Model Selection

Peter Hoff Duke STA 610

The model selection problem

Test-based selection

Consistent model selection

Model: A statistical model is a set of probability distributions for your data.

- In HLM, the model is a specification of fixed effects and random effects.
- Once we select a model, we can estimate the parameters in the model and make further inference.

```
nels[1:5,]
```

- fixed effects: enroll,flp,public,urbanicity,hwh,ses
- random effects: 1, hwh, ses
- fixed effect interactions: enroll*flp, public*flp,...
- random effect interactions: hwh*ses
- higher order terms: ses²,...

Model: A statistical model is a set of probability distributions for your data.

- In HLM, the model is a specification of fixed effects and random effects.
- Once we select a model, we can estimate the parameters in the model and make further inference.

```
nels[1:5,]
## school enroll flp public urbanicity hwh ses msc
## 1 1011 5 3 1 urban 2 -0.23 52
## 2 1011 5 3 1 urban 0 0.69 57
## 3 1011 5 3 1 urban 4 -0.68 66
## 4 1011 5 3 1 urban 5 -0.89 44
## 5 1011 5 3 1 urban 3 -1.28 40
```

- fixed effects: enroll,flp,public,urbanicity,hwh,ses
- random effects: 1, hwh, ses
- fixed effect interactions: enroll*flp, public*flp,...
- random effect interactions: hwh*ses
- higher order terms: ses²,...

Model: A statistical model is a set of probability distributions for your data.

- In HLM, the model is a specification of fixed effects and random effects.
- Once we select a model, we can estimate the parameters in the model and make further inference.

- fixed effects: enroll,flp,public,urbanicity,hwh,ses
- random effects: 1, hwh, ses
- fixed effect interactions: enroll*flp, public*flp,...
- random effect interactions: hwh*ses
- higher order terms: ses²,...

Model: A statistical model is a set of probability distributions for your data.

- In HLM, the model is a specification of fixed effects and random effects.
- Once we select a model, we can estimate the parameters in the model and make further inference.

- fixed effects: enroll,flp,public,urbanicity,hwh,ses
- random effects: 1, hwh, ses
- fixed effect interactions: enroll*flp, public*flp,...
- random effect interactions: hwh*ses
- higher order terms: ses²,...

Model: A statistical model is a set of probability distributions for your data.

- In HLM, the model is a specification of fixed effects and random effects.
- Once we select a model, we can estimate the parameters in the model and make further inference.

ne	nels[1:5,]											
##		school	enroll	flp	public	urbanicity	hwh	ses	mscore			
##	1	1011	5	3	1	urban	2	-0.23	52.11			
##	2	1011	5	3	1	urban	0	0.69	57.65			
##	3	1011	5	3	1	urban	4	-0.68	66.44			
##	4	1011	5	3	1	urban	5	-0.89	44.68			
##	5	1011	5	3	1	urban	3	-1.28	40.57			

- fixed effects: enroll,flp,public,urbanicity,hwh,ses
- random effects: 1, hwh, ses
- fixed effect interactions: enroll*flp, public*flp,...
- random effect interactions: hwh*ses
- higher order terms: ses²,...

Model: A statistical model is a set of probability distributions for your data.

- In HLM, the model is a specification of fixed effects and random effects.
- Once we select a model, we can estimate the parameters in the model and make further inference.

nel	nels[1:5,]												
##		school	enroll	flp	public	urbanicity	hwh	ses	mscore				
##	1	1011	5	3	1	urban	2	-0.23	52.11				
##	2	1011	5	3	1	urban	0	0.69	57.65				
##	3	1011	5	3	1	urban	4	-0.68	66.44				
##	4	1011	5	3	1	urban	5	-0.89	44.68				
##	5	1011	5	3	1	urban	3	-1.28	40.57				

- fixed effects: enroll,flp,public,urbanicity,hwh,ses
- random effects: 1,hwh,ses
- fixed effect interactions: enroll*flp, public*flp,...
- random effect interactions: hwh*ses
- higher order terms: ses²,...

Model: A statistical model is a set of probability distributions for your data.

- In HLM, the model is a specification of fixed effects and random effects.
- Once we select a model, we can estimate the parameters in the model and make further inference.

nel	nels[1:5,]												
##		school	enroll	flp	public	urbanicity	hwh	ses	mscore				
##	1	1011	5	3	1	urban	2	-0.23	52.11				
##	2	1011	5	3	1	urban	0	0.69	57.65				
##	3	1011	5	3	1	urban	4	-0.68	66.44				
##	4	1011	5	3	1	urban	5	-0.89	44.68				
##	5	1011	5	3	1	urban	3	-1.28	40.57				

- fixed effects: enroll,flp,public,urbanicity,hwh,ses
- random effects: 1,hwh,ses
- fixed effect interactions: enroll*flp, public*flp,...
- random effect interactions: hwh*ses
- higher order terms: ses²,...

Modeling choices

Model: A statistical model is a set of probability distributions for your data.

- In HLM, the model is a specification of fixed effects and random effects.
- Once we select a model, we can estimate the parameters in the model and make further inference.

nel	nels[1:5,]												
##		school	enroll	flp	public	urbanicity	hwh	ses	mscore				
##	1	1011	5	3	1	urban	2	-0.23	52.11				
##	2	1011	5	3	1	urban	0	0.69	57.65				
##	3	1011	5	3	1	urban	4	-0.68	66.44				
##	4	1011	5	3	1	urban	5	-0.89	44.68				
##	5	1011	5	3	1	urban	3	-1.28	40.57				

- fixed effects: enroll,flp,public,urbanicity,hwh,ses
- random effects: 1,hwh,ses
- fixed effect interactions: enroll*flp, public*flp,...
- random effect interactions: hwh*ses
- higher order terms: ses²,...

Model: A statistical model is a set of probability distributions for your data.

- In HLM, the model is a specification of fixed effects and random effects.
- Once we select a model, we can estimate the parameters in the model and make further inference.

nel	nels[1:5,]												
##		school	enroll	flp	public	urbanicity	hwh	ses	mscore				
##	1	1011	5	3	1	urban	2	-0.23	52.11				
##	2	1011	5	3	1	urban	0	0.69	57.65				
##	3	1011	5	3	1	urban	4	-0.68	66.44				
##	4	1011	5	3	1	urban	5	-0.89	44.68				
##	5	1011	5	3	1	urban	3	-1.28	40.57				

- fixed effects: enroll,flp,public,urbanicity,hwh,ses
- random effects: 1,hwh,ses
- fixed effect interactions: enroll*flp, public*flp,...
- random effect interactions: hwh*ses
- higher order terms: ses²,...

Model: A statistical model is a set of probability distributions for your data.

- In HLM, the model is a specification of fixed effects and random effects.
- Once we select a model, we can estimate the parameters in the model and make further inference.

nel	nels[1:5,]												
##		school	enroll	flp	public	urbanicity	hwh	ses	mscore				
##	1	1011	5	3	1	urban	2	-0.23	52.11				
##	2	1011	5	3	1	urban	0	0.69	57.65				
##	3	1011	5	3	1	urban	4	-0.68	66.44				
##	4	1011	5	3	1	urban	5	-0.89	44.68				
##	5	1011	5	3	1	urban	3	-1.28	40.57				

- fixed effects: enroll,flp,public,urbanicity,hwh,ses
- random effects: 1,hwh,ses
- fixed effect interactions: enroll*flp, public*flp,...
- random effect interactions: hwh*ses
- higher order terms: ses²,...

Model: A statistical model is a set of probability distributions for your data.

- In HLM, the model is a specification of fixed effects and random effects.
- Once we select a model, we can estimate the parameters in the model and make further inference.

nel	nels[1:5,]												
##		school	enroll	flp	public	urbanicity	hwh	ses	mscore				
##	1	1011	5	3	1	urban	2	-0.23	52.11				
##	2	1011	5	3	1	urban	0	0.69	57.65				
##	3	1011	5	3	1	urban	4	-0.68	66.44				
##	4	1011	5	3	1	urban	5	-0.89	44.68				
##	5	1011	5	3	1	urban	3	-1.28	40.57				

- fixed effects: enroll,flp,public,urbanicity,hwh,ses
- random effects: 1,hwh,ses
- fixed effect interactions: enroll*flp, public*flp,...
- random effect interactions: hwh*ses
- higher order terms: ses²,...

Model: A statistical model is a set of probability distributions for your data.

- In HLM, the model is a specification of fixed effects and random effects.
- Once we select a model, we can estimate the parameters in the model and make further inference.

nel	nels[1:5,]												
##		school	enroll	flp	public	urbanicity	hwh	ses	mscore				
##	1	1011	5	3	1	urban	2	-0.23	52.11				
##	2	1011	5	3	1	urban	0	0.69	57.65				
##	3	1011	5	3	1	urban	4	-0.68	66.44				
##	4	1011	5	3	1	urban	5	-0.89	44.68				
##	5	1011	5	3	1	urban	3	-1.28	40.57				

- fixed effects: enroll,flp,public,urbanicity,hwh,ses
- random effects: 1,hwh,ses
- fixed effect interactions: enroll*flp, public*flp,...
- random effect interactions: hwh*ses
- higher order terms: ses²,...

Model selection

We would like a procedure that can identify the "best" model from the data.

- "best=true" if the truth is one of the potential models.
- "best" means giving the best prediction or description otherwise.

Setup: Let M_1, M_2, \ldots, M_K be candidate models. For example, maybe

- *M*₁: y ~ flp
- *M*₂: y ~ flp + ses
- M_3 : y ~ flp + ses + (ses|school)

Model selection procedure: A procedure that takes data (y, X) as input and outputs a model.

 $\texttt{msel}(\mathbf{y}, \mathbf{X}) \in \{M_1, \dots, M_K\}$

Model selection

We would like a procedure that can identify the "best" model from the data.

- "best=true" if the truth is one of the potential models.
- "best" means giving the best prediction or description otherwise.

Setup: Let M_1, M_2, \ldots, M_K be candidate models. For example, maybe

- *M*₁: y ~ flp
- *M*₂: y ~ flp + ses
- M_3 : y ~ flp + ses + (ses|school)

Model selection procedure: A procedure that takes data (y, X) as input and outputs a model.

 $\texttt{msel}(\mathbf{y}, \mathbf{X}) \in \{M_1, \dots, M_K\}$

Model selection

We would like a procedure that can identify the "best" model from the data.

- "best=true" if the truth is one of the potential models.
- "best" means giving the best prediction or description otherwise.

