tau^{2} & \cdots & \sigma^{2} + \tau^{2} \end{pmatrix}$$

Q: What is the difference in the number of parameters?

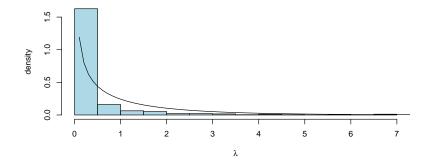
Macro effects testing with LM Macro effects testing with HLM Testing heterogeneous intercepts Testing examples Testing slope heterogeneity

Simulation study

```
m<-20 : n<-10
beta0<-1 ; beta1<-1
g<-rep(1:m,times=rep(n,m))
LAMBDA, HO<-NULL
for(s in 1:S)
  x<-rnorm(m*n)
  y<-beta0 + beta1*x + rnorm(m*n)</pre>
  fit0<-lm(y ~ x )</pre>
  fit1<-lmer(y ~ x + (1|g), REML=FALSE)</pre>
  lambda<-2*( logLik(fit1) - logLik(fit0) )</pre>
  LAMBDA.HO<-c(LAMBDA.HO,lambda)
```

Macro effects testing with LM Macro effects testing with HLM **Testing heterogeneous intercepts** Testing examples Testing slope heterogeneity

Simulation study



mean(LAMBDA.H0>= qchisq(.95,1))

[1] 0.02

Simulation study

zapsmall(LAMBDA.H0[1:20])

[1] 0.000000 0.891508 0.497324 0.177651 0.000000 0.417878 0.000000 0.000000
[9] 0.000138 0.040075 0.000000 4.920390 0.000000 0.000000 0.387080 0.000000
[17] 0.000000 0.281322 0.052502

mean(zapsmall(LAMBDA.H0[1:20]) == 0)

[1] 0.5

Simulation study

zapsmall(LAMBDA.H0[1:20])

[1] 0.000000 0.891508 0.497324 0.177651 0.000000 0.417878 0.000000 0.000000
[9] 0.000138 0.040075 0.000000 4.920390 0.000000 0.000000 0.387080 0.000000
[17] 0.000000 0.281322 0.052502

mean(zapsmall(LAMBDA.H0[1:20]) == 0)

[1] 0.5

What is going on? Suppose we are fitting M_1 in the simple HNM:

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

 $a_j \sim N(0, \tau^2)$

$$E[MSW] = \sigma^{2}$$
$$E[MSA] = \sigma^{2} + n \times \tau^{2}$$
$$\hat{\tau}^{2} = (MSA - MSW)/n$$

What is going on? Suppose we are fitting M_1 in the simple HNM:

$$egin{array}{lll} y_{i,j} = \mu + m{a}_j + m{\epsilon}_{i,j} \ m{a}_j \sim & N(0, au^2) \end{array}$$

$$E[MSW] = \sigma^{2}$$
$$E[MSA] = \sigma^{2} + n \times \tau^{2}$$
$$\hat{\tau}^{2} = (MSA - MSW)/n$$

What is going on? Suppose we are fitting M_1 in the simple HNM:

$$egin{aligned} y_{i,j} &= \mu + m{a}_j + m{\epsilon}_{i,j} \ m{a}_j &\sim & N(0, au^2) \end{aligned}$$

$$\begin{split} \mathbf{E}[MSW] &= \sigma^2 \\ \mathbf{E}[MSA] &= \sigma^2 + n \times \tau^2 \\ \hat{\tau}^2 &= (MSA - MSW)/n \end{split}$$

What is going on? Suppose we are fitting M_1 in the simple HNM:

$$egin{aligned} y_{i,j} &= \mu + m{a}_j + m{\epsilon}_{i,j} \ m{a}_j &\sim & N(0, au^2) \end{aligned}$$

$$E[MSW] = \sigma^{2}$$
$$E[MSA] = \sigma^{2} + n \times \tau^{2}$$
$$\hat{\tau}^{2} = (MSA - MSW)/n$$

What is going on? Suppose we are fitting M_1 in the simple HNM:

$$egin{array}{lll} y_{i,j} = \mu + m{a}_j + m{\epsilon}_{i,j} \ m{a}_j \sim & m{N}(0, au^2) \end{array}$$

$$E[MSW] = \sigma^{2}$$
$$E[MSA] = \sigma^{2} + n \times \tau^{2}$$
$$\hat{\tau}^{2} = (MSA - MSW)/n$$

What is going on? Suppose we are fitting M_1 in the simple HNM:

$$egin{array}{lll} y_{i,j} = \mu + m{a}_j + m{\epsilon}_{i,j} \ m{a}_j \sim & m{N}(0, au^2) \end{array}$$

$$E[MSW] = \sigma^{2}$$
$$E[MSA] = \sigma^{2} + n \times \tau^{2}$$
$$\hat{\tau}^{2} = (MSA - MSW)/n$$

What is going on? Suppose we are fitting M_1 in the simple HNM:

$$egin{array}{lll} y_{i,j} = \mu + m{a}_j + m{\epsilon}_{i,j} \ m{a}_j \sim & m{N}(0, au^2) \end{array}$$

$$E[MSW] = \sigma^{2}$$
$$E[MSA] = \sigma^{2} + n \times \tau^{2}$$
$$\hat{\tau}^{2} = (MSA - MSW)/m^{2}$$

What is going on? Suppose we are fitting M_1 in the simple HNM:

$$egin{array}{lll} y_{i,j} = \mu + m{a}_j + m{\epsilon}_{i,j} \ m{a}_j \sim & m{N}(0, au^2) \end{array}$$

$$E[MSW] = \sigma^{2}$$
$$E[MSA] = \sigma^{2} + n \times \tau^{2}$$
$$\hat{\tau}^{2} = (MSA - MSW)/n$$

If M_0 is in fact true, then $\tau^2 = 0$ and

$$E[MSW] = \sigma^2$$
$$E[MSA] = \sigma^2.$$

If we are fitting M_1 , then sometimes (due to sampling variability)

 $MSW > MSA \label{eq:MSW}$ $(MSA - MSW)/n < 0 \ \Rightarrow \$ use $\hat{\tau}^2 = 0$ in practice.

- the MLE $\hat{\tau}^2$ is zero.
- the best M_0 fit is the same as the best M_1 fit.

$$\max_{\mu,\sigma^2,\tau^2} \log p(\mathbf{y}|\mu,\sigma^2,\tau^2) = \max_{\mu,\sigma^2} \log p(\mathbf{y}|\mu,\sigma^2,\tau^2=0)$$

If M_0 is in fact true, then $\tau^2 = 0$ and

$$E[MSW] = \sigma^2$$
$$E[MSA] = \sigma^2.$$

If we are fitting M_1 , then sometimes (due to sampling variability)

 $MSW > MSA \label{eq:MSW}$ $(MSA - MSW)/n < 0 \ \Rightarrow \$ use $\hat{\tau}^2 = 0$ in practice.

- the MLE $\hat{\tau}^2$ is zero.
- the best M_0 fit is the same as the best M_1 fit.

$$\max_{\mu,\sigma^2,\tau^2} \log p(\mathbf{y}|\mu,\sigma^2,\tau^2) = \max_{\mu,\sigma^2} \log p(\mathbf{y}|\mu,\sigma^2,\tau^2=0)$$

If M_0 is in fact true, then $\tau^2 = 0$ and

$$E[MSW] = \sigma^2$$
$$E[MSA] = \sigma^2.$$

If we are fitting M_1 , then sometimes (due to sampling variability)

MSW > MSA $(MSA - MSW)/n < 0 \Rightarrow$ use $\hat{ au}^2 = 0$ in practice.

- the MLE $\hat{\tau}^2$ is zero.
- the best M_0 fit is the same as the best M_1 fit.

$$\max_{\mu,\sigma^2,\tau^2} \log p(\mathbf{y}|\mu,\sigma^2,\tau^2) = \max_{\mu,\sigma^2} \log p(\mathbf{y}|\mu,\sigma^2,\tau^2=0)$$

If M_0 is in fact true, then $\tau^2 = 0$ and

$$E[MSW] = \sigma^2$$
$$E[MSA] = \sigma^2.$$

If we are fitting M_1 , then sometimes (due to sampling variability)

$$MSW > MSA$$

 $(MSA - MSW)/n < 0 \ \Rightarrow \$ use $\hat{ au}^2 = 0$ in practice.

- the MLE $\hat{\tau}^2$ is zero.
- the best M_0 fit is the same as the best M_1 fit.

$$\max_{\mu,\sigma^2,\tau^2} \log p(\mathbf{y}|\mu,\sigma^2,\tau^2) = \max_{\mu,\sigma^2} \log p(\mathbf{y}|\mu,\sigma^2,\tau^2=0)$$

If M_0 is in fact true, then $\tau^2 = 0$ and

$$E[MSW] = \sigma^2$$
$$E[MSA] = \sigma^2.$$

If we are fitting M_1 , then sometimes (due to sampling variability)

$$MSW > MSA$$

 $(MSA - MSW)/n < 0 \ \Rightarrow \$ use $\hat{ au}^2 = 0$ in practice.

- the MLE $\hat{\tau}^2$ is zero.
- the best M_0 fit is the same as the best M_1 fit.

$$\max_{\boldsymbol{\mu},\sigma^2,\tau^2} \log p(\mathbf{y}|\boldsymbol{\mu},\sigma^2,\tau^2) = \max_{\boldsymbol{\mu},\sigma^2} \log p(\mathbf{y}|\boldsymbol{\mu},\sigma^2,\tau^2=\mathbf{0})$$

Example dataset

```
set.seed(2)
v < -1 + rnorm(m*n)
anova(lm(y<sup>as.factor(g))</sup>)
## Analysis of Variance Table
##
## Response: y
##
                 Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(g) 19 14.745 0.77606 0.6503 0.8629
## Residuals
                180 214.812 1.19340
MSW<-anova(lm(y~as.factor(g)))[2,3]</pre>
MSA<-anova(lm(v~as.factor(g)))[1.3]
MSW
## [1] 1.193401
MSA
## [1] 0.7760613
MSA-MSW
## [1] -0.4173393
```

Macro effects testing with LM Macro effects testing with HLM Testing heterogeneous intercepts Testing examples Testing slope heterogeneity

Example dataset

```
fit0<-lm(y ~ 1 )
fit1<-lmer(y ~ 1 + (1|g), REML=FALSE)</pre>
```

fit0

```
##
## Call:
## lm(formula = y ~ 1)
##
Coefficients:
## (Intercept)
## 0.9993
```

```
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: y ~ 1 + (1 | g)
## AIC BIC logLik deviance df.resid
## 601.1424 611.0374 -297.5712 595.1424 197
## Random effects:
## Groups Name Std.Dev.
## g (Intercept) 0.000
## Residual 1.071
## Number of obs: 200, groups: g, 20
## Fixed Effects:
## (Intercept)
## 0.9993
## optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warning;
## optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warning; 1 lme4 warning;
```

```
2*( logLik(fit1) - logLik(fit0) )
```

```
## 'log Lik.' -2.273737e-13 (df=3)
```

Example dataset

fit0<-lm(y ~ 1)
fit1<-lmer(y ~ 1 + (1|g), REML=FALSE)</pre>

fit0

```
##
## Call:
## lm(formula = y ~ 1)
##
## Coefficients:
## (Intercept)
## 0.9993
```

```
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: y ~ 1 + (1 | g)
## AIC BIC logLik deviance df.resid
## 601.1424 611.0374 -297.5712 595.1424 197
## Random effects:
## Groups Name Std.Dev.
## g (Intercept) 0.000
## Residual 1.071
## Number of obs: 200, groups: g, 20
## Fixed Effects:
## (Intercept)
## 0.9993
```

```
2*( logLik(fit1) - logLik(fit0) )
```

```
## 'log Lik.' -2.273737e-13 (df=3)
```