Setup: Let M_1, M_2, \ldots, M_K be candidate models. For example, maybe

- *M*₁: y ~ flp
- *M*₂: y ~ flp + ses
- M_3 : y ~ flp + ses + (ses|school)

Model selection procedure: A procedure that takes data (y, X) as input and outputs a model.

 $\texttt{msel}(\textbf{y},\textbf{X}) \in \{\textit{M}_1,\ldots,\textit{M}_{\textit{K}}\}$

As our data are subject to sampling variability, we can't expect a model selection procedure to select the best model with probability 1. However, we do expect that

$Pr(msel(\mathbf{y}, \mathbf{X}) = M_k)$ is large if M_k is correct.

As more data comes in, a good procedure should have an increasingly large chance of selecting the right model. Such a procedure is *consistent*.

Consistency: msel(y, X)) is consistent if

when M_k is true, then $Pr(msel(\mathbf{y}, \mathbf{X}) = M_k) \rightarrow 1$ as $n, m \rightarrow \infty$.

As our data are subject to sampling variability, we can't expect a model selection procedure to select the best model with probability 1. However, we do expect that

 $Pr(msel(\mathbf{y}, \mathbf{X}) = M_k)$ is large if M_k is correct.

As more data comes in, a good procedure should have an increasingly large chance of selecting the right model. Such a procedure is *consistent*.

Consistency: msel(y, X)) is consistent if

when M_k is true, then $Pr(msel(\mathbf{y}, \mathbf{X}) = M_k) \rightarrow 1$ as $n, m \rightarrow \infty$.

As our data are subject to sampling variability, we can't expect a model selection procedure to select the best model with probability 1. However, we do expect that

 $Pr(msel(\mathbf{y}, \mathbf{X}) = M_k)$ is large if M_k is correct.

As more data comes in, a good procedure should have an increasingly large chance of selecting the right model. Such a procedure is *consistent*.

Consistency: msel(y, X)) is consistent if

when M_k is true, then $Pr(msel(\mathbf{y}, \mathbf{X}) = M_k) \rightarrow 1$ as $n, m \rightarrow \infty$.

As our data are subject to sampling variability, we can't expect a model selection procedure to select the best model with probability 1. However, we do expect that

 $Pr(msel(\mathbf{y}, \mathbf{X}) = M_k)$ is large if M_k is correct.

As more data comes in, a good procedure should have an increasingly large chance of selecting the right model. Such a procedure is *consistent*.

Consistency: msel(y, X)) is consistent if

when M_k is true, then $Pr(msel(\mathbf{y}, \mathbf{X}) = M_k) \rightarrow 1$ as $n, m \rightarrow \infty$.

Consistent model selection

Backwards elimination

Diabetes example:

- 442 subjects
- y_i = diabetes progression
- $\mathbf{x}_i = explanatory variables.$

Each x; includes

- 13 subject specific measurements (x_{age}, x_{sex}, ...);
- $78 = \binom{13}{2}$ interaction terms $(x_{\text{age}} \cdot x_{\text{sex}}, \ldots)$;
- 9 quadratic terms (x_{sex} and three genetic variables are binary)

The model selection problem 000

 Consistent model selection

Backwards elimination

Diabetes example:

- 442 subjects
- y_i = diabetes progression
- **x**_i = explanatory variables.

Each x_i includes

- 13 subject specific measurements (x_{age}, x_{sex},...);
- $78 = \binom{13}{2}$ interaction terms $(x_{\text{age}} \cdot x_{\text{sex}}, \ldots)$;
- 9 quadratic terms (x_{sex} and three genetic variables are binary)

Consistent model selection

Backwards elimination

Diabetes example:

- 442 subjects
- y_i = diabetes progression
- **x**_i = explanatory variables.

Each x_i includes

- 13 subject specific measurements (x_{age}, x_{sex}, ...);
- $78 = \binom{13}{2}$ interaction terms $(x_{\sf age} \cdot x_{\sf sex}, \ldots)$;
- 9 quadratic terms (x_{sex} and three genetic variables are binary)

Consistent model selection

Backwards elimination

Diabetes example:

- 442 subjects
- y_i = diabetes progression
- **x**_i = explanatory variables.

Each x_i includes

- 13 subject specific measurements (x_{age}, x_{sex},...);
- $78 = \binom{13}{2}$ interaction terms $(x_{\sf age} \cdot x_{\sf sex}, \ldots)$;
- 9 quadratic terms (x_{sex} and three genetic variables are binary)

Consistent model selection

Backwards elimination

Diabetes example:

- 442 subjects
- y_i = diabetes progression
- **x**_i = explanatory variables.

Each \mathbf{x}_i includes

- 13 subject specific measurements (*x*_{age}, *x*_{sex}, . . .);
- $78 = \binom{13}{2}$ interaction terms $(x_{age} \cdot x_{sex}, \ldots)$;
- 9 quadratic terms (x_{sex} and three genetic variables are binary)

Consistent model selection

Backwards elimination

Diabetes example:

- 442 subjects
- y_i = diabetes progression
- **x**_i = explanatory variables.

Each \mathbf{x}_i includes

- 13 subject specific measurements (x_{age}, x_{sex}, ...);
- 78 = $\binom{13}{2}$ interaction terms $(x_{age} \cdot x_{sex}, \ldots)$;
- 9 quadratic terms (x_{sex} and three genetic variables are binary)

Consistent model selection

Backwards elimination

Diabetes example:

- 442 subjects
- y_i = diabetes progression
- **x**_i = explanatory variables.

Each \mathbf{x}_i includes

- 13 subject specific measurements (x_{age}, x_{sex}, ...);
- 78 = $\binom{13}{2}$ interaction terms $(x_{\text{age}} \cdot x_{\text{sex}}, \ldots)$;
- 9 quadratic terms (x_{sex} and three genetic variables are binary)

Consistent model selection

Backwards elimination

Diabetes example:

- 442 subjects
- y_i = diabetes progression
- **x**_i = explanatory variables.

Each \mathbf{x}_i includes

- 13 subject specific measurements (x_{age}, x_{sex}, ...);
- 78 = $\binom{13}{2}$ interaction terms $(x_{\text{age}} \cdot x_{\text{sex}}, \ldots)$;
- 9 quadratic terms (x_{sex} and three genetic variables are binary)

Consistent model selection

Backwards elimination

Diabetes example:

- 442 subjects
- y_i = diabetes progression
- **x**_i = explanatory variables.

Each \mathbf{x}_i includes

- 13 subject specific measurements (x_{age}, x_{sex}, ...);
- 78 = $\binom{13}{2}$ interaction terms $(x_{\text{age}} \cdot x_{\text{sex}}, \ldots)$;
- 9 quadratic terms (x_{sex} and three genetic variables are binary)

Backwards elimination

1. Obtain the estimator $\hat{\boldsymbol{\beta}}_{ols} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ and its *t*-statistics.

2. If there are any regressors j such that $|t_j| < t_{cutoff}$,

- 2.1 find the regressor j_{min} having the smallest value of $|t_i|$,
- 2.2 remove column j_{min} from X;
- 2.3 return to step 1.

Backwards elimination

- 1. Obtain the estimator $\hat{\boldsymbol{\beta}}_{ols} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ and its *t*-statistics.
- 2. If there are any regressors j such that $|t_j| < t_{cutoff}$,
 - 2.1 find the regressor j_{min} having the smallest value of $|t_j|$;
 - 2.2 remove column j_{min} from **X**;
 - 2.3 return to step 1.

Backwards elimination

- 1. Obtain the estimator $\hat{\boldsymbol{\beta}}_{ols} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ and its *t*-statistics.
- 2. If there are any regressors j such that $|t_j| < t_{cutoff}$,
 - 2.1 find the regressor j_{min} having the smallest value of $|t_j|$;
 - 2.2 remove column j_{min} from **X**;
 - 2.3 return to step 1.

Backwards elimination

- 1. Obtain the estimator $\hat{\boldsymbol{\beta}}_{ols} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ and its *t*-statistics.
- 2. If there are any regressors j such that $|t_j| < t_{cutoff}$,
 - 2.1 find the regressor j_{min} having the smallest value of $|t_j|$;
 - 2.2 remove column j_{min} from **X**;
 - 2.3 return to step 1.

Backwards elimination

- 1. Obtain the estimator $\hat{\boldsymbol{\beta}}_{ols} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ and its *t*-statistics.
- 2. If there are any regressors j such that $|t_j| < t_{cutoff}$,
 - 2.1 find the regressor j_{min} having the smallest value of $|t_j|$;
 - 2.2 remove column j_{min} from **X**;
 - 2.3 return to step 1.

Backwards elimination

- 1. Obtain the estimator $\hat{\boldsymbol{\beta}}_{ols} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ and its *t*-statistics.
- 2. If there are any regressors j such that $|t_j| < t_{cutoff}$,
 - 2.1 find the regressor j_{min} having the smallest value of $|t_j|$;
 - 2.2 remove column j_{min} from **X**;
 - 2.3 return to step 1.

Backwards elimination

- 1. Obtain the estimator $\hat{\boldsymbol{\beta}}_{ols} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ and its *t*-statistics.
- 2. If there are any regressors j such that $|t_j| < t_{cutoff}$,
 - 2.1 find the regressor j_{min} having the smallest value of $|t_j|$;
 - 2.2 remove column j_{min} from **X**;
 - 2.3 return to step 1.

3. If $|t_j| > t_{cutoff}$ for all variables *j* remaining in the model, then stop.

Backwards elimination

- 1. Obtain the estimator $\hat{\boldsymbol{\beta}}_{ols} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ and its *t*-statistics.
- 2. If there are any regressors j such that $|t_j| < t_{cutoff}$,
 - 2.1 find the regressor j_{min} having the smallest value of $|t_j|$;
 - 2.2 remove column j_{min} from **X**;
 - 2.3 return to step 1.