Example dataset

```
fit0<-lm(y ~ 1 )
fit1<-lmer(y ~ 1 + (1|g), REML=FALSE)</pre>
```

fit0

```
##
## Cal:
## lm(formula = y ~ 1)
##
Coefficients:
## (Intercept)
##
0.9993
```

```
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: y ~ 1 + (1 | g)
##
        AIC
                  BIC logLik deviance df.resid
##
  601.1424 611.0374 -297.5712 595.1424
                                                197
## Bandom effects:
## Groups Name
                        Std.Dev.
            (Intercept) 0.000
##
   g
## Residual
                        1.071
## Number of obs: 200, groups: g, 20
## Fixed Effects:
## (Intercept)
       0.9993
##
## optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
```

```
2*( logLik(fit1) - logLik(fit0) )
```

```
## 'log Lik.' -2.273737e-13 (df=3)
```

Example dataset

```
fit0<-lm(y ~ 1 )
fit1<-lmer(y ~ 1 + (1|g), REML=FALSE)</pre>
```

fit0 ## ## Call:

```
## lm(formula = y ~ 1)
##
## Coefficients:
## (Intercept)
## 0.9993
```

```
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: y ~ 1 + (1 | g)
##
        AIC BIC logLik deviance df.resid
##
  601.1424 611.0374 -297.5712 595.1424
                                               197
## Bandom effects:
## Groups Name
                        Std.Dev.
           (Intercept) 0.000
##
   g
## Residual
                        1.071
## Number of obs: 200, groups: g, 20
## Fixed Effects:
## (Intercept)
       0.9993
##
## optimizer (nloptwrap) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
```

```
2*( logLik(fit1) - logLik(fit0) )
```

```
## 'log Lik.' -2.273737e-13 (df=3)
```

The (asymptotic) null distribution

It turns out that under M_0 ,

$$\Pr(\lambda(\mathbf{y})=0)=\frac{1}{2}$$

The values that are *not* equal to zero are distributed as χ_1^2 : $\lambda(\mathbf{y})|\{\lambda(\mathbf{y}) \neq 0\} \stackrel{.}{\sim} \chi_1^2$

This means that under $M_{0},\,\lambda(\mathbf{y})$ has a $\mathit{mixture}$ distribution

The (asymptotic) null distribution

It turns out that under M_0 ,

$$\Pr(\lambda(\mathbf{y})=0)=rac{1}{2}$$

The values that are *not* equal to zero are distributed as χ_1^2 : $\lambda(\mathbf{y})|\{\lambda(\mathbf{y}) \neq 0\} \stackrel{.}{\sim} \chi_1^2$

This means that under $M_{0},\,\lambda(\mathbf{y})$ has a $\mathit{mixture}$ distribution

The (asymptotic) null distribution

It turns out that under M_0 ,

$$\Pr(\lambda(\mathbf{y})=0)=rac{1}{2}$$

The values that are *not* equal to zero are distributed as χ_1^2 : $\lambda(\mathbf{y})|\{\lambda(\mathbf{y})\neq 0\} \stackrel{.}{\sim} \chi_1^2$

This means that under M_0 , $\lambda(\mathbf{y})$ has a mixture distribution

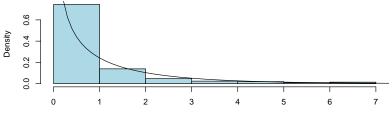
Macro effects testing with LM Macro effects testing with HLM Testing heterogeneous intercepts Testing examples Testing slope heterogeneity

The empirical null distribution

```
LAMBDA.HO<-zapsmall(LAMBDA.HO)
mean(LAMBDA.HO==0)
```

[1] 0.584

```
hist(LAMBDA.H0[LAMBDA.H0>],col="lightblue",prob=TRUE,main="")
lines(xs,dchisq(xs,1),type="l")
```



LAMBDA.H0[LAMBDA.H0 > 0]

Mixture distributions

We can represent the distribution of $\lambda(\mathbf{y})$ as follows:

$$\lambda(\mathbf{y}) = \begin{cases} X_0 & \text{with probability } 1/2\\ X_1 & \text{with probability } 1/2 \end{cases}$$

where

- $X_0 = 0$
- X_1 has a χ_1^2 distribution.

Macro effects testing with LM Macro effects testing with HLM **Testing heterogeneous intercepts** Testing examples Testing slope heterogeneity

Mixture distributions

We can represent the distribution of $\lambda(\mathbf{y})$ as follows:

$$\lambda(\mathbf{y}) = \begin{cases} X_0 & \text{with probability } 1/2\\ X_1 & \text{with probability } 1/2 \end{cases}$$

where

- $X_0 = 0$
- X_1 has a χ_1^2 distribution.

Macro effects testing with LM Macro effects testing with HLM **Testing heterogeneous intercepts** Testing examples Testing slope heterogeneity

Mixture distributions

We can represent the distribution of $\lambda(\mathbf{y})$ as follows:

$$\lambda(\mathbf{y}) = \begin{cases} X_0 & \text{with probability } 1/2\\ X_1 & \text{with probability } 1/2 \end{cases}$$

where

- $X_0 = 0$
- X_1 has a χ_1^2 distribution.

Computing a *p*-value

Recall, a *p*-value is the probability under the null of getting a test statistic equal to or larger than the observed test statistic.

For a given observed value λ_{obs} ,

 $p - \text{value} = \Pr(\lambda(\mathbf{y}) \ge \lambda_{obs} | H_0)$

How do we compute this for a given value λ_{obs} ?

Recall, a *p*-value is the probability under the null of getting a test statistic equal to or larger than the observed test statistic.

For a given observed value λ_{obs} ,

$$p-\mathsf{value}=\mathsf{Pr}(\lambda(\mathbf{y})\geq\lambda_{obs}|H_0)$$

How do we compute this for a given value λ_{obs} ?

Case 1: $\lambda_{obs} = 0$.

 $\Pr(\lambda(\mathbf{y}) \geq 0) = 1$

as X_0 and X_1 are ≥ 0 .

Case 2: $\lambda_{obs} > 0$.

$$\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \ge \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_0 \text{ and } X_0 \ge \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \ge \lambda_{obs}) \\ &= \frac{1}{2}\mathsf{0} + \frac{1}{2}\mathsf{Pr}(X_1 \ge \lambda_{obs}) \\ &= \frac{1}{2}\mathsf{Pr}(\chi_1^2 \ge \lambda_{obs}), \end{aligned}$$

which is 1/2 the *p*-value that would be obtained using the χ_1^2 null distribution.

Folklore: "The *p*-value for testing . . . the random intercept variance is half this $[\chi_1^2]$ tail value."

Case 1: $\lambda_{obs} = 0$.

 $\Pr(\lambda(\mathbf{y}) \geq 0) = 1$

as X_0 and X_1 are ≥ 0 .

Case 2: $\lambda_{obs} > 0$.

$$\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \geq \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_0 \text{ and } X_0 \geq \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2}\mathbf{0} + \frac{1}{2}\,\mathsf{Pr}(X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2}\,\mathsf{Pr}(\chi_1^2 \geq \lambda_{obs}), \end{aligned}$$

which is 1/2 the *p*-value that would be obtained using the χ_1^2 null distribution.

Folklore: "The *p*-value for testing . . . the random intercept variance is half this $[\chi_1^2]$ tail value."

Case 1: $\lambda_{obs} = 0$.

 $\Pr(\lambda(\mathbf{y}) \geq 0) = 1$

as X_0 and X_1 are ≥ 0 .

Case 2: $\lambda_{obs} > 0$.

$$\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \geq \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_0 \text{ and } X_0 \geq \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2}\mathbf{0} + \frac{1}{2}\,\mathsf{Pr}(X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2}\,\mathsf{Pr}(\chi_1^2 \geq \lambda_{obs}), \end{aligned}$$

which is 1/2 the *p*-value that would be obtained using the χ_1^2 null distribution.

Folklore: "The *p*-value for testing . . . the random intercept variance is half this $[\chi_1^2]$ tail value."

Case 1: $\lambda_{obs} = 0$.

 $\Pr(\lambda(\mathbf{y}) \geq 0) = 1$

as X_0 and X_1 are ≥ 0 .

Case 2: $\lambda_{obs} > 0$.

$$\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \geq \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_0 \text{ and } X_0 \geq \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2}0 + \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2} \mathsf{Pr}(\chi_1^2 \geq \lambda_{obs}), \end{aligned}$$

which is 1/2 the *p*-value that would be obtained using the χ_1^2 null distribution.

Folklore: "The *p*-value for testing . . . the random intercept variance is half this $[\chi_1^2]$ tail value."

Case 1: $\lambda_{obs} = 0$.

 $\Pr(\lambda(\mathbf{y}) \geq 0) = 1$

as X_0 and X_1 are ≥ 0 .

Case 2: $\lambda_{obs} > 0$.

 $\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \geq \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_0 \text{ and } X_0 \geq \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2}0 + \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2} \mathsf{Pr}(\chi_1^2 \geq \lambda_{obs}), \end{aligned}$

which is 1/2 the *p*-value that would be obtained using the χ_1^2 null distribution.

Folklore: "The *p*-value for testing . . . the random intercept variance is half this $[\chi_1^2]$ tail value."

Case 1: $\lambda_{obs} = 0$.

 $\Pr(\lambda(\mathbf{y}) \geq 0) = 1$

as X_0 and X_1 are ≥ 0 .

Case 2: $\lambda_{obs} > 0$.

 $\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \geq \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_0 \text{ and } X_0 \geq \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2}0 + \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2} \mathsf{Pr}(\chi_1^2 \geq \lambda_{obs}), \end{aligned}$

which is 1/2 the *p*-value that would be obtained using the χ_1^2 null distribution.

Folklore: "The *p*-value for testing . . . the random intercept variance is half this $[\chi_1^2]$ tail value."

Case 1: $\lambda_{obs} = 0$.

 $\Pr(\lambda(\mathbf{y}) \geq 0) = 1$

as X_0 and X_1 are ≥ 0 .

Case 2: $\lambda_{obs} > 0$.

$$\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \ge \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_0 \text{ and } X_0 \ge \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \ge \lambda_{obs}) \\ &= \frac{1}{2} \mathsf{0} + \frac{1}{2} \mathsf{Pr}(X_1 \ge \lambda_{obs}) \\ &= \frac{1}{2} \mathsf{Pr}(\chi_1^2 \ge \lambda_{obs}), \end{aligned}$$

which is 1/2 the *p*-value that would be obtained using the χ_1^2 null distribution.

Folklore: "The *p*-value for testing . . . the random intercept variance is half this $[\chi_1^2]$ tail value."

Case 1: $\lambda_{obs} = 0$.

 $\Pr(\lambda(\mathbf{y}) \geq 0) = 1$

as X_0 and X_1 are ≥ 0 .

Case 2: $\lambda_{obs} > 0$.

$$\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \ge \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_0 \text{ and } X_0 \ge \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \ge \lambda_{obs}) \\ &= \frac{1}{2}\mathbf{0} + \frac{1}{2}\mathsf{Pr}(X_1 \ge \lambda_{obs}) \\ &= \frac{1}{2}\mathsf{Pr}(\chi_1^2 \ge \lambda_{obs}), \end{aligned}$$

which is 1/2 the *p*-value that would be obtained using the χ_1^2 null distribution.