3. If $|t_j| > t_{cutoff}$ for all variables *j* remaining in the model, then stop.

Consistent model selection

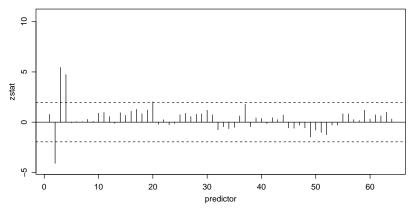
Backwards elimination

```
### backwards elimination
ZSTATS<-NULL ; zmin<-0 ; zcut<-qnorm(.975)</pre>
while(zmin< zcut)</pre>
  fit < -lm(v^{-1+XS})
  zscore<-summary(fit)$coef[,3]</pre>
  zmin<-min(abs(zscore))</pre>
  if(zmin<zcut)</pre>
    jmin<-which.min(abs(zscore))</pre>
    XS<-XS[,-jmin]
  zs<-rep(0,ncol(X))</pre>
  zs[ match(substr(names(zscore),3,9),colnames(X)) ] <-zscore</pre>
  ZSTATS<-rbind(ZSTATS,zs)
```

Consistent model selection

Backwards elimination

Initial z-scores:

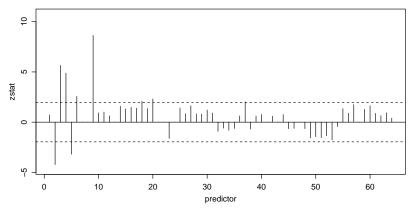


Test-based selection

Consistent model selection

Backwards elimination

After ten iterations:

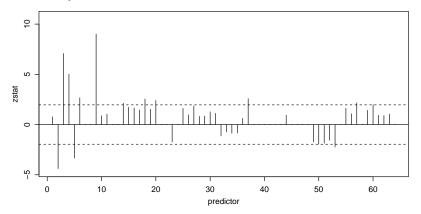


Test-based selection

Consistent model selection

Backwards elimination

After twenty iterations:

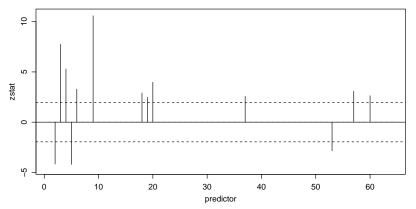


Test-based selection

Consistent model selection

Backwards elimination

Final solution:



Consistent model selection

Final solution

summary(fit)

##									
	Call:								
##	lm(formula = y ~ -1 + XS)								
##									
##	Residuals:								
##	Min	1Q	Median	ЗQ	Max				
##	-2.05779 -	0.49533 -	0.02017 0.	40202	L.86086				
##									
##	Coefficien	its:							
##		Estimate	Std. Error	t value	Pr(> t)				
##	XSsex	-0.15026	0.03603	-4.171	3.67e-05	***			
##	XSbmi	0.30789	0.03972	7.752	6.62e-14	***			
##	XSmap	0.19982	0.03777	5.290	1.95e-07	***			
##	XStc	-0.44478	0.10561	-4.211	3.09e-05	***			
##	XSldl	0.32683	0.09924	3.293	0.00107	**			
##	XSltg	0.57384	0.05415	10.598	< 2e-16	***			
			0.10591						
##	XSglu^2	0.08227	0.03332	2.469	0.01393	*			
			0.03297						
##	XSbmi:map	0.08699	0.03373	2.579	0.01024	*			
##	XStc:ltg	-0.45086	0.15781	-2.857	0.00448	**			
##	XSldl:ltg	0.37997	0.12363	3.073	0.00225	**			
##	XShdl:ltg	0.16663	0.06323	2.635	0.00871	**			
##	Signif. co	des: 0 '	***' 0.001	'**' 0.()1 '*' 0.0	05 '.' 0.1	' ' 1		
##									
##	Residual s	standard e	rror: 0.675	52 on 429	9 degrees	of freedom			
##	Multiple R	-squared:	0.5565, 4	ldjusted	R-squared	1: 0.5431			
##	F-statisti	c: 41.41	on 13 and 4	129 DF,	p-value:	< 2.2e-16			

How would you interpret the p-values, standard errors, CIs?

Final solution

summary(fit)

Call: ## lm(formula = y ~ -1 + XS)## ## Residuals: ## Min 10 Median 30 Max ## -2.05779 -0.49533 -0.02017 0.40202 1.86086 ## ## Coefficients: Estimate Std. Error t value Pr(>|t|) ## ## XSsex 0.03603 -4.171 3.67e-05 *** -0.15026 ## XSbmi 0.30789 0.03972 7.752 6.62e-14 *** ## XSmap 0.19982 0.03777 5.290 1.95e-07 *** ## XStc -0.44478 0.10561 -4.211 3.09e-05 *** 3.293 0.00107 ** ## XSldl 0.32683 0.09924 ## XSltg 0.57384 0.05415 10.598 < 2e-16 *** ## XSltg^2 0.30735 0.10591 2.902 0.00390 ** ## XSglu^2 0.08227 0.03332 2.469 0.01393 * ## XSage:sex 0.13101 0.03297 3.974 8.29e-05 *** ## XSbmi:map 0.08699 0.03373 2.579 0.01024 * ## XStc:ltg -0.45086 0.15781 -2.857 0.00448 ** ## XSldl:ltg 0.37997 0.12363 3.073 0.00225 ** ## XShdl:ltg 0.16663 0.06323 2.635 0.00871 ** ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 0.6752 on 429 degrees of freedom ## Multiple R-squared: 0.5565, Adjusted R-squared: 0.5431 ## F-statistic: 41.41 on 13 and 429 DF, p-value: < 2.2e-16

How would you interpret the *p*-values, standard errors, Cls?

A problem with backwards selection

Let \mathbf{y}_{π} be a permutation of \mathbf{y} , eg.

$$\mathbf{y} = (2.2, -1.2, 0.5, \dots, -0.7)$$

 $\mathbf{y}_{\pi} = (0.5, -0.7, 2.2, \dots, -1.2)$

Question: What is the relationship between \mathbf{y}_{π} and **X**?

Question: What would happen if we did backwards elimination on $y_{\pi} \sim X$?

A problem with backwards selection

Let \mathbf{y}_{π} be a permutation of \mathbf{y} , eg.

$$\mathbf{y} = (2.2, -1.2, 0.5, \dots, -0.7)$$

 $\mathbf{y}_{\pi} = (0.5, -0.7, 2.2, \dots, -1.2)$

Question: What is the relationship between \mathbf{y}_{π} and **X**?

Question: What would happen if we did backwards elimination on $\mathbf{y}_{\pi} \sim \mathbf{X}$?

 Consistent model selection

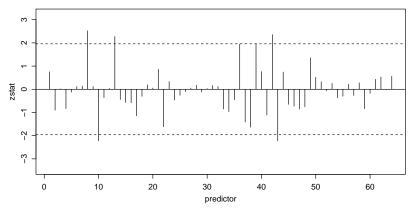
Backwards elimination on permuted data

```
yp<-sample(y)</pre>
XS<-X
### backwards elimination
ZSTATS<-NULL ; zmin<-0 ; zcut<-qnorm(.975)
while(zmin< zcut)</pre>
  fit<-lm(vp~ -1+XS)
  zscore<-summary(fit)$coef[,3]</pre>
  zmin<-min(abs(zscore))</pre>
  if(zmin<zcut)</pre>
    jmin<-which.min(abs(zscore))</pre>
    XS<-XS[,-jmin]
  zs<-rep(0,ncol(X))</pre>
  zs[ match(substr(names(zscore),3,9),colnames(X)) ] <-zscore</pre>
  ZSTATS<-rbind(ZSTATS.zs)
###
```

Consistent model selection

Backwards elimination

Initial z-scores:

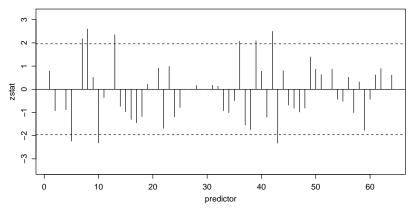


Test-based selection

Consistent model selection

Backwards elimination

After 10 iterations:

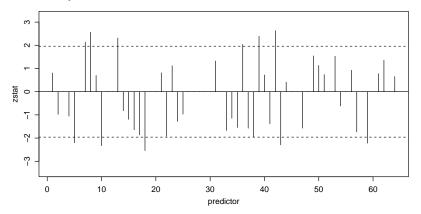


Test-based selection

Consistent model selection

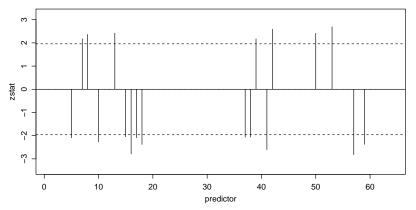
Backwards elimination

After twenty iterations:



Backwards elimination

Final solution:



Final solution

summary(fit)

##									
##	Call:								
##	## lm(formula = yp ~ -1 + XS)								
##									
##	Residuals:								
##	Min	1Q Me	edian 3	BQ Ma	ax				
##	-1.8058 -0	0.7964 -0	.1466 0.664	15 2.456	60				
##									
##	Coefficier	nts:							
##		Estimate	Std. Error	t value	Pr(> t)				
##	XStc	-0.28628	0.13675	-2.094	0.03690	*			
##	XShdl	0.43316	0.19864	2.181	0.02976	*			
##	XStch	0.53841	0.22773	2.364	0.01852	*			
##	XSglu	-0.12160	0.05366	-2.266	0.02395	*			
			0.05345						
			0.28590						
			0.14968						
			0.16769						
			0.10444						
			0.05857						
			0.21700						
			0.24448						
			0.12969						
			0.13029						
			0.31857						
			0.15371						
##	XSldl:ltg	-0.43629	0.15446	-2.825	0.00496	**			
##	XShdl:tch	-0.58784	0.24778	-2.372	0.01812	*			
	Signif. co	odes: 0	'***' 0.001	'**' 0.0	0.0 '*' 0.0	05 '.'	0.1	1.1	1
##									
44	Deniduel -	the second s	0.070	0 404	1 1				

Final solution

summary(fit)

##									
##	Call:								
##	## lm(formula = yp ~ -1 + XS)								
##									
##	Residuals:								
##	Min	1Q Me	edian 3	BQ Ma	ax				
##	-1.8058 -0	0.7964 -0	.1466 0.664	15 2.456	60				
##									
##	Coefficier	nts:							
##		Estimate	Std. Error	t value	Pr(> t)				
##	XStc	-0.28628	0.13675	-2.094	0.03690	*			
##	XShdl	0.43316	0.19864	2.181	0.02976	*			
##	XStch	0.53841	0.22773	2.364	0.01852	*			
##	XSglu	-0.12160	0.05366	-2.266	0.02395	*			
			0.05345						
			0.28590						
			0.14968						
			0.16769						
			0.10444						
			0.05857						
			0.21700						
			0.24448						
			0.12969						
			0.13029						
			0.31857						
			0.15371						
##	XSldl:ltg	-0.43629	0.15446	-2.825	0.00496	**			
##	XShdl:tch	-0.58784	0.24778	-2.372	0.01812	*			
	Signif. co	odes: 0	'***' 0.001	'**' 0.0	0.0 '*' 0.0	05 '.'	0.1	1.1	1
##									
44	Deniduel -	the second s	0.070	0 404	1 1				

Inconsistency of backwards elimination

Backwards elimination (and forwards selection) generally rely on a comparison of models based on a p-value.