Folklore: "The *p*-value for testing . . . the random intercept variance is half this $[\chi_1^2]$ tail value."

Case 1: $\lambda_{obs} = 0$.

 $\Pr(\lambda(\mathbf{y}) \geq 0) = 1$

as X_0 and X_1 are ≥ 0 .

Case 2: $\lambda_{obs} > 0$.

$$\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \geq \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_0 \text{ and } X_0 \geq \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2}0 + \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2} \mathsf{Pr}(\chi_1^2 \geq \lambda_{obs}), \end{aligned}$$

which is 1/2 the *p*-value that would be obtained using the χ_1^2 null distribution.

Folklore: "The *p*-value for testing . . . the random intercept variance is half this $[\chi_1^2]$ tail value."

Case 1: $\lambda_{obs} = 0$.

 $\Pr(\lambda(\mathbf{y}) \geq 0) = 1$

as X_0 and X_1 are ≥ 0 .

Case 2: $\lambda_{obs} > 0$.

$$\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \ge \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_0 \text{ and } X_0 \ge \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \ge \lambda_{obs}) \\ &= \frac{1}{2}\mathsf{0} + \frac{1}{2}\mathsf{Pr}(X_1 \ge \lambda_{obs}) \\ &= \frac{1}{2}\mathsf{Pr}(\chi_1^2 \ge \lambda_{obs}), \end{aligned}$$

which is 1/2 the *p*-value that would be obtained using the χ_1^2 null distribution.

Folklore: "The *p*-value for testing . . . the random intercept variance is half this $[\chi_1^2]$ tail value."

Case 1: $\lambda_{obs} = 0$.

 $\Pr(\lambda(\mathbf{y}) \geq 0) = 1$

as X_0 and X_1 are ≥ 0 .

Case 2: $\lambda_{obs} > 0$.

$$\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \geq \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_0 \text{ and } X_0 \geq \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2}0 + \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2} \mathsf{Pr}(\chi_1^2 \geq \lambda_{obs}), \end{aligned}$$

which is 1/2 the *p*-value that would be obtained using the χ_1^2 null distribution.

Folklore: "The *p*-value for testing . . . the random intercept variance is half this $[\chi_1^2]$ tail value."

Case 1: $\lambda_{obs} = 0$.

 $\Pr(\lambda(\mathbf{y}) \geq 0) = 1$

as X_0 and X_1 are ≥ 0 .

Case 2: $\lambda_{obs} > 0$.

$$\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \geq \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_0 \text{ and } X_0 \geq \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2}0 + \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2} \mathsf{Pr}(\chi_1^2 \geq \lambda_{obs}), \end{aligned}$$

which is 1/2 the *p*-value that would be obtained using the χ_1^2 null distribution.

Folklore: "The p-value for testing . . . the random intercept variance is half this $[\chi_1^2]$ tail value."

Recall one of our original questions:

Can the heterogeneity across schools be ascribed to known macro covariates?

Model fits:

Hypothesis test:

```
### LRT statistic
lambda<-2*(logLik(fit1)-logLik(fit0))
lambda
## 'log Lik.' 696.8672 (df=14)
### p-value
.5*(1-pchisq(c(lambda),1) )
## [1] 0</pre>
```

- pchisq(lambda,1) is the probability of being smaller than lambda
- 1-pchisq(lambda,1) is the probability of being larger than lambda The null hypothesis of no excess heterogeneity is strongly rejected.

Recall one of our original questions:

Can the heterogeneity across schools be ascribed to known macro covariates?

Model fits:

Hypothesis test:

```
### LRT statistic
lambda<-2*(logLik(fit1)-logLik(fit0))
lambda
## 'log Lik.' 696.8672 (df=14)
### p-value
.5*(1-pchisq(c(lambda),1) )
## [1] 0
```

pchisq(lambda,1) is the probability of being smaller than lambda

• 1-pchisq(lambda,1) is the probability of being larger than lambda The null hypothesis of no excess heterogeneity is strongly rejected.

Recall one of our original questions:

Can the heterogeneity across schools be ascribed to known macro covariates?

Model fits:

Hypothesis test:

```
### LRT statistic
lambda<-2*(logLik(fit1)-logLik(fit0)
lambda
## 'log Lik.' 696.8672 (df=14)
### p-value
.5*(1-pchisq(c(lambda),1) )
## [1] 0
```

• pchisq(lambda,1) is the probability of being smaller than lambda

1-pchisq(lambda,1) is the probability of being larger than lambda
 The null hypothesis of no excess heterogeneity is strongly rejected.

Recall one of our original questions:

Can the heterogeneity across schools be ascribed to known macro covariates?

Model fits:

Hypothesis test:

```
### LRT statistic
lambda<-2*(logLik(fit1)-logLik(fit0))
lambda
## 'log Lik.' 696.8672 (df=14)
### p-value
.5*(1-pchisq(c(lambda),1) )
## [1] 0</pre>
```

• pchisq(lambda,1) is the probability of being smaller than lambda

• 1-pchisq(lambda,1) is the probability of being larger than lambda The null hypothesis of no excess heterogeneity is strongly rejected.

Recall one of our original questions:

Can the heterogeneity across schools be ascribed to known macro covariates?

Model fits:

Hypothesis test:

```
### LRT statistic
lambda<-2*(logLik(fit1)-logLik(fit0))
lambda
## 'log Lik.' 696.8672 (df=14)
### p-value
.5*(1-pchisq(c(lambda),1) )
## [1] 0</pre>
```

- pchisq(lambda,1) is the probability of being smaller than lambda
- 1-pchisq(lambda,1) is the probability of being larger than lambda

The null hypothesis of no excess heterogeneity is strongly rejected.

Recall one of our original questions:

Can the heterogeneity across schools be ascribed to known macro covariates?

Model fits:

Hypothesis test:

```
### LRT statistic
lambda<-2*(logLik(fit1)-logLik(fit0))
lambda
## 'log Lik.' 696.8672 (df=14)
### p-value
.5*(1-pchisq(c(lambda),1) )
## [1] 0</pre>
```

pchisq(lambda,1) is the probability of being smaller than lambda

• 1-pchisq(lambda,1) is the probability of being larger than lambda The null hypothesis of no excess heterogeneity is strongly rejected.

$$y_{i,j} = \boldsymbol{\beta}^{\mathsf{T}} x_{i,j} + \boldsymbol{a}_j + \epsilon_{i,j}$$

 $\boldsymbol{a}_j \sim N(0, \tau^2)$

For models consisting of

- fixed effects, and
- a single random intercept,

Tests involving β : Testing components of β equal zero can be obtained with the usual *LRT*.

- Null distribution: $\lambda_0 \sim \chi_d^2$,
- *p*-value: 1-pchisq(lambda,d).

Tests involving τ^2 : Testing $\tau^2 = 0$ can be obtained with the modified *LRT*.

- Null distribution: $\lambda_0 \sim \frac{1}{2}(\{0\} + \chi_1^2)$,
- p-value: .5*(1-pchisq(lambda,1)) if lambda > 0, 1 if lambda =0.

$$egin{aligned} y_{i,j} &= eta^\mathsf{T} x_{i,j} + eta_j + \epsilon_{i,j} \ eta_j &\sim & \mathcal{N}(0, au^2) \end{aligned}$$

For models consisting of

- fixed effects, and
- a single random intercept,

Tests involving β : Testing components of β equal zero can be obtained with the usual *LRT*.

- Null distribution: $\lambda_0 \sim \chi_d^2$,
- *p*-value: 1-pchisq(lambda,d).

Tests involving τ^2 : Testing $\tau^2 = 0$ can be obtained with the modified *LRT*.

- Null distribution: $\lambda_0 \sim \frac{1}{2}(\{0\} + \chi_1^2)$,
- p-value: .5*(1-pchisq(lambda,1)) if lambda > 0, 1 if lambda =0.

$$egin{aligned} \mathbf{y}_{i,j} &= oldsymbol{eta}^{\mathsf{T}} \mathbf{x}_{i,j} + oldsymbol{a}_j + \epsilon_{i,j} \ oldsymbol{a}_j &\sim & \mathcal{N}(\mathbf{0}, au^2) \end{aligned}$$

For models consisting of

- fixed effects, and
- a single random intercept,

Tests involving β : Testing components of β equal zero can be obtained with the usual *LRT*.

- Null distribution: $\lambda_0 \sim \chi_d^2$,
- p-value: 1-pchisq(lambda,d).

Tests involving au^2 : Testing $au^2 = 0$ can be obtained with the modified *LRT*.

- Null distribution: $\lambda_0 \sim \frac{1}{2}(\{0\} + \chi_1^2)$,
- p-value: .5*(1-pchisq(lambda,1)) if lambda > 0, 1 if lambda =0.

$$egin{aligned} \mathbf{y}_{i,j} &= oldsymbol{eta}^{\mathsf{T}} \mathbf{x}_{i,j} + oldsymbol{a}_j + \epsilon_{i,j} \ oldsymbol{a}_j &\sim & \mathcal{N}(\mathbf{0}, au^2) \end{aligned}$$

For models consisting of

- fixed effects, and
- a single random intercept,

Tests involving β : Testing components of β equal zero can be obtained with the usual *LRT*.

- Null distribution: $\lambda_0 \sim \chi_d^2$,
- p-value: 1-pchisq(lambda,d).

Tests involving τ^2 : Testing $\tau^2 = 0$ can be obtained with the modified *LRT*.

- Null distribution: $\lambda_0 \sim \frac{1}{2}(\{0\} + \chi_1^2)$,
- p-value: .5*(1-pchisq(lambda,1)) if lambda > 0, 1 if lambda =0.

Testing heterogeneous intercepts Testing examples Testing slope heterogeneity

```
fit.full<-lmer(mscore~
   as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
  hwh + ses +
  (1|school) , data=nels,REML=FALSE)
fit full
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
##
      hwh + ses + (1 \mid \text{school})
##
      Data: nels
         ATC
                   BIC
##
                          logLik deviance df.resid
    92408.36 92512.95 -46190.18 92380.36
                                                 12960
##
## Random effects:
##
   Groups Name
                          Std.Dev.
##
    school
             (Intercept) 2.969
   Residual
                          8.243
##
## Number of obs: 12974, groups: school, 684
## Fixed Effects:
##
                      (Intercept)
                                               as.factor(enroll)1
                        52.82676
                                                          0.54442
##
##
              as.factor(enroll)2
                                               as.factor(enroll)3
##
                          0.61973
                                                          0.61739
              as.factor(enroll)4
                                               as.factor(enroll)5
##
                          0.52867
##
                                                          0.16135
##
                 as.factor(flp)2
                                                 as.factor(flp)3
##
                         -2.09257
                                                         -4.84231
##
  as.factor(urbanicity)suburban
                                      as.factor(urbanicity)urban
##
                         -0.05113
                                                         -0.86587
##
                              hwh
                                                              ses
                          0.01354
                                                          4.13467
##
```

```
fit.menr<-lmer(mscore~
    as.factor(lp) + as.factor(urbanicity) +
    hwh + ses +
    (1school) , data=nels.REML=FALSE)</pre>
```

```
fit.mflp<-lmer(mscore"
    as.factor(urbanicity) +
    hwh + ses +
    (1|school) , data=nels.REML=FALSE)</pre>
```

```
fit.murb<-lmer(mscore<sup>~</sup>
    as.factor(flp) + as.factor(flp) +
    hwh + ses +
    (1|school) , data=nels,REML=FALSE)
```

```
fit.menr<-lmer(mscore~
    as.factor(lp) + as.factor(urbanicity) +
    hwh + ses +
    (1school) , data=nels.REML=FALSE)</pre>
```

```
fit.mflp<-lmer(mscore~
    as.factor(enroll) + as.factor(urbanicity) +
    hwh + ses +
    (1|school) , data=nels,REML=FALSE)</pre>
```

```
fit.murb<-lmer(mscore<sup>-</sup>
    as.factor(enroll) + as.factor(flp) +
    hwh + ses +
    (1|school) , data=nels,REML=FALSE)
```

```
fit.menr<-lmer(mscore~
    as.factor(lp) + as.factor(urbanicity) +
    hwh + ses +
    (1school) , data=nels.REML=FALSE)</pre>
```

```
fit.mflp<-lmer(mscore~
    as.factor(enroll) + as.factor(urbanicity) +
    hwh + ses +
    (1|school) , data=nels,REML=FALSE)</pre>
```

```
fit.murb<-lmer(mscore~
    as.factor(enroll) + as.factor(flp) +
    hwh + ses +
    (1|school) , data=nels,REML=FALSE)</pre>
```