 M_1 : y \sim x1 + x2 + x3 M_0 : y \sim x1 + x2

Variable x3 is eliminated if

- its *z*-score is < 1.96 in absolute value
- (more or less) equivalently, if the *p*-value from the LRT is > 0.05.

Inconsistency of backwards elimination

Backwards elimination (and forwards selection) generally rely on a comparison of models based on a p-value.

 $M_1: y \sim x1 + x2 + x3$ $M_0: y \sim x1 + x2$

Variable x3 is eliminated if

- its z-score is < 1.96 in absolute value
- (more or less) equivalently, if the *p*-value from the LRT is > 0.05.

Inconsistency of backwards elimination

Backwards elimination (and forwards selection) generally rely on a comparison of models based on a p-value.

 M_1 : y \sim x1 + x2 + x3 M_0 : y \sim x1 + x2

Variable x3 is eliminated if

- its *z*-score is < 1.96 in absolute value
- (more or less) equivalently, if the *p*-value from the LRT is > 0.05.

Inconsistency of backwards elimination

Now suppose M_0 is true. What is the probability of selecting M_1 ?

$$Pr(bsel(\mathbf{y}, \mathbf{X}) = M_1 | M_0) = Pr(reject \ M_0 | M_0)$$

= type | error rate
= $Pr(p - value > 0.05 | M_0) = 0.05$

This does not change as $m, n \rightarrow \infty$.

Inconsistency of backwards elimination

Now suppose M_0 is true. What is the probability of selecting M_1 ?

 $\begin{aligned} \mathsf{Pr}(\mathsf{bsel}(\mathbf{y}, \mathbf{X}) &= M_1 | M_0) &= \mathsf{Pr}(\mathsf{reject} \ M_0 | M_0) \\ &= \mathsf{type} \ \mathsf{l} \ \mathsf{error} \ \mathsf{rate} \\ &= \mathsf{Pr}(\rho - \mathsf{value} > 0.05 | M_0) = 0.05 \end{aligned}$

This does not change as $m, n \rightarrow \infty$.

Inconsistency of backwards elimination

Now suppose M_0 is true. What is the probability of selecting M_1 ?

 $\begin{aligned} \mathsf{Pr}(\mathsf{bsel}(\mathbf{y}, \mathbf{X}) &= M_1 | M_0) &= \mathsf{Pr}(\mathsf{reject} \ M_0 | M_0) \\ &= \mathsf{type} \ \mathsf{l} \ \mathsf{error} \ \mathsf{rate} \\ &= \mathsf{Pr}(\rho - \mathsf{value} > 0.05 | M_0) = 0.05 \end{aligned}$

This does not change as $m, n \rightarrow \infty$.

Inconsistency of backwards elimination

Now suppose M_0 is true. What is the probability of selecting M_1 ?

$$\begin{aligned} \mathsf{Pr}(\mathsf{bsel}(\mathbf{y}, \mathbf{X}) &= M_1 | M_0) &= \mathsf{Pr}(\mathsf{reject} \ M_0 | M_0) \\ &= \mathsf{type} \ \mathsf{I} \ \mathsf{error} \ \mathsf{rate} \\ &= \mathsf{Pr}(\rho - \mathsf{value} > 0.05 | M_0) = 0.05 \end{aligned}$$

This does not change as $m, n \rightarrow \infty$.

Inconsistency of backwards elimination

Now suppose M_0 is true. What is the probability of selecting M_1 ?

$$\begin{aligned} \mathsf{Pr}(\mathsf{bsel}(\mathbf{y}, \mathbf{X}) &= M_1 | M_0) &= \mathsf{Pr}(\mathsf{reject} \ M_0 | M_0) \\ &= \mathsf{type} \ \mathsf{I} \ \mathsf{error} \ \mathsf{rate} \\ &= \mathsf{Pr}(\rho - \mathsf{value} > 0.05 | M_0) = 0.05 \end{aligned}$$

This does not change as $m, n \rightarrow \infty$.

Inconsistency of backwards elimination

Now suppose M_0 is true. What is the probability of selecting M_1 ?

$$\begin{aligned} \mathsf{Pr}(\mathsf{bsel}(\mathbf{y}, \mathbf{X}) &= M_1 | M_0) &= \mathsf{Pr}(\mathsf{reject} \ M_0 | M_0) \\ &= \mathsf{type} \ \mathsf{I} \ \mathsf{error} \ \mathsf{rate} \\ &= \mathsf{Pr}(p - \mathsf{value} > 0.05 | M_0) = 0.05 \end{aligned}$$

This does not change as $m, n \rightarrow \infty$.

Inconsistency of backwards elimination

Now suppose M_0 is true. What is the probability of selecting M_1 ?

$$\begin{aligned} \mathsf{Pr}(\mathsf{bsel}(\mathbf{y}, \mathbf{X}) &= M_1 | M_0) &= \mathsf{Pr}(\mathsf{reject} \ M_0 | M_0) \\ &= \mathsf{type} \ \mathsf{I} \ \mathsf{error} \ \mathsf{rate} \\ &= \mathsf{Pr}(p - \mathsf{value} > 0.05 | M_0) = 0.05 \end{aligned}$$

This does not change as $m, n \to \infty$.

Inconsistency of backwards elimination

Now suppose M_0 is true. What is the probability of selecting M_1 ?

$$\begin{aligned} \mathsf{Pr}(\mathsf{bsel}(\mathbf{y}, \mathbf{X}) &= M_1 | M_0) &= \mathsf{Pr}(\mathsf{reject} \ M_0 | M_0) \\ &= \mathsf{type} \ \mathsf{I} \ \mathsf{error} \ \mathsf{rate} \\ &= \mathsf{Pr}(p - \mathsf{value} > 0.05 | M_0) = 0.05 \end{aligned}$$

This does not change as $m, n \to \infty$.

Inconsistency of backwards elimination

Now suppose M_0 is true. What is the probability of selecting M_1 ?

$$\begin{aligned} \mathsf{Pr}(\mathsf{bsel}(\mathbf{y}, \mathbf{X}) &= M_1 | M_0) &= \mathsf{Pr}(\mathsf{reject} \ M_0 | M_0) \\ &= \mathsf{type} \ \mathsf{I} \ \mathsf{error} \ \mathsf{rate} \\ &= \mathsf{Pr}(p - \mathsf{value} > 0.05 | M_0) = 0.05 \end{aligned}$$

This does not change as $m, n \to \infty$.

Consistent model selection

Problems with backwards elimination

There are other problems with backwards elimination (and forwards selection):

Problem 1: The method doesn't search over all possible models.

Problem 2: The resulting p-values and standard errors may be misleading.

Problem 3: The model selection procedure is not consistent

Problems 1-2 are issues for any model selection procedure.

Problems with backwards elimination

There are other problems with backwards elimination (and forwards selection):

Problem 1: The method doesn't search over all possible models.

Problem 2: The resulting *p*-values and standard errors may be misleadingProblem 3: The model selection procedure is *not consistent*

Problems 1-2 are issues for any model selection procedure.

Problems with backwards elimination

There are other problems with backwards elimination (and forwards selection):

Problem 1: The method doesn't search over all possible models.

Problem 2: The resulting *p*-values and standard errors may be misleading.

Problem 3: The model selection procedure is not consistent

Problems 1-2 are issues for any model selection procedure.

Problems with backwards elimination

There are other problems with backwards elimination (and forwards selection):

Problem 1: The method doesn't search over all possible models.

Problem 2: The resulting *p*-values and standard errors may be misleading.

Problem 3: The model selection procedure is not consistent

Problems 1-2 are issues for any model selection procedure.

Problems with backwards elimination

There are other problems with backwards elimination (and forwards selection):

Problem 1: The method doesn't search over all possible models.

Problem 2: The resulting *p*-values and standard errors may be misleading.

Problem 3: The model selection procedure is not consistent

Problems 1-2 are issues for any model selection procedure.

Problems with backwards elimination

There are other problems with backwards elimination (and forwards selection):

Problem 1: The method doesn't search over all possible models.

Problem 2: The resulting *p*-values and standard errors may be misleading.

Problem 3: The model selection procedure is not consistent

Problems 1-2 are issues for any model selection procedure.

Suppose only two models are under consideration, M_0 and M_1 .

Maximize the likelihoods under each model:

 $l_1 = \log p(\mathbf{y}|\hat{\theta}_1)$ $l_0 = \log p(\mathbf{y}|\hat{\theta}_0)$

If l_1 is much bigger than l_0 , then it makes sense to prefer M_1 to M_0 .

However, recall that if

- M_0 is nested in M_1 , or
- M_0 has many fewer parameters than M_1 ,

Suppose only two models are under consideration, M_0 and M_1 .

Maximize the likelihoods under each model:

$$\begin{split} l_1 &= \log p(\mathbf{y}|\hat{\theta}_1) \\ l_0 &= \log p(\mathbf{y}|\hat{\theta}_0) \end{split}$$

If l_1 is much bigger than l_0 , then it makes sense to prefer M_1 to M_0 .

However, recall that if

- M_0 is nested in M_1 , or
- *M*₀ has many fewer parameters than *M*₁,

Suppose only two models are under consideration, M_0 and M_1 .

Maximize the likelihoods under each model:

 $egin{aligned} & l_1 = \log p(\mathbf{y}|\hat{ heta}_1) \ & l_0 = \log p(\mathbf{y}|\hat{ heta}_0) \end{aligned}$

If I_1 is much bigger than I_0 , then it makes sense to prefer M_1 to M_0 . However, recall that if

- M_0 is nested in M_1 , or
- M_0 has many fewer parameters than M_1 ,

Suppose only two models are under consideration, M_0 and M_1 .

Maximize the likelihoods under each model:

 $egin{aligned} & l_1 = \log p(\mathbf{y}|\hat{ heta}_1) \ & l_0 = \log p(\mathbf{y}|\hat{ heta}_0) \end{aligned}$

If I_1 is much bigger than I_0 , then it makes sense to prefer M_1 to M_0 .

However, recall that if

- M_0 is nested in M_1 , or
- M_0 has many fewer parameters than M_1 ,

Suppose only two models are under consideration, M_0 and M_1 .

Maximize the likelihoods under each model:

 $egin{aligned} & l_1 = \log p(\mathbf{y}|\hat{ heta}_1) \ & l_0 = \log p(\mathbf{y}|\hat{ heta}_0) \end{aligned}$

If I_1 is much bigger than I_0 , then it makes sense to prefer M_1 to M_0 .

However, recall that if

- M₀ is nested in M₁, or
- M_0 has many fewer parameters than M_1 ,

Suppose only two models are under consideration, M_0 and M_1 .

Maximize the likelihoods under each model:

 $egin{aligned} & l_1 = \log p(\mathbf{y}|\hat{ heta}_1) \ & l_0 = \log p(\mathbf{y}|\hat{ heta}_0) \end{aligned}$

If I_1 is much bigger than I_0 , then it makes sense to prefer M_1 to M_0 . However, recall that if

- M_0 is nested in M_1 , or
- M_0 has many fewer parameters than M_1 ,

Idea: Prefer M_1 to M_0 if

- l_1 is bigger than l_0 by an amount that depends on p_0, p_1 .
- $l_1 l_0 > c_{p_0,p_1}$

This should remind you of the LRT, where we prefer M_1 to M_0 if

 $\lambda = 2 \times (l_1 - l_0) > q_{p_0, p_1},$

where q_{p_0,p_1} is a quantile of the appropriate null distribution.

Idea: Prefer M_1 to M_0 if

- l_1 is bigger than l_0 by an amount that depends on p_0, p_1 .
- $l_1 l_0 > c_{p_0, p_1}$

This should remind you of the LRT, where we prefer M_1 to M_0 if

 $\lambda = 2 \times (l_1 - l_0) > q_{p_0, p_1},$

where q_{p_0,p_1} is a quantile of the appropriate null distribution.

Idea: Prefer M_1 to M_0 if

- l_1 is bigger than l_0 by an amount that depends on p_0, p_1 .
- $l_1 l_0 > c_{p_0, p_1}$

This should remind you of the LRT, where we prefer M_1 to M_0 if

 $\lambda = 2 \times (l_1 - l_0) > q_{p_0, p_1},$

where q_{p_0,p_1} is a quantile of the appropriate null distribution.

Idea: Prefer M_1 to M_0 if

- l_1 is bigger than l_0 by an amount that depends on p_0, p_1 .
- $l_1 l_0 > c_{p_0,p_1}$

This should remind you of the LRT, where we prefer M_1 to M_0 if

$$\lambda = 2 \times (l_1 - l_0) > q_{\rho_0,\rho_1},$$

where q_{p_0,p_1} is a quantile of the appropriate null distribution.

Idea: Prefer M_1 to M_0 if

• I_1 is bigger than I_0 by an amount that depends on p_0, p_1 .

•
$$l_1 - l_0 > c_{p_0, p_1}$$

This should remind you of the LRT, where we prefer M_1 to M_0 if

$$\lambda = 2 \times (l_1 - l_0) > q_{\rho_0,\rho_1},$$

where q_{p_0,p_1} is a quantile of the appropriate null distribution.

LRT as a model selection procedure

LRT: Reject M_0 , favor M_1 if

$$\begin{split} \lambda &= 2 \times (l_1 - l_0) > \chi^2_{\rho_1 - \rho_0,.95} \\ &l_1 - l_0 > \frac{1}{2} \chi^2_{\rho_1 - \rho_0,.95} = c_{\rho_1,\rho_0} \end{split}$$

Problem: If M_0 is true, probability of selecting M_1 is \approx 0.05, regardless of m, n.

Model selection via hypotheses test is *not consistent*.

LRT as a model selection procedure

LRT: Reject M_0 , favor M_1 if

$$\begin{split} \lambda &= 2 \times (l_1 - l_0) > \chi^2_{p_1 - p_0,.95} \\ &l_1 - l_0 > \frac{1}{2} \chi^2_{p_1 - p_0,.95} = c_{p_1,p_0} \end{split}$$

Problem: If M_0 is true, probability of selecting M_1 is ≈ 0.05 , regardless of m, n.

Model selection via hypotheses test is not consistent.

Consider any procedure that prefers M_1 to M_0 if

 $I_1 - I_0 > c_{\rho_0,\rho_1},$

where c_{p_0,p_1} is constant in m, n.

Any such procedure corresponds to a LRT for some particular type I error rate, and hence will not be consistent.

Solution: Have the cutoff c depend on m, n - favor M_1 over M_0 if

 $l_1 - l_0 > c_{p_0, p_1, m, n}$

Consider any procedure that prefers M_1 to M_0 if

 $l_1 - l_0 > c_{\rho_0,\rho_1},$

where c_{p_0,p_1} is constant in m, n.

Any such procedure corresponds to a LRT for some particular type I error rate, and hence will not be consistent.

Solution: Have the cutoff c depend on m, n - favor M_1 over M_0 if

 $l_1 - l_0 > c_{p_0, p_1, m, n}$

Consider any procedure that prefers M_1 to M_0 if

$$I_1 - I_0 > c_{p_0,p_1},$$

where c_{p_0,p_1} is constant in m, n.

Any such procedure corresponds to a LRT for some particular type I error rate, and hence will not be consistent.

Solution: Have the cutoff c depend on m, n - favor M_1 over M_0 if

$$l_1 - l_0 > c_{p_0, p_1, m, n}$$

Question: How should *c* change with $N = m \times n$? Go up, or go down?

Answer:

- The inconsistency comes from rejecting M₀ too often.
- The threshold for favoring M_1 over M_0 should go up.
- We will still be able to select M_1 correctly if M_1 is true as N increases our ability to distinguish M_1 from M_0 increases as well.

Selection criteria: Favor M_1 over M_0 if

 $l_1 - l_0 > c_{p_0,p_1,m,n},$

Question: How should *c* change with $N = m \times n$? Go up, or go down?

Answer:

- The inconsistency comes from rejecting M_0 too often.
- The threshold for favoring M_1 over M_0 should go up.
- We will still be able to select M_1 correctly if M_1 is true as N increases our ability to distinguish M_1 from M_0 increases as well.

Selection criteria: Favor M_1 over M_0 if

 $l_1 - l_0 > c_{p_0,p_1,m,n},$

Question: How should *c* change with $N = m \times n$? Go up, or go down?

Answer:

- The inconsistency comes from rejecting M_0 too often.
- The threshold for favoring M_1 over M_0 should go up.
- We will still be able to select M_1 correctly if M_1 is true as N increases our ability to distinguish M_1 from M_0 increases as well.

Selection criteria: Favor M_1 over M_0 if

$$l_1 - l_0 > c_{p_0,p_1,m,n},$$

Question: How should *c* change with $N = m \times n$? Go up, or go down?

Answer:

- The inconsistency comes from rejecting M_0 too often.
- The threshold for favoring M_1 over M_0 should go up.
- We will still be able to select M_1 correctly if M_1 is true as N increases our ability to distinguish M_1 from M_0 increases as well.

Selection criteria: Favor M_1 over M_0 if

 $l_1 - l_0 > c_{p_0,p_1,m,n},$

Question: How should *c* change with $N = m \times n$? Go up, or go down?

Answer:

- The inconsistency comes from rejecting M_0 too often.
- The threshold for favoring M_1 over M_0 should go up.
- We will still be able to select M_1 correctly if M_1 is true as N increases our ability to distinguish M_1 from M_0 increases as well.

Selection criteria: Favor M_1 over M_0 if

 $l_1 - l_0 > c_{p_0,p_1,m,n},$

Question: How should *c* change with $N = m \times n$? Go up, or go down?

Answer:

- The inconsistency comes from rejecting M_0 too often.
- The threshold for favoring M_1 over M_0 should go up.
- We will still be able to select M_1 correctly if M_1 is true as N increases our ability to distinguish M_1 from M_0 increases as well.

Selection criteria: Favor M_1 over M_0 if

$$l_1 - l_0 > c_{p_0,p_1,m,n},$$

BIC - Bayes information criteria

$$b_0 = l_0 - \frac{1}{2}p_0 \log N$$

 $b_1 = l_1 - \frac{1}{2}p_1 \log N$

Model selection via BIC: Favor M_1 over M_0 if $b_1 > b_0$.

Exercise: Rewrite this procedure to have the form used previously.

$$b_1 > b_0 \Leftrightarrow l_1 - l_0 > \frac{1}{2} ((p_1 - p_0) \times \log N)$$

- is increasing in $p_1 p_0$,
- is increasing in $N = m \times n$.

BIC - Bayes information criteria

$$b_0 = l_0 - \frac{1}{2}p_0 \log N$$

 $b_1 = l_1 - \frac{1}{2}p_1 \log N$

Model selection via BIC: Favor M_1 over M_0 if $b_1 > b_0$.

Exercise: Rewrite this procedure to have the form used previously.

$$b_1 > b_0 \Leftrightarrow l_1 - l_0 > \frac{1}{2} ((p_1 - p_0) \times \log N)$$

- is increasing in $p_1 p_0$,
- is increasing in $N = m \times n$.

BIC - Bayes information criteria

$$b_0 = l_0 - \frac{1}{2}p_0 \log N$$

 $b_1 = l_1 - \frac{1}{2}p_1 \log N$

Model selection via BIC: Favor M_1 over M_0 if $b_1 > b_0$.

Exercise: Rewrite this procedure to have the form used previously.

$$b_1 > b_0 \Leftrightarrow l_1 - l_0 > \frac{1}{2} ((p_1 - p_0) \times \log N)$$

- is increasing in $p_1 p_0$,
- is increasing in $N = m \times n$.

BIC - Bayes information criteria

$$b_0 = l_0 - \frac{1}{2}p_0 \log N$$

 $b_1 = l_1 - \frac{1}{2}p_1 \log N$

Model selection via BIC: Favor M_1 over M_0 if $b_1 > b_0$.

Exercise: Rewrite this procedure to have the form used previously.

$$b_1 > b_0 \Leftrightarrow l_1 - l_0 > \frac{1}{2} ((p_1 - p_0) \times \log N)$$

- is increasing in $p_1 p_0$,
- is increasing in $N = m \times n$.