Testing examples

Compute the LRT statistic:

```
lambda<-2*(logLik(fit.full) - logLik(fit.menr))</pre>
```

lambda

'log Lik.' 3.204099 (df=14)

Calculate d:

```
table(nels$enroll)
##
## 0 1 2 3 4
## 2671 2154 2356 1908 1988 188
```

```
attr( logLik(fit.full),"df")
```

[1] 14

```
attr( logLik(fit.menr),"df")
```

[1] 9

d<- attr(logLik(fit.full),"df") - attr(logLik(fit.menr),"df")</pre>

d

Testing examples

Compute the LRT statistic:

```
lambda<-2*(logLik(fit.full) - logLik(fit.menr))</pre>
```

lambda

'log Lik.' 3.204099 (df=14)

Calculate d:

```
##
## 0 1 2 3 4 5
## 2671 2154 2356 1908 1988 1897
```

attr(logLik(fit.full),"df")

[1] 14

```
attr( logLik(fit.menr),"df")
```

[1] 9

d<- attr(logLik(fit.full), "df") - attr(logLik(fit.menr), "df")

d

Testing examples

Compute the LRT statistic:

```
lambda<-2*(logLik(fit.full) - logLik(fit.menr))</pre>
```

lambda

'log Lik.' 3.204099 (df=14)

Calculate d:

```
table(nels$enroll)
##
## 0 1 2 3 4 5
## 2671 2154 2356 1908 1988 1897
```

```
attr( logLik(fit.full),"df")
```

[1] 14

```
attr( logLik(fit.menr),"df")
```

[1] 9

d<- attr(logLik(fit.full),"df") - attr(logLik(fit.menr),"df")

d

Testing examples

Compute the LRT statistic:

```
lambda<-2*(logLik(fit.full) - logLik(fit.menr))</pre>
```

lambda

```
## 'log Lik.' 3.204099 (df=14)
```

Calculate d:

```
table(nels$enroll)
##
## 0 1 2 3 4 5
## 2671 2154 2356 1908 1988 1897
```

```
attr( logLik(fit.full),"df")
```

[1] 14

```
attr( logLik(fit.menr), "df")
```

[1] 9

```
d<- attr( logLik(fit.full),"df") - attr( logLik(fit.menr),"df")</pre>
```

d

Testing examples

Compute the *p***-value:**

```
(1-pchisq(c(lambda),d))
```

[1] 0.668553

This is mostly automated in R:

```
anova(fit.full,fit.menr)
## Data: nels
## Models:
## fit.menr: mscore ~ as.factor(flp) + as.factor(urbanicity) + hwh + ses + (1 | school)
## fit.full: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) + hwh + s
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## fit.menr 9 92402 92469 -46192 92384
## fit.full 14 92408 92513 -46190 92380 3.2041 5 0.6686
```

Testing examples

Compute the *p***-value:**

```
(1-pchisq(c(lambda),d))
```

[1] 0.668553

This is mostly automated in R:

```
anova(fit.full,fit.menr)
## Data: nels
## Models:
## fit.menr: mscore ~ as.factor(flp) + as.factor(urbanicity) + hwh + ses + (1 | school)
## fit.full: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) + hwh + s
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## fit.menr 9 92402 92469 -46192 92384
## fit.full 14 92408 92513 -46190 92380 3.2041 5 0.6686
```

Testing other factors

```
anova(fit.full,fit.mflp)
## Data: nels
## Models:
## fit.mflp: mscore ~ as.factor(enroll) + as.factor(urbanicity) + hwh + ses + (1 | school)
## fit.full: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) + hwh + s
##
                  AIC BIC logLik deviance Chisq Df Pr(>Chisq)
           npar
## fit.mflp 12 92564 92654 -46270
                                     92540
## fit.full 14 92408 92513 -46190 92380 159.58 2 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Testing other factors

```
anova(fit.full,fit.mflp)
## Data: nels
## Models:
## fit.mflp: mscore ~ as.factor(enroll) + as.factor(urbanicity) + hwh + ses + (1 | school)
## fit.full: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) + hwh + s
##
           npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## fit.mflp 12 92564 92654 -46270 92540
## fit.full 14 92408 92513 -46190 92380 159.58 2 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(fit.full.fit.murb)
## Data: nels
## Models:
## fit.murb: mscore ~ as.factor(enroll) + as.factor(flp) + hwh + ses + (1 | school)
## fit.full: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) + hwh + s
##
           npar AIC
                        BIC logLik deviance Chisq Df Pr(>Chisq)
## fit.murb 12 92412 92502 -46194 92388
## fit.full 14 92408 92513 -46190 92380 7.7808 2 0.02044 *
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
fit.mhwh<-lmer(mscore~
    as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
    ses +
    (1|school) , data=nels.REML=FALSE)</pre>
```

```
fit.mses<-lmer(mscore"
    as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
    hwh +
    (1|school) , data=nels,REML=FALSE)</pre>
```

```
fit.mhwh<-lmer(mscore~
    as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
    ses +
    (1|school) , data=nels.REML=FALSE)</pre>
```

```
fit.mses<-lmer(mscore~
    as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
    hwh +
    (1|school) , data=nels,REML=FALSE)</pre>
```

```
anova(fit.full,fit.mhwh)
```

```
## Data: nels
## Models:
## fit.mhwh: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) + ses + (
## fit.full: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) + hwh + s
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## fit.mhwh 13 92407 92504 -46190 92381
## fit.full 14 92408 92513 -46190 92380 0.3107 1 0.5772
```

```
anova(fit.full,fit.mses)
## Data: nels
## Models:
## Models:
## fit.mses: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) + hwh + (1)
## fit.full: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) + hwh + se
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## fit.mses 13 93634 93731 -46804 93608
## fit.full 14 92408 92513 -46190 92380 1228 1 < 2.2e-16 ***
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

```
anova(fit.full,fit.mhwh)
## Data: nels
## Models:
## fit.mhwh: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) + ses + (
## fit.full: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) + hwh + s
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## fit.mhwh 13 92407 92504 -46190 92381
## fit.full 14 92408 92513 -46190 92380 0.3107 1 0.5772
```

```
anova(fit.full,fit.mses)
## Data: nels
## Models:
## Models:
## fit.mses: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) + hwh + (
## fit.full: mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) + hwh + se
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## fit.mses 13 93634 93731 -46804 93608
## fit.full 14 92408 92513 -46190 92380 1228 1 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```

Testing examples

summary(fit.full)\$coef

##	Estimate	Std. Error	t value
## (Intercept)	52.82676162	0.4309192	122.5908794
<pre>## as.factor(enroll)1</pre>	0.54442472	0.4569472	1.1914390
<pre>## as.factor(enroll)2</pre>	0.61973124	0.4541606	1.3645642
<pre>## as.factor(enroll)3</pre>	0.61738849	0.4828518	1.2786293
<pre>## as.factor(enroll)4</pre>	0.52866612	0.4891502	1.0807849
<pre>## as.factor(enroll)5</pre>	0.16135353	0.4932025	0.3271547
<pre>## as.factor(flp)2</pre>	-2.09257387	0.3497278	-5.9834361
<pre>## as.factor(flp)3</pre>	-4.84231161	0.3677904	-13.1659532
<pre>## as.factor(urbanicity)suburban</pre>	-0.05113111	0.3932499	-0.1300219
<pre>## as.factor(urbanicity)urban</pre>	-0.86587407	0.4204572	-2.0593634
## hwh	0.01353902	0.0242850	0.5575056
## ses	4.13466985	0.1142795	36.1803310

2*(1-pnorm(.5575))

[1] 0.5771859

2*(1-pnorm(36.1803))

[1] 0

Testing examples

Now that you know where the numbers come from,

```
drop1(fit.full,test="Chisq")
## Single term deletions
##
## Model:
## mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
##
       hwh + ses + (1 \mid \text{school})
##
                         npar
                                AIC
                                        LRT Pr(Chi)
## <none>
                              92408
## as.factor(enroll)
                            5 92402
                                     3,20 0,66855
## as.factor(flp)
                            2 92564
                                     159.58 < 2e-16 ***
## as.factor(urbanicity)
                            2 92412
                                      7.78 0.02044 *
## hwh
                            1 92407
                                        0.31 0.57725
                             1 93634 1228.01 < 2e-16 ***
## ses
## ---
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Summary of tests so far

$$y_{i,j} = \boldsymbol{\beta}^{\mathsf{T}} x_{i,j} + \boldsymbol{a}_j + \boldsymbol{\epsilon}_{i,j}$$
$$\boldsymbol{a}_j \sim N(0, \tau^2)$$

Fixed effects:

enrollment : no strong evidence of effect

flp : decreasing scores with increasing flp

- urban : urban schools have lower scores than others
 - hwh : no strong evidence of an effect on average across schools
 - ses : strong evidence of a positive effect on average across schools

Summary of tests so far

$$y_{i,j} = \boldsymbol{\beta}^T x_{i,j} + \boldsymbol{a}_j + \boldsymbol{\epsilon}_{i,j}$$
$$\boldsymbol{a}_j \sim N(0, \tau^2)$$

Fixed effects:

enrollment : no strong evidence of effect

flp : decreasing scores with increasing flp

urban : urban schools have lower scores than others

hwh : no strong evidence of an effect on average across schools

ses : strong evidence of a positive effect on average across schools

Summary of tests so far

$$y_{i,j} = \boldsymbol{\beta}^T x_{i,j} + \boldsymbol{a}_j + \epsilon_{i,j}$$

 $\boldsymbol{a}_j \sim N(0, \tau^2)$

Fixed effects:

enrollment : no strong evidence of effect

flp : decreasing scores with increasing flp

- urban : urban schools have lower scores than others
 - hwh : no strong evidence of an effect on average across schools
 - ses : strong evidence of a positive effect on average across schools

Summary of tests so far

$$y_{i,j} = \boldsymbol{\beta}^T x_{i,j} + \boldsymbol{a}_j + \epsilon_{i,j}$$

 $\boldsymbol{a}_j \sim N(0, \tau^2)$

Fixed effects:

enrollment : no strong evidence of effect

flp : decreasing scores with increasing flp

urban : urban schools have lower scores than others

- hwh : no strong evidence of an effect on average across schools
- ses : strong evidence of a positive effect on average across schools