BIC - Bayes information criteria

$$b_0 = l_0 - \frac{1}{2}p_0 \log N$$

 $b_1 = l_1 - \frac{1}{2}p_1 \log N$

Model selection via BIC: Favor M_1 over M_0 if $b_1 > b_0$.

Exercise: Rewrite this procedure to have the form used previously.

$$b_1 > b_0 \Leftrightarrow l_1 - l_0 > \frac{1}{2} ((p_1 - p_0) \times \log N)$$

- is increasing in $p_1 p_0$,
- is increasing in $N = m \times n$.

The model selection problem 000

Test-based selection

Consistent model selection

BIC - standard form

$$BIC_0 = -2 \times I_0 + p_0 \log N$$
$$BIC_1 = -2 \times I_1 + p_1 \log N$$

Model selection via BIC: Favor M_1 over M_0 if $BIC_1 < BIC_0$.

This is the same as favoring M_1 over M_0 if $b_1 < b_0$:

$$BIC_0 = -2 \times b_0$$
$$BIC_1 = -2 \times b_1$$

The model selection problem 000

Test-based selection

Consistent model selection

BIC - standard form

$$BIC_0 = -2 \times I_0 + p_0 \log N$$
$$BIC_1 = -2 \times I_1 + p_1 \log N$$

Model selection via BIC: Favor M_1 over M_0 if $BIC_1 < BIC_0$.

This is the same as favoring M_1 over M_0 if $b_1 < b_0$:

$$BIC_0 = -2 \times b_0$$
$$BIC_1 = -2 \times b_1$$

The model selection problem 000

Test-based selection

Consistent model selection

BIC - standard form

$$BIC_0 = -2 \times l_0 + p_0 \log N$$
$$BIC_1 = -2 \times l_1 + p_1 \log N$$

Model selection via BIC: Favor M_1 over M_0 if $BIC_1 < BIC_0$.

This is the same as favoring M_1 over M_0 if $b_1 < b_0$:

$$BIC_0 = -2 \times b_0$$
$$BIC_1 = -2 \times b_1$$

Do we trust BIC?

$$y_{i,j} = \beta_1 + \beta_2 x_{i,j} + a_{1,j} + \epsilon_{i,j}$$
$$a_{1,1}, \dots, a_{1,m} \sim \text{ i.i.d. } N(0, \tau^2)$$

Consider selecting from among the following four models:

 $M_{00}: \ \beta_2 = 0, \ \tau^2 = 0$ $M_{10}: \ \beta_2 \neq 0, \ \tau^2 = 0$ $M_{01}: \ \beta_2 = 0, \ \tau^2 \neq 0$ $M_{11}: \ \beta_2 \neq 0, \ \tau^2 \neq 0$

Question: What are the number of parameters in each model?

 $M_{11} \ p = 4$ $M_{01} \ p = 3$ $M_{10} \ p = 3$ $M_{00} \ p = 2$

Do we trust BIC?

$$y_{i,j} = \beta_1 + \beta_2 x_{i,j} + a_{1,j} + \epsilon_{i,j}$$
$$a_{1,1}, \dots, a_{1,m} \sim \text{ i.i.d. } N(0, \tau^2)$$

Consider selecting from among the following four models:

 $M_{00}: \ \beta_2 = 0, \ \tau^2 = 0$ $M_{10}: \ \beta_2 \neq 0, \ \tau^2 = 0$ $M_{01}: \ \beta_2 = 0, \ \tau^2 \neq 0$ $M_{11}: \ \beta_2 \neq 0, \ \tau^2 \neq 0$

Question: What are the number of parameters in each model?

 $M_{11} \ p = 4$ $M_{01} \ p = 3$ $M_{10} \ p = 3$ $M_{00} \ p = 2$

Do we trust BIC?

$$y_{i,j} = \beta_1 + \beta_2 x_{i,j} + a_{1,j} + \epsilon_{i,j}$$
$$a_{1,1}, \dots, a_{1,m} \sim \text{ i.i.d. } N(0, \tau^2)$$

Consider selecting from among the following four models:

 $M_{00}: \ \beta_2 = 0, \ \tau^2 = 0$ $M_{10}: \ \beta_2 \neq 0, \ \tau^2 = 0$ $M_{01}: \ \beta_2 = 0, \ \tau^2 \neq 0$ $M_{11}: \ \beta_2 \neq 0, \ \tau^2 \neq 0$

Question: What are the number of parameters in each model?

 $M_{11} \ p = 4$ $M_{01} \ p = 3$ $M_{10} \ p = 3$ $M_{00} \ p = 2$

Do we trust BIC?

$$y_{i,j} = \beta_1 + \beta_2 x_{i,j} + a_{1,j} + \epsilon_{i,j}$$
$$a_{1,1}, \dots, a_{1,m} \sim \text{ i.i.d. } N(0, \tau^2)$$

Consider selecting from among the following four models:

 $M_{00}: \beta_{2} = 0, \tau^{2} = 0$ $M_{10}: \beta_{2} \neq 0, \tau^{2} = 0$ $M_{01}: \beta_{2} = 0, \tau^{2} \neq 0$ $M_{11}: \beta_{2} \neq 0, \tau^{2} \neq 0$ Question: What are the num $M_{11} \ p = 4$ $M_{01} \ p = 3$

- $M_{10} \, p = 3$
- $M_{00} p = 2$

Do we trust BIC?

$$y_{i,j} = \beta_1 + \beta_2 x_{i,j} + a_{1,j} + \epsilon_{i,j}$$
$$a_{1,1}, \dots, a_{1,m} \sim \text{ i.i.d. } N(0, \tau^2)$$

Consider selecting from among the following four models:

 $M_{00}: \ \beta_2 = 0, \ \tau^2 = 0$ $M_{10}: \ \beta_2 \neq 0, \ \tau^2 = 0$ $M_{01}: \ \beta_2 = 0, \ \tau^2 \neq 0$ $M_{11}: \ \beta_2 \neq 0, \ \tau^2 \neq 0$

Question: What are the number of parameters in each model?

 $M_{11} \ p = 4$ $M_{01} \ p = 3$ $M_{10} \ p = 3$ $M_{02} \ p = 2$

Do we trust BIC?

$$y_{i,j} = \beta_1 + \beta_2 x_{i,j} + a_{1,j} + \epsilon_{i,j}$$
$$a_{1,1}, \dots, a_{1,m} \sim \text{ i.i.d. } N(0, \tau^2)$$

Consider selecting from among the following four models:

 $M_{00}: \ \beta_2 = 0, \ \tau^2 = 0$ $M_{10}: \ \beta_2 \neq 0, \ \tau^2 = 0$ $M_{01}: \ \beta_2 = 0, \ \tau^2 \neq 0$ $M_{11}: \ \beta_2 \neq 0, \ \tau^2 \neq 0$

Question: What are the number of parameters in each model?

 $M_{11} \ p = 4$ $M_{01} \ p = 3$ $M_{10} \ p = 3$ $M_{00} \ p = 2$

Do we trust BIC?

$$y_{i,j} = \beta_1 + \beta_2 x_{i,j} + a_{1,j} + \epsilon_{i,j}$$
$$a_{1,1}, \dots, a_{1,m} \sim \text{ i.i.d. } N(0, \tau^2)$$

Consider selecting from among the following four models:

 $M_{00}: \ \beta_2 = 0, \ \tau^2 = 0$ $M_{10}: \ \beta_2 \neq 0, \ \tau^2 = 0$ $M_{01}: \ \beta_2 = 0, \ \tau^2 \neq 0$ $M_{11}: \ \beta_2 \neq 0, \ \tau^2 \neq 0$

Question: What are the number of parameters in each model?

 $M_{11} \ p = 4$ $M_{01} \ p = 3$ $M_{10} \ p = 3$ $M_{00} \ p = 2$

Do we trust BIC?

$$y_{i,j} = \beta_1 + \beta_2 x_{i,j} + a_{1,j} + \epsilon_{i,j}$$
$$a_{1,1}, \dots, a_{1,m} \sim \text{ i.i.d. } N(0, \tau^2)$$

Consider selecting from among the following four models:

 $M_{00}: \ \beta_2 = 0, \ \tau^2 = 0$ $M_{10}: \ \beta_2 \neq 0, \ \tau^2 = 0$ $M_{01}: \ \beta_2 = 0, \ \tau^2 \neq 0$ $M_{11}: \ \beta_2 \neq 0, \ \tau^2 \neq 0$

Question: What are the number of parameters in each model?

 $M_{11} \ p = 4$ $M_{01} \ p = 3$ $M_{10} \ p = 3$ $M_{00} \ p = 2$

Do we trust BIC?

$$y_{i,j} = \beta_1 + \beta_2 x_{i,j} + a_{1,j} + \epsilon_{i,j}$$
$$a_{1,1}, \dots, a_{1,m} \sim \text{ i.i.d. } N(0, \tau^2)$$

Consider selecting from among the following four models:

 $M_{00}: \ \beta_2 = 0, \ \tau^2 = 0$ $M_{10}: \ \beta_2 \neq 0, \ \tau^2 = 0$ $M_{01}: \ \beta_2 = 0, \ \tau^2 \neq 0$ $M_{11}: \ \beta_2 \neq 0, \ \tau^2 \neq 0$

Question: What are the number of parameters in each model?

 $M_{11} \ p = 4$ $M_{01} \ p = 3$ $M_{10} \ p = 3$ $M_{00} \ p = 2$

Do we trust BIC?

$$y_{i,j} = \beta_1 + \beta_2 x_{i,j} + a_{1,j} + \epsilon_{i,j}$$
$$a_{1,1}, \dots, a_{1,m} \sim \text{ i.i.d. } N(0, \tau^2)$$

Consider selecting from among the following four models:

 $M_{00}: \ \beta_2 = 0, \ \tau^2 = 0$ $M_{10}: \ \beta_2 \neq 0, \ \tau^2 = 0$ $M_{01}: \ \beta_2 = 0, \ \tau^2 \neq 0$ $M_{11}: \ \beta_2 \neq 0, \ \tau^2 \neq 0$

Question: What are the number of parameters in each model?

 $M_{11} \ p = 4$ $M_{01} \ p = 3$ $M_{10} \ p = 3$ $M_{00} \ p = 2$

Do we trust BIC?

$$y_{i,j} = \beta_1 + \beta_2 x_{i,j} + a_{1,j} + \epsilon_{i,j}$$
$$a_{1,1}, \dots, a_{1,m} \sim \text{ i.i.d. } N(0, \tau^2)$$

Consider selecting from among the following four models:

 $M_{00}: \ \beta_2 = 0, \ \tau^2 = 0$ $M_{10}: \ \beta_2 \neq 0, \ \tau^2 = 0$ $M_{01}: \ \beta_2 = 0, \ \tau^2 \neq 0$ $M_{11}: \ \beta_2 \neq 0, \ \tau^2 \neq 0$

Question: What are the number of parameters in each model?

 $M_{11} \ p = 4$ $M_{01} \ p = 3$ $M_{10} \ p = 3$ $M_{00} \ p = 2$

Do we trust BIC?

$$y_{i,j} = \beta_1 + \beta_2 x_{i,j} + a_{1,j} + \epsilon_{i,j}$$
$$a_{1,1}, \dots, a_{1,m} \sim \text{ i.i.d. } N(0, \tau^2)$$

Consider selecting from among the following four models:

 $M_{00}: \ \beta_2 = 0, \ \tau^2 = 0$ $M_{10}: \ \beta_2 \neq 0, \ \tau^2 = 0$ $M_{01}: \ \beta_2 = 0, \ \tau^2 \neq 0$ $M_{11}: \ \beta_2 \neq 0, \ \tau^2 \neq 0$

Question: What are the number of parameters in each model?

 $M_{11} \ p = 4$ $M_{01} \ p = 3$ $M_{10} \ p = 3$ $M_{00} \ p = 2$

Do we trust BIC?

$$y_{i,j} = \beta_1 + \beta_2 x_{i,j} + a_{1,j} + \epsilon_{i,j}$$
$$a_{1,1}, \dots, a_{1,m} \sim \text{ i.i.d. } N(0, \tau^2)$$

Consider selecting from among the following four models:

 $M_{00}: \ \beta_2 = 0, \ \tau^2 = 0$ $M_{10}: \ \beta_2 \neq 0, \ \tau^2 = 0$ $M_{01}: \ \beta_2 = 0, \ \tau^2 \neq 0$ $M_{11}: \ \beta_2 \neq 0, \ \tau^2 \neq 0$

Question: What are the number of parameters in each model?

 $M_{11} \ p = 4$ $M_{01} \ p = 3$ $M_{10} \ p = 3$ $M_{00} \ p = 2$

Do we trust BIC?

$$y_{i,j} = \beta_1 + \beta_2 x_{i,j} + a_{1,j} + \epsilon_{i,j}$$
$$a_{1,1}, \dots, a_{1,m} \sim \text{ i.i.d. } N(0, \tau^2)$$

Consider selecting from among the following four models:

 $M_{00}: \ \beta_2 = 0, \ \tau^2 = 0$ $M_{10}: \ \beta_2 \neq 0, \ \tau^2 = 0$ $M_{01}: \ \beta_2 = 0, \ \tau^2 \neq 0$ $M_{11}: \ \beta_2 \neq 0, \ \tau^2 \neq 0$

Question: What are the number of parameters in each model?

 $M_{11} \ p = 4$ $M_{01} \ p = 3$ $M_{10} \ p = 3$ $M_{00} \ p = 2$

Do we trust BIC?

$$y_{i,j} = \beta_1 + \beta_2 x_{i,j} + a_{1,j} + \epsilon_{i,j}$$
$$a_{1,1}, \dots, a_{1,m} \sim \text{ i.i.d. } N(0, \tau^2)$$

Consider selecting from among the following four models:

 $M_{00}: \ \beta_2 = 0, \ \tau^2 = 0$ $M_{10}: \ \beta_2 \neq 0, \ \tau^2 = 0$ $M_{01}: \ \beta_2 = 0, \ \tau^2 \neq 0$ $M_{11}: \ \beta_2 \neq 0, \ \tau^2 \neq 0$

Question: What are the number of parameters in each model?

 $M_{11} \ p = 4$ $M_{01} \ p = 3$ $M_{10} \ p = 3$ $M_{00} \ p = 2$

The model selection problem 000

Consistent model selection

Simulation study

```
m<-50 ; n<-5 ; g<-rep(1:m.times=rep(n.m))</pre>
BTC. RES<-NULL
for(t2 in c(0,1)){
for(beta2 in c(0,1)) {
  BIC.SIM<-NULL
  for(s in 1:100)
    b<-rnorm(m,0,sqrt(t2) )</pre>
    x<-rnorm(m*n)</pre>
    v < -1 + beta 2 * x + b[g] + rnorm(m*n)
    fit.00<-lm(v~1)
    fit.01<-lm(v~x)
    fit.10<-lmer(y \sim 1 + (1|g), REML=FALSE )
    fit.11<-lmer(y ~ x + (1|g), REML=FALSE )</pre>
    BIC.SIM<-rbind(BIC.SIM,c(BIC(fit.00),BIC(fit.01),BIC(fit.10),BIC(fit.11)))
  BIC.RES<-rbind(BIC.RES,(table( c(1:4,apply(BIC.SIM,1,which.min)) ) -1))</pre>
}}
```

The model selection problem 000

Simulation study

Consistent model selection

BIC	BIC.RES												
##		1	2	3	4								
##	[1,]	99	0	1	0								
##	[2,]	0	100	0	0								
##	[3,]	0	0	100	0								
##	[4,]	0	0	0	100								

A harder simulation study

```
m<-10 ; n<-5 ; g<-rep(1:m,times=rep(n,m))</pre>
```

```
BIC.RES<-NULL
```

```
for(t2 in c(0,.5)){
for(beta2 in c(0,.5)) {
  BIC.SIM<-NULL
 for(s in 1:100)
    b<-rnorm(m,0,sqrt(t2) )</pre>
    x<-rnorm(m*n)</pre>
    v < -1 + beta 2 * x + b[g] + rnorm(m*n)
    fit.00<-lm(v~1)
    fit.01<-lm(v~x)
    fit.10<-lmer(y \sim 1 + (1|g), REML=FALSE )
    fit.11<-lmer(y ~ x + (1|g), REML=FALSE )</pre>
    BIC.SIM<-rbind(BIC.SIM,c(BIC(fit.00),BIC(fit.01),BIC(fit.10),BIC(fit.11)))
  BIC.RES<-rbind(BIC.RES,(table( c(1:4,apply(BIC.SIM,1,which.min)) ) -1))</pre>
}}
```

The model selection problem 000

Simulation study

Consistent model selection

BIC	C.RES				
##		1	2	3	4
##	[1,]	92	7	1	0
##	[2,]	6	93	0	1
##	[3,]	30	1	66	3
##	[4,]	5	28	5	62

The model selection problem 000

Consistent model selection

Model selection for NELS data

```
fit.full<-lmer( mscore ~
    as.factor(flp) + as.factor(urbanicity) + public +
    ses + ses:public + (ses|school) , data=nels,REML=FALSE)</pre>
```

```
summary(fit.full)$coef
```

##	Estimate	Std. Error	t value
## (Intercept)	53.72704978	0.4672579	114.98371763
<pre>## as.factor(flp)2</pre>	-1.73548708	0.4026467	-4.31019849
<pre>## as.factor(flp)3</pre>	-4.45001943	0.4379125	-10.16189084
<pre>## as.factor(urbanicity)suburban</pre>	-0.02067462	0.3833574	-0.05393039
<pre>## as.factor(urbanicity)urban</pre>	-0.94654261	0.4193025	-2.25742178
## public	-0.84372430	0.4425283	-1.90659944
## ses	3.41745532	0.2586162	13.21438763
## public:ses	0.90865289	0.2946272	3.08407716

Model selection for NELS data

BIC(fit.full)

[1] 92472.76

```
fit.r1<-lmer( mscore ~
    as.factor(lp) + as.factor(urbanicity) + public +
    ses + (ses|school) , data=nels,REML=FALSE)</pre>
```

BIC(fit.r1)

[1] 92472.71

```
fit.r2<-lmer( mscore ~
    as.factor(flp) + as.factor(urbanicity) +
    ses + (ses|school) , data=nels,REML=FALSE)
BIC(fit.r2)
## [1] 92464.98</pre>
```

Model selection for NELS data

```
BIC(fit.full)
```

[1] 92472.76

```
fit.r1<-lmer( mscore ~
    as.factor(flp) + as.factor(urbanicity) + public +
    ses + (ses|school) , data=nels,REML=FALSE)
BIC(fit.r1)</pre>
```

[1] 92472.71

```
fit.r2<-lmer( mscore ~
    as.factor(flp) + as.factor(urbanicity) +
    ses + (ses|school) , data=nels,REML=FALSE)
BIC(fit.r2)
## [1] 92464.98</pre>
```

Model selection for NELS data

```
BIC(fit.full)
```

[1] 92472.76

```
fit.r1<-lmer( mscore ~
    as.factor(flp) + as.factor(urbanicity) + public +
    ses + (ses|school) , data=nels,REML=FALSE)
BIC(fit.r1)
## [1] 92472.71</pre>
```

```
fit.r2<-lmer( mscore ~
    as.factor(flp) + as.factor(urbanicity) +
    ses + (ses|school) , data=nels,REML=FALSE)
BIC(fit.r2)
## [1] 92464.98</pre>
```

The model selection problem 000

Test-based selection 000000000000000000000

Futher reductions

Consistent model selection

 $\texttt{fit.r3} \texttt{-lmer}(\texttt{mscore}^{\texttt{-}} \texttt{ as.factor}(\texttt{flp}) \texttt{ + ses + (ses|school) , data=nels,} \texttt{REML=FALSE})$

BIC(fit.r3)

[1] 92454.31

The model selection problem 000

Consistent model selection

Futher reductions

fit.r4a<-lm(mscore ~ as.factor(flp) + ses , data=nels)
BIC(fit.r4a)</pre>

[1] 93151.9

fit.r4b<-lmer(mscore ~ ses + (ses|school) , data=nels,REML=FALSE)
BIC(fit.r4b)</pre>

[1] 92597.89

fit.r4c<-lmer(mscore ~ (ses|school) , data=nels,REML=FALSE)
BIC(fit.r4c)</pre>

[1] 93267.56

Futher reductions

fit.r4a<-lm(mscore ~ as.factor(flp) + ses , data=nels)
BIC(fit.r4a)</pre>

[1] 93151.9

fit.r4b<-lmer(mscore ~ ses + (ses|school) , data=nels,REML=FALSE)
BIC(fit.r4b)</pre>

[1] 92597.89

fit.r4c<-lmer(mscore ~ (ses|school) , data=nels,REML=FALSE) BIC(fit.r4c)

[1] 93267.56

Futher reductions

```
fit.r4a<-lm( mscore ~ as.factor(flp) + ses , data=nels) BIC(fit.r4a)
```

[1] 93151.9

```
fit.r4b<-lmer( mscore ~ ses + (ses|school) , data=nels,REML=FALSE)
BIC(fit.r4b)</pre>
```

[1] 92597.89

```
fit.r4c<-lmer( mscore ~ (ses|school) , data=nels,REML=FALSE)
BIC(fit.r4c)
## [1] 93267.56</pre>
```

Suppose there are only two models M_0 and M_1 .