Summary of tests so far

$$y_{i,j} = \boldsymbol{\beta}^T x_{i,j} + \boldsymbol{a}_j + \epsilon_{i,j}$$

 $\boldsymbol{a}_j \sim N(0, \tau^2)$

Fixed effects:

enrollment : no strong evidence of effect

flp : decreasing scores with increasing flp

urban : urban schools have lower scores than others

hwh : no strong evidence of an effect on average across schools

ses : strong evidence of a positive effect on average across schools

Summary of tests so far

$$y_{i,j} = \boldsymbol{\beta}^T x_{i,j} + \boldsymbol{a}_j + \epsilon_{i,j}$$

 $\boldsymbol{a}_j \sim N(0, \tau^2)$

Fixed effects:

enrollment : no strong evidence of effect

flp : decreasing scores with increasing flp

urban : urban schools have lower scores than others

hwh : no strong evidence of an effect on average across schools

ses : strong evidence of a positive effect on average across schools

$$y_{i,j} = \boldsymbol{\beta}^T x_{i,j} + \boldsymbol{a}_j + \boldsymbol{\epsilon}_{i,j}$$
$$\boldsymbol{a}_j \sim N(0, \tau^2)$$

Fixed effects:

enrollment : no strong evidence of effect

- flp : decreasing scores with increasing flp
- urban : urban schools have lower scores than others
 - hwh : no strong evidence of an effect on average across schools
 - ses : strong evidence of a positive effect on average across schools

$$y_{i,j} = \boldsymbol{\beta}^{\mathsf{T}} x_{i,j} + \boldsymbol{a}_j + \epsilon_{i,j}$$

 $\boldsymbol{a}_j \sim N(0, \tau^2)$

Fixed effects:

enrollment : no strong evidence of effect

- flp : decreasing scores with increasing flp
- urban : urban schools have lower scores than others
 - hwh : no strong evidence of an effect on average across schools
 - ses : strong evidence of a positive effect on average across schools

Summary of tests so far

$$egin{aligned} y_{i,j} &= oldsymbol{eta}^{\mathsf{T}} x_{i,j} + oldsymbol{a}_j + \epsilon_{i,j} \ oldsymbol{a}_j &\sim & \mathcal{N}(0, au^2) \end{aligned}$$

Fixed effects:

enrollment : no strong evidence of effect

- flp : decreasing scores with increasing flp
- urban : urban schools have lower scores than others
 - hwh : no strong evidence of an effect on average across schools

ses : strong evidence of a positive effect on average across schools

$$egin{aligned} \mathbf{y}_{i,j} &= oldsymbol{eta}^{\mathsf{T}} \mathbf{x}_{i,j} + oldsymbol{a}_j + oldsymbol{\epsilon}_{i,j} \ \mathbf{a}_j &\sim \ \mathcal{N}(\mathbf{0}, au^2) \end{aligned}$$

Fixed effects:

enrollment : no strong evidence of effect

- flp : decreasing scores with increasing flp
- urban : urban schools have lower scores than others
 - hwh : no strong evidence of an effect on average across schools
 - ses : strong evidence of a positive effect on average across schools

$$egin{aligned} \mathbf{y}_{i,j} &= oldsymbol{eta}^{\mathsf{T}} \mathbf{x}_{i,j} + oldsymbol{a}_j + oldsymbol{\epsilon}_{i,j} \ \mathbf{a}_j &\sim \ \mathcal{N}(\mathbf{0}, au^2) \end{aligned}$$

Fixed effects:

enrollment : no strong evidence of effect

- flp : decreasing scores with increasing flp
- urban : urban schools have lower scores than others
 - hwh : no strong evidence of an effect on average across schools
 - ses : strong evidence of a positive effect on average across schools

$$egin{aligned} \mathbf{y}_{i,j} &= oldsymbol{eta}^{\mathsf{T}} \mathbf{x}_{i,j} + oldsymbol{a}_j + oldsymbol{\epsilon}_{i,j} \ \mathbf{a}_j &\sim \ \mathcal{N}(\mathbf{0}, au^2) \end{aligned}$$

Fixed effects:

enrollment : no strong evidence of effect

- flp : decreasing scores with increasing flp
- urban : urban schools have lower scores than others
 - hwh : no strong evidence of an effect on average across schools
 - ses : strong evidence of a positive effect on average across schools

ANOVA comparison

Compare to tests that don't account for across-group heterogeneity:

```
### model fit
fit.afull<-lm(mscore~
   as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
  hwh + ses,
   data=nels )
### factor evaluation
drop1(fit.afull,test="F")
## Single term deletions
##
## Model:
## mscore ~ as.factor(enroll) + as.factor(flp) + as.factor(urbanicity) +
##
      hwh + ses
##
                        Df Sum of Sq
                                         RSS AIC
                                                     F value Pr(>F)
## <none>
                                      991486 56283
## as.factor(enroll)
                         5
                                 377 991863 56278 0.9863
                                                                0.4243
## as.factor(flp)
                         2
                               28135 1019621 56642 183.9096 < 2.2e-16 ***
## as.factor(urbanicity)
                         2
                                1516 993002 56298
                                                      9.9107 5.002e-05 ***
## hwh
                                 167
                                      991653 56283
                                                      2.1819
                                                                0.1397
                         1
                              132644 1124130 57910 1734.0918 < 2.2e-16 ***
## ses
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

General two-level HLM:

$$y_{i,j} = \boldsymbol{\beta}^{\mathsf{T}} x_{i,j} + \boldsymbol{a}_j^{\mathsf{T}} z_{i,j} + \epsilon_{i,j}$$
$$\boldsymbol{a}_j \sim N(0, \Psi)$$

For example, maybe

$$\begin{pmatrix} z_{i,j,1} \\ z_{i,j,2} \end{pmatrix} = \begin{pmatrix} 1 \\ \sec_{i,j} \end{pmatrix} \quad \Psi = \begin{pmatrix} \psi_1^2 & \psi_{1,2} \\ \psi_{2,1} & \psi_2^2 \end{pmatrix}$$

We would like to be able to test

 $H_0:\psi_2^2=0$ (no heterogeneity in slope with ses),

General two-level HLM:

$$y_{i,j} = \boldsymbol{\beta}^T x_{i,j} + \boldsymbol{a}_j^T z_{i,j} + \epsilon_{i,j}$$

$$\boldsymbol{a}_j \sim N(0, \Psi)$$

For example, maybe

$$\begin{pmatrix} z_{i,j,1} \\ z_{i,j,2} \end{pmatrix} = \begin{pmatrix} 1 \\ ses_{i,j} \end{pmatrix} \quad \Psi = \begin{pmatrix} \psi_1^2 & \psi_{1,2} \\ \psi_{2,1} & \psi_2^2 \end{pmatrix}$$

We would like to be able to test

 $H_0:\psi_2^2=0$ (no heterogeneity in slope with ses),

General two-level HLM:

$$y_{i,j} = \boldsymbol{\beta}^T x_{i,j} + \boldsymbol{a}_j^T z_{i,j} + \epsilon_{i,j}$$
$$\boldsymbol{a}_j \sim N(0, \Psi)$$

For example, maybe

$$\begin{pmatrix} z_{i,j,1} \\ z_{i,j,2} \end{pmatrix} = \begin{pmatrix} 1 \\ ses_{i,j} \end{pmatrix} \quad \Psi = \begin{pmatrix} \psi_1^2 & \psi_{1,2} \\ \psi_{2,1} & \psi_2^2 \end{pmatrix}$$

We would like to be able to test

$$H_0: \psi_2^2 = 0$$
 (no heterogeneity in slope with ses)

General two-level HLM:

$$y_{i,j} = \boldsymbol{\beta}^T x_{i,j} + \boldsymbol{a}_j^T z_{i,j} + \epsilon_{i,j}$$
$$\boldsymbol{a}_j \sim N(0, \Psi)$$

For example, maybe

$$\begin{pmatrix} z_{i,j,1} \\ z_{i,j,2} \end{pmatrix} = \begin{pmatrix} 1 \\ ses_{i,j} \end{pmatrix} \quad \Psi = \begin{pmatrix} \psi_1^2 & \psi_{1,2} \\ \psi_{2,1} & \psi_2^2 \end{pmatrix}$$

We would like to be able to test

 $H_0: \psi_2^2 = 0$ (no heterogeneity in slope with ses),

General two-level HLM:

$$y_{i,j} = \boldsymbol{\beta}^T x_{i,j} + \boldsymbol{a}_j^T z_{i,j} + \epsilon_{i,j}$$
$$\boldsymbol{a}_j \sim N(0, \Psi)$$

For example, maybe

$$\begin{pmatrix} z_{i,j,1} \\ z_{i,j,2} \end{pmatrix} = \begin{pmatrix} 1 \\ ses_{i,j} \end{pmatrix} \quad \Psi = \begin{pmatrix} \psi_1^2 & \psi_{1,2} \\ \psi_{2,1} & \psi_2^2 \end{pmatrix}$$

We would like to be able to test

 $H_0:\psi_2^2=0$ (no heterogeneity in slope with ses),

General two-level HLM:

$$y_{i,j} = \boldsymbol{\beta}^T x_{i,j} + \boldsymbol{a}_j^T z_{i,j} + \epsilon_{i,j}$$
$$\boldsymbol{a}_j \sim N(0, \Psi)$$

For example, maybe

$$\begin{pmatrix} z_{i,j,1} \\ z_{i,j,2} \end{pmatrix} = \begin{pmatrix} 1 \\ ses_{i,j} \end{pmatrix} \quad \Psi = \begin{pmatrix} \psi_1^2 & \psi_{1,2} \\ \psi_{2,1} & \psi_2^2 \end{pmatrix}$$

We would like to be able to test

 $H_0:\psi_2^2=0$ (no heterogeneity in slope with ses),

 $H_0:\psi_2^2=0$ (no heterogeneity in slope with ses)

If the variance of something is zero, its covariance with anything else is zero.

This means that under $H_0: \psi_2^2 = 0$,

$$\Psi = \left(\psi_1^2
ight)$$

while under $H_1: \psi_2^2 \neq 0$,

$$\Psi=egin{pmatrix}\psi_1^2&\psi_{1,2}\\psi_{2,1}&\psi_2^2\end{pmatrix}$$

 $H_0:\psi_2^2=0$ (no heterogeneity in slope with ses)

If the variance of something is zero, its covariance with anything else is zero. This means that under $H_0:\psi_2^2=0$,

$$\Psi = \left(\psi_1^2\right)$$

while under $H_1: \psi_2^2 \neq 0$,

$$\Psi = \begin{pmatrix} \psi_1^2 & \psi_{1,2} \\ \psi_{2,1} & \psi_2^2 \end{pmatrix}$$

 $H_0:\psi_2^2=0$ (no heterogeneity in slope with ses)

If the variance of something is zero, its covariance with anything else is zero. This means that under $H_0:\psi_2^2=0$,

$$\Psi = \left(\psi_1^2\right)$$

while under $H_1: \psi_2^2 \neq 0$,

$$\Psi = \begin{pmatrix} \psi_1^2 & \psi_{1,2} \\ \psi_{2,1} & \psi_2^2 \end{pmatrix}$$

 $H_0:\psi_2^2=0$ (no heterogeneity in slope with ses)

If the variance of something is zero, its covariance with anything else is zero. This means that under $H_0:\psi_2^2=0$,

$$\Psi = \left(\psi_1^2\right)$$

while under $H_1: \psi_2^2 \neq 0$,

$$\Psi = \begin{pmatrix} \psi_1^2 & \psi_{1,2} \\ \psi_{2,1} & \psi_2^2 \end{pmatrix}$$

 $H_0:\psi_2^2=0$ (no heterogeneity in slope with ses)

If the variance of something is zero, its covariance with anything else is zero. This means that under $H_0:\psi_2^2=0$,

$$\Psi = \left(\psi_1^2\right)$$

while under $H_1: \psi_2^2 \neq 0$,

$$\Psi = \begin{pmatrix} \psi_1^2 & \psi_{1,2} \\ \psi_{2,1} & \psi_2^2 \end{pmatrix}$$

NELS data

```
fit.r1<-lmer(
    mscore~
    as.factor(flp) + as.factor(urbanicity) +
        ses +
        (ses | school) , data=nels,REML=FALSE)</pre>
```

```
summary(fit.r1)$coef
```

VarCorr(fit.r1)

NELS data

```
fit.r1<-lmer(
    mscore~
    as.factor(flp) + as.factor(urbanicity) +
        ses +
        (ses | school) , data=nels.REML=FALSE)</pre>
```

```
summary(fit.r1)$coef
```

##	Estimate	Std. Error	t value
## (Intercept)	53.13668593	0.3943076	134.759485
<pre>## as.factor(flp)2</pre>	-2.02135574	0.3342738	-6.047006
<pre>## as.factor(flp)3</pre>	-4.81780351	0.3612673	-13.335840
## as.factor(urbanicity)suburban	0.05675027	0.3803280	0.149214
<pre>## as.factor(urbanicity)urban</pre>	-0.80937534	0.4049585	-1.998663
## ses	4.12877819	0.1255087	32.896343

VarCorr(fit.r1)

NELS data

```
fit.r1<-lmer(
    mscore~
    as.factor(flp) + as.factor(urbanicity) +
        ses +
        (ses | school) , data=nels.REML=FALSE)</pre>
```

```
summary(fit.r1)$coef
```

##	Estimate	Std. Error	t value
## (Intercept)	53.13668593	0.3943076	134.759485
<pre>## as.factor(flp)2</pre>	-2.02135574	0.3342738	-6.047006
<pre>## as.factor(flp)3</pre>	-4.81780351	0.3612673	-13.335840
## as.factor(urbanicity)suburban	0.05675027	0.3803280	0.149214
<pre>## as.factor(urbanicity)urban</pre>	-0.80937534	0.4049585	-1.998663
## ses	4.12877819	0.1255087	32.896343

VarCorr(fit.r1)

##	Groups	Name	Std.Dev.	Corr
##	school	(Intercept)	2.9673	
##		ses	1.2712	-0.005
##	Residual		8.2008	

NELS data

```
fit.r0<-lmer(
    mscore~
    as.factor(flp) + as.factor(urbanicity) +
        ses +
        (1 | school), data=nels,REML=FALSE)</pre>
```

```
summary(fit.r0)$coef
```

VarCorr(fit.r0)

NELS data

```
fit.r0<-lmer(
    mscore~
    as.factor(flp) + as.factor(urbanicity) +
        ses +
        (1 | school) , data=nels,REML=FALSE)</pre>
```

```
summary(fit.r0)$coef
##
                                    Estimate Std. Error
                                                            t value
##
   (Intercept)
                                 53.12042202 0.3928410 135.2211600
  as.factor(flp)2
                                 -2.00043931 0.3324308
                                                        -6.0176108
##
##
  as.factor(flp)3
                                 -4.77163280
                                              0.3596303 -13.2681609
  as.factor(urbanicity)suburban
                                  0.06620705
                                              0.3792811
                                                          0.1745593
##
  as.factor(urbanicity)urban
                                 -0.78129077
                                             0.4032054
                                                         -1.9376990
##
## ses
                                  4.13800015 0.1141748
                                                         36.2426730
```

VarCorr(fit.r0)

NELS data

```
fit.r0<-lmer(
    mscore~
    as.factor(flp) + as.factor(urbanicity) +
        ses +
        (1 | school) , data=nels,REML=FALSE)</pre>
```

```
summary(fit.r0)$coef
```

##		Estimate	Std. Error	t value
##	(Intercept)	53.12042202	0.3928410	135.2211600
##	as.factor(flp)2	-2.00043931	0.3324308	-6.0176108
##	as.factor(flp)3	-4.77163280	0.3596303	-13.2681609
##	as.factor(urbanicity)suburban	0.06620705	0.3792811	0.1745593
##	as.factor(urbanicity)urban	-0.78129077	0.4032054	-1.9376990
##	ses	4.13800015	0.1141748	36.2426730

VarCorr(fit.r0)

##	Groups	Name	Std.Dev.
##	school	(Intercept)	2.9760
##	Residual		8.2437

logLik(fit.r1)

'log Lik.' -46185.14 (df=10)

logLik(fit.r0)

'log Lik.' -46191.93 (df=8)

lambda<-2*c(logLik(fit.r1) - logLik(fit.r0))</pre>

lambda

[1] 13.58696

What do we compare lambda to?

logLik(fit.r1)

'log Lik.' -46185.14 (df=10)

logLik(fit.r0)

'log Lik.' -46191.93 (df=8)

lambda<-2*c(logLik(fit.r1) - logLik(fit.r0))</pre>

lambda

[1] 13.58696

What do we compare lambda to?

logLik(fit.r1)

'log Lik.' -46185.14 (df=10)

logLik(fit.r0)

'log Lik.' -46191.93 (df=8)

lambda<-2*c(logLik(fit.r1) - logLik(fit.r0))</pre>

lambda

[1] 13.58696

What do we compare lambda to?

logLik(fit.r1)

'log Lik.' -46185.14 (df=10)

logLik(fit.r0)

'log Lik.' -46191.93 (df=8)

lambda<-2*c(logLik(fit.r1) - logLik(fit.r0))</pre>

lambda

[1] 13.58696

What do we compare lambda to?

logLik(fit.r1)

'log Lik.' -46185.14 (df=10)

logLik(fit.r0)

'log Lik.' -46191.93 (df=8)

lambda<-2*c(logLik(fit.r1) - logLik(fit.r0))</pre>

lambda

[1] 13.58696

What do we compare lambda to?

Null distribution

Speculation 1: Maybe under H_0 , $\lambda \sim \frac{1}{2}(\{0\} + \chi_1^2)$.

Speculation 2: Maybe under H_0 , $\lambda \sim \chi^2_2$, as d = 2.

Let's investigate with a simulation study

Null distribution

Speculation 1: Maybe under H_0 , $\lambda \sim \frac{1}{2}(\{0\} + \chi_1^2)$. Speculation 2: Maybe under H_0 , $\lambda \sim \chi_2^2$, as d = 2.

Let's investigate with a simulation study

Null distribution

Speculation 1: Maybe under H_0 , $\lambda \sim \frac{1}{2}(\{0\} + \chi_1^2)$. **Speculation 2:** Maybe under H_0 , $\lambda \sim \chi_2^2$, as d = 2. Let's investigate with a simulation study

Null distribution

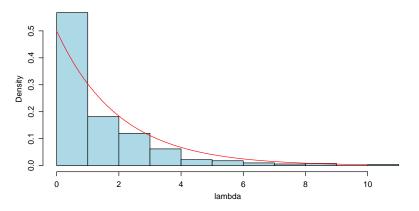
```
m<-30 ; n<-10
beta0<-1 ; beta1<-1
g<-rep(1:m,times=rep(n,m))
LAMBDA HO<-NULL
for(s in 1:S)
  a<-rnorm(m) # random effects
  x<-rnorm(m*n) # covariates
  y<-beta0 + a[g] + beta1*x + rnorm(m*n) #simulated under null
  fit0<-lmer(y ~ x + (1|g), REML=FALSE )</pre>
  fit1<-lmer(y ~ x + (x|g), REML=FALSE)</pre>
  lambda<-2*( logLik(fit1) - logLik(fit0) )</pre>
  LAMBDA.HO<-c(LAMBDA.HO,lambda)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.00448623 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.00257302 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with \max|\text{grad}| = 0.00344872 (tol = 0.002, component 1)
```

Null distribution

```
m<-30 ; n<-10
beta0<-1 ; beta1<-1
g<-rep(1:m,times=rep(n,m))
LAMBDA HO<-NULL
for(s in 1:S)
  a<-rnorm(m) # random effects
  x<-rnorm(m*n) # covariates
  y<-beta0 + a[g] + beta1*x + rnorm(m*n) #simulated under null
  fit0<-lmer(y ~ x + (1|g), REML=FALSE )</pre>
  fit1<-lmer(y ~ x + (x|g), REML=FALSE)</pre>
  lambda<-2*( logLik(fit1) - logLik(fit0) )</pre>
  LAMBDA.HO<-c(LAMBDA.HO,lambda)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.00448623 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.00257302 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with \max|\text{grad}| = 0.00344872 (tol = 0.002, component 1)
```

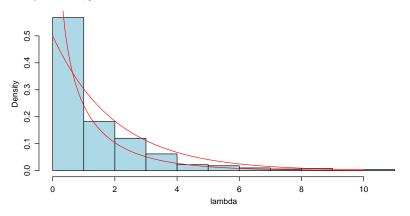
Null distribution

Compare to a χ^2_2 distribution:



Null distribution

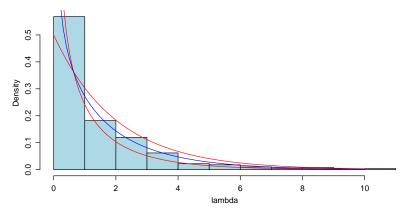
Compare to a χ_1^2 distribution:



Null distribution

Macro effects testing with LM Macro effects testing with HLM Testing heterogeneous intercepts Testing examples Testing slope heterogeneity

Here is the theoretical, asymptotic null distribution: $\lambda \sim \frac{1}{2}(\chi_1^2 + \chi_2^2)$



Mixture distributions

We can represent the distribution of $\lambda(\mathbf{y})$ as follows:

$$\lambda(\mathbf{y}) = \begin{cases} X_1 & \text{with probability } 1/2 \\ X_2 & \text{with probability } 1/2 \end{cases}$$

- X_1 has a χ_1^2 distribution;
- X_2 has a χ^2_2 distribution.

Mixture distributions

We can represent the distribution of $\lambda(\mathbf{y})$ as follows:

$$\lambda(\mathbf{y}) = \begin{cases} X_1 & \text{with probability } 1/2 \\ X_2 & \text{with probability } 1/2 \end{cases}$$

- X_1 has a χ_1^2 distribution;
- X_2 has a χ^2_2 distribution.

Mixture distributions

We can represent the distribution of $\lambda(\mathbf{y})$ as follows:

$$\lambda(\mathbf{y}) = \left\{ egin{array}{cc} X_1 & \mbox{with probability } 1/2 \ X_2 & \mbox{with probability } 1/2 \end{array}
ight.$$

- X_1 has a χ_1^2 distribution;
- X_2 has a χ^2_2 distribution.

$$\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \geq \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \geq \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_2 \text{ and } X_2 \geq \lambda_{obs}) \\ &= \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) + \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2} \left(\mathsf{Pr}(\chi_1^2 \geq \lambda_{obs}) + \mathsf{Pr}(\chi_2^2 \geq \lambda_{obs}) \right) \end{aligned}$$

which is a 50-50 average between the naive *p*-value (based on a χ^2_2 distribution), and one based on a reduced degrees of freedom.

- $\Pr(\chi_1^2 \ge \lambda) = 1\text{-pchisq(lambda,1)}$
- $\Pr(\chi_2^2 \ge \lambda) = 1\text{-pchisq(lambda,2)}$

$$\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \geq \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \geq \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_2 \text{ and } X_2 \geq \lambda_{obs}) \\ &= \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) + \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2} \left(\mathsf{Pr}(\chi_1^2 \geq \lambda_{obs}) + \mathsf{Pr}(\chi_2^2 \geq \lambda_{obs}) \right) \end{aligned}$$

which is a 50-50 average between the naive *p*-value (based on a χ^2_2 distribution), and one based on a reduced degrees of freedom.

- $\Pr(\chi_1^2 \ge \lambda) = 1\text{-pchisq(lambda,1)}$
- $\Pr(\chi^2_2 \ge \lambda) = 1\text{-pchisq(lambda,2)}$

 $\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \geq \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \geq \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_2 \text{ and } X_2 \geq \lambda_{obs}) \\ &= \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) + \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2} \left(\mathsf{Pr}(\chi_1^2 \geq \lambda_{obs}) + \mathsf{Pr}(\chi_2^2 \geq \lambda_{obs}) \right) \end{aligned}$

which is a 50-50 average between the naive *p*-value (based on a χ^2_2 distribution), and one based on a reduced degrees of freedom.

- $\Pr(\chi_1^2 \ge \lambda) = 1\text{-pchisq(lambda,1)}$
- $\Pr(\chi_2^2 \ge \lambda) = 1\text{-pchisq(lambda,2)}$

 $\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \geq \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \geq \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_2 \text{ and } X_2 \geq \lambda_{obs}) \\ &= \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) + \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2} \left(\mathsf{Pr}(\chi_1^2 \geq \lambda_{obs}) + \mathsf{Pr}(\chi_2^2 \geq \lambda_{obs}) \right) \end{aligned}$

which is a 50-50 average between the naive *p*-value (based on a χ^2_2 distribution), and one based on a reduced degrees of freedom.

- $\Pr(\chi_1^2 \ge \lambda) = 1\text{-pchisq(lambda,1)}$
- $\Pr(\chi_2^2 \ge \lambda) = 1\text{-pchisq(lambda,2)}$

 $\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \geq \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \geq \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_2 \text{ and } X_2 \geq \lambda_{obs}) \\ &= \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) + \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2} \left(\mathsf{Pr}(\chi_1^2 \geq \lambda_{obs}) + \mathsf{Pr}(\chi_2^2 \geq \lambda_{obs}) \right) \end{aligned}$

which is a 50-50 average between the naive *p*-value (based on a χ^2_2 distribution), and one based on a reduced degrees of freedom.

- $\Pr(\chi_1^2 \ge \lambda) = 1\text{-pchisq(lambda,1)}$
- $\Pr(\chi_2^2 \ge \lambda) = 1\text{-pchisq(lambda,2)}$

$$\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \geq \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \geq \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_2 \text{ and } X_2 \geq \lambda_{obs}) \\ &= \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) + \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2} \left(\mathsf{Pr}(\chi_1^2 \geq \lambda_{obs}) + \mathsf{Pr}(\chi_2^2 \geq \lambda_{obs}) \right) \end{aligned}$$

which is a 50-50 average between the naive p-value (based on a χ^2_2 distribution), and one based on a reduced degrees of freedom.

- $\Pr(\chi_1^2 \ge \lambda) = 1\text{-pchisq(lambda,1)}$
- $\Pr(\chi_2^2 \ge \lambda) = 1\text{-pchisq(lambda,2)}$

$$\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \geq \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \geq \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_2 \text{ and } X_2 \geq \lambda_{obs}) \\ &= \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) + \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2} \left(\mathsf{Pr}(\chi_1^2 \geq \lambda_{obs}) + \mathsf{Pr}(\chi_2^2 \geq \lambda_{obs}) \right) \end{aligned}$$

which is a 50-50 average between the naive p-value (based on a χ^2_2 distribution), and one based on a reduced degrees of freedom.

- $\Pr(\chi_1^2 \ge \lambda) = 1\text{-pchisq(lambda,1)}$
- $\Pr(\chi_2^2 \ge \lambda) = 1\text{-pchisq(lambda,2)}$

$$\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \geq \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \geq \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_2 \text{ and } X_2 \geq \lambda_{obs}) \\ &= \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) + \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2} \left(\mathsf{Pr}(\chi_1^2 \geq \lambda_{obs}) + \mathsf{Pr}(\chi_2^2 \geq \lambda_{obs}) \right) \end{aligned}$$

which is a 50-50 average between the naive p-value (based on a χ^2_2 distribution), and one based on a reduced degrees of freedom.

- $\Pr(\chi_1^2 \ge \lambda) = 1\text{-pchisq(lambda,1)}$
- $\Pr(\chi_2^2 \ge \lambda) = 1\text{-pchisq(lambda,2)}$

$$\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \geq \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \geq \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_2 \text{ and } X_2 \geq \lambda_{obs}) \\ &= \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) + \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2} \left(\mathsf{Pr}(\chi_1^2 \geq \lambda_{obs}) + \mathsf{Pr}(\chi_2^2 \geq \lambda_{obs}) \right) \end{aligned}$$

which is a 50-50 average between the naive *p*-value (based on a χ_2^2 distribution), and one based on a reduced degrees of freedom.

- $\Pr(\chi_1^2 \ge \lambda) = 1\text{-pchisq(lambda,1)}$
- $\Pr(\chi_2^2 \ge \lambda) = 1\text{-pchisq(lambda,2)}$

$$\begin{aligned} \mathsf{Pr}(\lambda(\mathbf{y}) \geq \lambda_{obs}) &= \mathsf{Pr}(\lambda(\mathbf{y}) = X_1 \text{ and } X_1 \geq \lambda_{obs}) + \mathsf{Pr}(\lambda(\mathbf{y}) = X_2 \text{ and } X_2 \geq \lambda_{obs}) \\ &= \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) + \frac{1}{2} \mathsf{Pr}(X_1 \geq \lambda_{obs}) \\ &= \frac{1}{2} \left(\mathsf{Pr}(\chi_1^2 \geq \lambda_{obs}) + \mathsf{Pr}(\chi_2^2 \geq \lambda_{obs}) \right) \end{aligned}$$

which is a 50-50 average between the naive *p*-value (based on a χ_2^2 distribution), and one based on a reduced degrees of freedom.

- $\Pr(\chi_1^2 \geq \lambda) = 1\text{-pchisq(lambda,1)}$
- $\Pr(\chi^2_2 \geq \lambda) = 1\text{-pchisq(lambda,2)}$

$$y_{i,j} = \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

If $\mathbf{a}_j \in \mathbb{R}^p$, then

$$\mathsf{Cov}[a_{j}] = \Psi = \begin{pmatrix} \psi_{1}^{2} & \psi_{12} & \cdots & \psi_{1p} \\ \psi_{21} & \psi_{2}^{2} & \cdots & \psi_{2p} \\ \vdots & & \vdots \\ \psi_{p1} & \psi_{p2} & \cdots & \psi_{p}^{2} \end{pmatrix}$$

Consider testing to compare the following models:

 M_1 : Full model

*M*₁: Reduced model with $\psi_p^2 = 0$ (and $\psi_{pk} = 0$ also) **Question:** What is the change in number of parameters? **Answer:** d = p

$$y_{i,j} = \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

If $\mathbf{a}_j \in \mathbb{R}^p$, then

$$\mathsf{Cov}[\mathbf{a}_j] = \Psi = \begin{pmatrix} \psi_1^2 & \psi_{12} & \cdots & \psi_{1p} \\ \psi_{21} & \psi_2^2 & \cdots & \psi_{2p} \\ \vdots & & \vdots \\ \psi_{p1} & \psi_{p2} & \cdots & \psi_p^2 \end{pmatrix}$$

Consider testing to compare the following models:

 M_1 : Full model

*M*₁: Reduced model with $\psi_p^2 = 0$ (and $\psi_{pk} = 0$ also) **Question:** What is the change in number of parameters? **Answer:** d = p

$$y_{i,j} = \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

If $\mathbf{a}_j \in \mathbb{R}^p$, then

$$\mathsf{Cov}[\mathbf{a}_{j}] = \Psi = \begin{pmatrix} \psi_{1}^{2} & \psi_{12} & \cdots & \psi_{1p} \\ \psi_{21} & \psi_{2}^{2} & \cdots & \psi_{2p} \\ \vdots & & \vdots \\ \psi_{p1} & \psi_{p2} & \cdots & \psi_{p}^{2} \end{pmatrix}$$

Consider testing to compare the following models:

M₁: Full model

*M*₁: Reduced model with $\psi_p^2 = 0$ (and $\psi_{pk} = 0$ also) **Question:** What is the change in number of parameters?

Answer: d = p

$$y_{i,j} = \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

If $\mathbf{a}_j \in \mathbb{R}^p$, then

$$\mathsf{Cov}[\mathbf{a}_{j}] = \Psi = \begin{pmatrix} \psi_{1}^{2} & \psi_{12} & \cdots & \psi_{1p} \\ \psi_{21} & \psi_{2}^{2} & \cdots & \psi_{2p} \\ \vdots & & \vdots \\ \psi_{p1} & \psi_{p2} & \cdots & \psi_{p}^{2} \end{pmatrix}$$

Consider testing to compare the following models:

M₁: Full model

*M*₁: Reduced model with $\psi_p^2 = 0$ (and $\psi_{pk} = 0$ also) **Question:** What is the change in number of parameters? **Answer:** d = p

$M_1 p$ random effects coefficients

 $M_0 p - 1$ random effects coefficients

Null distribution: Under M_0 , the LRT statistic has is distributed as

$$\lambda(\mathbf{y}) = \begin{cases} X_{p-1} & \text{with probabilty } 1/2 \\ X_p & \text{with probabilty } 1/2 \end{cases}$$

- X_{p-1} has a χ^2_{p-1} distribution;
- X_p has a χ_p^2 distribution.

$M_1 p$ random effects coefficients

$M_0 p - 1$ random effects coefficients

Null distribution: Under M_0 , the LRT statistic has is distributed as

$$\lambda(\mathbf{y}) = \begin{cases} X_{p-1} & \text{with probabilty } 1/2 \\ X_p & \text{with probabilty } 1/2 \end{cases}$$

- X_{p-1} has a χ^2_{p-1} distribution;
- X_p has a χ_p^2 distribution.

$M_1 p$ random effects coefficients

 $M_0 p - 1$ random effects coefficients

Null distribution: Under M_0 , the LRT statistic has is distributed as

$$\lambda(\mathbf{y}) = \begin{cases} X_{p-1} & \text{with probability } 1/2 \\ X_p & \text{with probability } 1/2 \end{cases}$$

where

•
$$X_{p-1}$$
 has a χ^2_{p-1} distribution;

• X_p has a χ_p^2 distribution.

$M_1 p$ random effects coefficients

 $M_0 p - 1$ random effects coefficients

Null distribution: Under M_0 , the LRT statistic has is distributed as

$$\lambda(\mathbf{y}) = \begin{cases} X_{p-1} & \text{with probability } 1/2 \\ X_p & \text{with probability } 1/2 \end{cases}$$

- X_{p-1} has a χ^2_{p-1} distribution;
- X_p has a χ_p^2 distribution.

Shorthand for this is

$$\lambda | M_0 \sim \frac{1}{2} (\chi_{p-1}^2 + \chi_p^2).$$

• This *does not* mean that λ is the average of two χ^2 random variables,

• this does mean that the density of λ is the average of two χ^2 densities.

CAREFUL: Some authors say $\lambda | M_0 \sim \frac{1}{2}(\chi_p^2 + \chi_{p+1}^2)$. This is because they are not counting the intercept.

Shorthand for this is

$$\lambda | M_0 \sim \frac{1}{2} (\chi_{p-1}^2 + \chi_p^2).$$

- This *does not* mean that λ is the average of two χ^2 random variables,
- this does mean that the density of λ is the average of two χ^2 densities.

CAREFUL: Some authors say $\lambda | M_0 \sim \frac{1}{2} (\chi_p^2 + \chi_{p+1}^2)$. This is because they are not counting the intercept.

The null distribution in the general case

Shorthand for this is

$$\lambda | M_0 \sim \frac{1}{2} (\chi_{p-1}^2 + \chi_p^2).$$

- This *does not* mean that λ is the average of two χ^2 random variables,
- this does mean that the density of λ is the average of two χ^2 densities.

CAREFUL: Some authors say $\lambda | M_0 \sim \frac{1}{2}(\chi_p^2 + \chi_{p+1}^2)$. This is because they are not counting the intercept.

The null distribution in the general case

Shorthand for this is

$$\lambda | M_0 \sim \frac{1}{2} (\chi_{p-1}^2 + \chi_p^2).$$

- This *does not* mean that λ is the average of two χ^2 random variables,
- this does mean that the density of λ is the average of two χ^2 densities.

CAREFUL: Some authors say $\lambda | M_0 \sim \frac{1}{2} (\chi_p^2 + \chi_{p+1}^2)$. This is because they are not counting the intercept.

Check with previous results:

Single random effect:

$$M_0 : y_{i,j} = \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \epsilon_{i,j}$$

$$M_1 : y_{i,j} = \boldsymbol{\beta}^T \mathbf{x}_{i,j} + b_{1,j} + \epsilon_{i,j}$$

$$\lambda | M_0 \sim \frac{1}{2} (\{0\} + \chi_1^2)$$

Two random effects:

$$M_{0} : y_{i,j} = \beta^{T} \mathbf{x}_{i,j} + b_{1,j} \epsilon_{i,j}$$

$$M_{1} : y_{i,j} = \beta^{T} \mathbf{x}_{i,j} + b_{1,j} + b_{2,j} w_{i,j} + \epsilon_{i,j}$$

$$\lambda | M_{0} \sim \frac{1}{2} (\chi_{1}^{2} + \chi_{2}^{2})$$

Check with previous results:

Single random effect:

$$M_0 : y_{i,j} = \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \epsilon_{i,j}$$

$$M_1 : y_{i,j} = \boldsymbol{\beta}^T \mathbf{x}_{i,j} + b_{1,j} + \epsilon_{i,j}$$

$$\lambda | M_0 \sim \frac{1}{2} (\{0\} + \chi_1^2)$$

Two random effects:

$$M_{0} : y_{i,j} = \beta^{T} \mathbf{x}_{i,j} + b_{1,j} \epsilon_{i,j}$$

$$M_{1} : y_{i,j} = \beta^{T} \mathbf{x}_{i,j} + b_{1,j} + b_{2,j} w_{i,j} + \epsilon_{i,j}$$

$$\lambda | M_{0} \sim \frac{1}{2} (\chi_{1}^{2} + \chi_{2}^{2})$$

Naive critical value:

- p random effects implies d = p.
- The naive 0.05 critical value is $\lambda_c = qchisq(.95,p)$

- Your "naive" *p*-value is 0.05.
- Your actual *p*-value is lower.
- The naive p-value is more likely to erroneously accept the null (simpler) model.

Naive critical value:

- p random effects implies d = p.
- The naive 0.05 critical value is λ_c=qchisq(.95,p)

- Your "naive" p-value is 0.05.
- Your actual *p*-value is lower.
- The naive p-value is more likely to erroneously accept the null (simpler) model.

Naive critical value:

- p random effects implies d = p.
- The naive 0.05 critical value is $\lambda_c = qchisq(.95,p)$

- Your "naive" p-value is 0.05.
- Your actual *p*-value is lower.
- The naive p-value is more likely to erroneously accept the null (simpler) model.

Naive critical value:

- p random effects implies d = p.
- The naive 0.05 critical value is λ_c=qchisq(.95,p)

- Your "naive" *p*-value is 0.05.
- Your actual *p*-value is lower.
- The naive *p*-value is more likely to erroneously accept the null (simpler) model.

Naive critical value:

- p random effects implies d = p.
- The naive 0.05 critical value is λ_c=qchisq(.95,p)

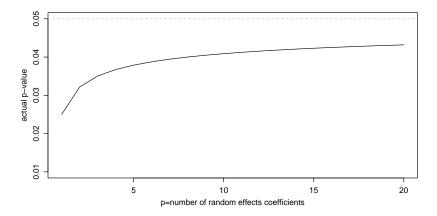
- Your "naive" *p*-value is 0.05.
- Your actual *p*-value is lower.
- The naive *p*-value is more likely to erroneously accept the null (simpler) model.

Naive critical value:

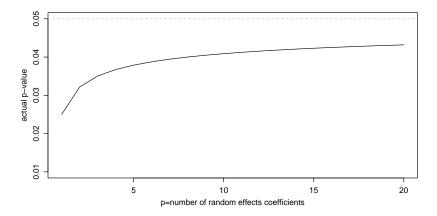
- p random effects implies d = p.
- The naive 0.05 critical value is $\lambda_c = qchisq(.95,p)$

- Your "naive" *p*-value is 0.05.
- Your actual *p*-value is lower.
- The naive *p*-value is more likely to erroneously accept the null (simpler) model.

```
p<-1:20
lc.naive<-qchisq(.95,p)
pval<-.5*( (1-pchisq(lc.naive,p-1)) + (1-pchisq(lc.naive,p)) )</pre>
```



```
p<-1:20
lc.naive<-qchisq(.95,p)
pval<-.5*( (1-pchisq(lc.naive,p-1)) + (1-pchisq(lc.naive,p)) )</pre>
```



Summary of testing

LRT: The LRT can be used to compare nested models:

- models with and without various fixed effects;
- models with and without various random effects.

- χ^2_d for testing if *d* fixed effects are zero.
- ¹/₂(χ²_{ρ-1} + χ²_ρ) for testing if a single random effect is zero, in the presence
 of ρ − 1 other random effects.

Summary of testing

LRT: The LRT can be used to compare nested models:

- models with and without various fixed effects;
- models with and without various random effects.

- χ^2_d for testing if *d* fixed effects are zero.
- ¹/₂(χ²_{ρ-1} + χ²_ρ) for testing if a single random effect is zero, in the presence
 of ρ − 1 other random effects.

Summary of testing

LRT: The LRT can be used to compare nested models:

- models with and without various fixed effects;
- models with and without various random effects.

- χ^2_d for testing if *d* fixed effects are zero.
- ¹/₂(χ²_{ρ-1} + χ²_ρ) for testing if a single random effect is zero, in the presence
 of ρ − 1 other random effects.

Summary of testing

LRT: The LRT can be used to compare nested models:

- models with and without various fixed effects;
- models with and without various random effects.

- χ^2_d for testing if *d* fixed effects are zero.
- ¹/₂(χ²_{ρ-1} + χ²_ρ) for testing if a single random effect is zero, in the presence
 of ρ − 1 other random effects.

Summary of testing

LRT: The LRT can be used to compare nested models:

- models with and without various fixed effects;
- models with and without various random effects.

- χ^2_d for testing if *d* fixed effects are zero.
- ¹/₂(χ²_{ρ-1} + χ²_ρ) for testing if a single random effect is zero, in the presence
 of ρ − 1 other random effects.

Summary of testing

LRT: The LRT can be used to compare nested models:

- models with and without various fixed effects;
- models with and without various random effects.

- χ^2_d for testing if *d* fixed effects are zero.
- $\frac{1}{2}(\chi_{p-1}^2 + \chi_p^2)$ for testing if a single random effect is zero, in the presence of p-1 other random effects.

Summary of testing

LRT: The LRT can be used to compare nested models:

- models with and without various fixed effects;
- models with and without various random effects.

- χ^2_d for testing if *d* fixed effects are zero.
- $\frac{1}{2}(\chi_{p-1}^2 + \chi_p^2)$ for testing if a single random effect is zero, in the presence of p-1 other random effects.

Summary of testing

LRT: The LRT can be used to compare nested models:

- models with and without various fixed effects;
- models with and without various random effects.

- χ^2_d for testing if *d* fixed effects are zero.
- $\frac{1}{2}(\chi_{p-1}^2 + \chi_p^2)$ for testing if a single random effect is zero, in the presence of p-1 other random effects.

Summary of testing

LRT: The LRT can be used to compare nested models:

- models with and without various fixed effects;
- models with and without various random effects.

- χ^2_d for testing if *d* fixed effects are zero.
- $\frac{1}{2}(\chi_{p-1}^2 + \chi_p^2)$ for testing if a single random effect is zero, in the presence of p-1 other random effects.

Consequences of ignoring the mixture null distribution:

- The naive p-value will be larger than the actual p-value.
- The naive p-value will underrepresent evidence against the null.
- From a decision-theory perspective, the naive *p*-value still controls type I error below *α*;
- From a practical perspective, the naive p-value can lead to using the wrong (simpler) model more often.

Caution: null distributions and *p*-values are based on *asymptotic* results.

Consequences of ignoring the mixture null distribution:

- The naive *p*-value will be larger than the actual *p*-value.
- The naive *p*-value will underrepresent evidence against the null.
- From a decision-theory perspective, the naive *p*-value still controls type I error below α ;
- From a practical perspective, the naive *p*-value can lead to using the wrong (simpler) model more often.

Caution: null distributions and *p*-values are based on *asymptotic* results.

Consequences of ignoring the mixture null distribution:

- The naive *p*-value will be larger than the actual *p*-value.
- The naive *p*-value will underrepresent evidence against the null.
- From a decision-theory perspective, the naive *p*-value still controls type I error below α;
- From a practical perspective, the naive *p*-value can lead to using the wrong (simpler) model more often.

Caution: null distributions and *p*-values are based on *asymptotic* results.

Consequences of ignoring the mixture null distribution:

- The naive *p*-value will be larger than the actual *p*-value.
- The naive *p*-value will underrepresent evidence against the null.
- From a decision-theory perspective, the naive *p*-value still controls type I error below α;
- From a practical perspective, the naive *p*-value can lead to using the wrong (simpler) model more often.

Caution: null distributions and *p*-values are based on *asymptotic* results.

Consequences of ignoring the mixture null distribution:

- The naive *p*-value will be larger than the actual *p*-value.
- The naive *p*-value will underrepresent evidence against the null.
- From a decision-theory perspective, the naive *p*-value still controls type I error below α;
- From a practical perspective, the naive *p*-value can lead to using the wrong (simpler) model more often.

Caution: null distributions and *p*-values are based on *asymptotic* results.

Consequences of ignoring the mixture null distribution:

- The naive *p*-value will be larger than the actual *p*-value.
- The naive *p*-value will underrepresent evidence against the null.
- From a decision-theory perspective, the naive *p*-value still controls type I error below α ;
- From a practical perspective, the naive *p*-value can lead to using the wrong (simpler) model more often.

Caution: null distributions and *p*-values are based on *asymptotic* results.

Consequences of ignoring the mixture null distribution:

- The naive *p*-value will be larger than the actual *p*-value.
- The naive *p*-value will underrepresent evidence against the null.
- From a decision-theory perspective, the naive *p*-value still controls type I error below α;
- From a practical perspective, the naive *p*-value can lead to using the wrong (simpler) model more often.

Caution: null distributions and *p*-values are based on *asymptotic* results.

Consequences of ignoring the mixture null distribution:

- The naive *p*-value will be larger than the actual *p*-value.
- The naive *p*-value will underrepresent evidence against the null.
- From a decision-theory perspective, the naive *p*-value still controls type I error below α;
- From a practical perspective, the naive *p*-value can lead to using the wrong (simpler) model more often.

Caution: null distributions and *p*-values are based on *asymptotic* results.