In a Bayesian analysis, one would be able to compute

$$\Pr(M_1|\mathbf{y}) = \frac{\Pr(M_1)\rho(\mathbf{y}|M_1)}{\Pr(M_1)\rho(\mathbf{y}|M_1) + \Pr(M_0)\rho(\mathbf{y}|M_0)}$$

Alternatively, the odds that M_1 is true are

$$\frac{\Pr(M_1|\mathbf{y}, \mathbf{X})}{\Pr(M_0|\mathbf{y}, \mathbf{X})} = \frac{\Pr(M_1)}{\Pr(M_0)} \times \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)}$$

$$\frac{\Pr(M_1|\mathbf{y}, \mathbf{X})}{\Pr(M_0|\mathbf{y}, \mathbf{X})} = \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)}$$

Suppose there are only two models M_0 and M_1 .

In a Bayesian analysis, one would be able to compute

$$\Pr(M_1|\mathbf{y}) = \frac{\Pr(M_1)\rho(\mathbf{y}|M_1)}{\Pr(M_1)\rho(\mathbf{y}|M_1) + \Pr(M_0)\rho(\mathbf{y}|M_0)}$$

Alternatively, the odds that M_1 is true are

$$\frac{\Pr(M_1|\mathbf{y}, \mathbf{X})}{\Pr(M_0|\mathbf{y}, \mathbf{X})} = \frac{\Pr(M_1)}{\Pr(M_0)} \times \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)}$$

$$\frac{\Pr(M_1|\mathbf{y}, \mathbf{X})}{\Pr(M_0|\mathbf{y}, \mathbf{X})} = \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)}$$

Suppose there are only two models M_0 and M_1 .

In a Bayesian analysis, one would be able to compute

$$\Pr(M_1|\mathbf{y}) = \frac{\Pr(M_1)\rho(\mathbf{y}|M_1)}{\Pr(M_1)\rho(\mathbf{y}|M_1) + \Pr(M_0)\rho(\mathbf{y}|M_0)}$$

Alternatively, the odds that M_1 is true are

$$\frac{\Pr(M_1|\mathbf{y}, \mathbf{X})}{\Pr(M_0|\mathbf{y}, \mathbf{X})} = \frac{\Pr(M_1)}{\Pr(M_0)} \times \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)}$$

$$\frac{\Pr(M_1|\mathbf{y}, \mathbf{X})}{\Pr(M_0|\mathbf{y}, \mathbf{X})} = \frac{\rho(\mathbf{y}|M_1)}{\rho(\mathbf{y}|M_0)}$$

Suppose there are only two models M_0 and M_1 .

In a Bayesian analysis, one would be able to compute

$$\Pr(M_1|\mathbf{y}) = \frac{\Pr(M_1)\rho(\mathbf{y}|M_1)}{\Pr(M_1)\rho(\mathbf{y}|M_1) + \Pr(M_0)\rho(\mathbf{y}|M_0)}$$

Alternatively, the odds that M_1 is true are

$$\frac{\Pr(M_1|\mathbf{y}, \mathbf{X})}{\Pr(M_0|\mathbf{y}, \mathbf{X})} = \frac{\Pr(M_1)}{\Pr(M_0)} \times \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)}$$

If $Pr(M_1) = Pr(M_0)$, then

 $\frac{\Pr(M_1|\mathbf{y}, \mathbf{X})}{\Pr(M_0|\mathbf{y}, \mathbf{X})} = \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)}$

Suppose there are only two models M_0 and M_1 .

In a Bayesian analysis, one would be able to compute

$$\Pr(M_1|\mathbf{y}) = \frac{\Pr(M_1)\rho(\mathbf{y}|M_1)}{\Pr(M_1)\rho(\mathbf{y}|M_1) + \Pr(M_0)\rho(\mathbf{y}|M_0)}$$

Alternatively, the odds that M_1 is true are

$$\frac{\Pr(M_1|\mathbf{y},\mathbf{X})}{\Pr(M_0|\mathbf{y},\mathbf{X})} = \frac{\Pr(M_1)}{\Pr(M_0)} \times \frac{\rho(\mathbf{y}|M_1)}{\rho(\mathbf{y}|M_0)}$$

$$\frac{\Pr(M_1|\mathbf{y}, \mathbf{X})}{\Pr(M_0|\mathbf{y}, \mathbf{X})} = \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)}$$

We would select
$$M_1$$
 if $\frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} > 1$, or equivalently

$$\log \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} = \log p(\mathbf{y}|M_1) > p(\mathbf{y}|M_0)$$

It can be shown that in many cases for large N,

$$\log p(\mathbf{y}|M_1) \approx \log p(\mathbf{y}|\hat{\theta}_1) - \frac{1}{2}p_1 \log N$$
$$\log p(\mathbf{y}|M_0) \approx \log p(\mathbf{y}|\hat{\theta}_0) - \frac{1}{2}p_0 \log N$$

$$\log p(\mathbf{y}|\hat{\theta}_{1}) - \frac{1}{2}p_{1} \log N > \log p(\mathbf{y}|\hat{\theta}_{0}) - \frac{1}{2}p_{0} \log N$$
$$- 2\log p(\mathbf{y}|\hat{\theta}_{1}) + p_{1} \log N < -2\log p(\mathbf{y}|\hat{\theta}_{0}) + p_{0} \log N$$
$$BIC(M_{1}) < BIC(M_{0})$$

We would select
$$M_1$$
 if $\frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} > 1$, or equivalently

$$\log \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} = \log p(\mathbf{y}|M_1) > p(\mathbf{y}|M_0).$$

It can be shown that in many cases for large N,

$$\log p(\mathbf{y}|M_1) \approx \log p(\mathbf{y}|\hat{\theta}_1) - \frac{1}{2}p_1 \log N$$
$$\log p(\mathbf{y}|M_0) \approx \log p(\mathbf{y}|\hat{\theta}_0) - \frac{1}{2}p_0 \log N$$

$$\log p(\mathbf{y}|\hat{\theta}_1) - \frac{1}{2}p_1 \log N > \log p(\mathbf{y}|\hat{\theta}_0) - \frac{1}{2}p_0 \log N$$
$$- 2\log p(\mathbf{y}|\hat{\theta}_1) + p_1 \log N < -2\log p(\mathbf{y}|\hat{\theta}_0) + p_0 \log N$$
$$BIC(M_1) < BIC(M_0)$$

We would select
$$M_1$$
 if $\frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} > 1$, or equivalently
 $\log \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} = \log p(\mathbf{y}|M_1) > p(\mathbf{y}|M_0).$

It can be shown that in many cases for large N,

$$\log p(\mathbf{y}|M_1) \approx \log p(\mathbf{y}|\hat{\theta}_1) - \frac{1}{2}p_1 \log N$$
$$\log p(\mathbf{y}|M_0) \approx \log p(\mathbf{y}|\hat{\theta}_0) - \frac{1}{2}p_0 \log N$$

$$\log p(\mathbf{y}|\hat{\theta}_{1}) - \frac{1}{2}p_{1} \log N > \log p(\mathbf{y}|\hat{\theta}_{0}) - \frac{1}{2}p_{0} \log N$$
$$- 2 \log p(\mathbf{y}|\hat{\theta}_{1}) + p_{1} \log N < -2 \log p(\mathbf{y}|\hat{\theta}_{0}) + p_{0} \log N$$
$$BIC(M_{1}) < BIC(M_{0})$$

We would select
$$M_1$$
 if $\frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} > 1$, or equivalently
 $\log \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} = \log p(\mathbf{y}|M_1) > p(\mathbf{y}|M_0).$

It can be shown that in many cases for large N,

$$\log p(\mathbf{y}|M_1) \approx \log p(\mathbf{y}|\hat{\theta}_1) - \frac{1}{2}p_1 \log N$$
$$\log p(\mathbf{y}|M_0) \approx \log p(\mathbf{y}|\hat{\theta}_0) - \frac{1}{2}p_0 \log N$$

$$\log p(\mathbf{y}|\hat{\theta}_1) - \frac{1}{2}p_1 \log N > \log p(\mathbf{y}|\hat{\theta}_0) - \frac{1}{2}p_0 \log N$$
$$- 2\log p(\mathbf{y}|\hat{\theta}_1) + p_1 \log N < -2\log p(\mathbf{y}|\hat{\theta}_0) + p_0 \log N$$
$$BIC(M_1) < BIC(M_0)$$

We would select
$$M_1$$
 if $\frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} > 1$, or equivalently
 $\log \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} = \log p(\mathbf{y}|M_1) > p(\mathbf{y}|M_0).$

It can be shown that in many cases for large N,

$$\log p(\mathbf{y}|M_1) \approx \log p(\mathbf{y}|\hat{\theta}_1) - \frac{1}{2}p_1 \log N$$
$$\log p(\mathbf{y}|M_0) \approx \log p(\mathbf{y}|\hat{\theta}_0) - \frac{1}{2}p_0 \log N$$

$$\log p(\mathbf{y}|\hat{\theta}_1) - \frac{1}{2}p_1 \log N > \log p(\mathbf{y}|\hat{\theta}_0) - \frac{1}{2}p_0 \log N$$
$$- 2\log p(\mathbf{y}|\hat{\theta}_1) + p_1 \log N < -2\log p(\mathbf{y}|\hat{\theta}_0) + p_0 \log N$$
$$BIC(M_1) < BIC(M_0)$$

We would select
$$M_1$$
 if $\frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} > 1$, or equivalently
 $\log \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} = \log p(\mathbf{y}|M_1) > p(\mathbf{y}|M_0).$

It can be shown that in many cases for large N,

$$\log p(\mathbf{y}|M_1) \approx \log p(\mathbf{y}|\hat{\theta}_1) - \frac{1}{2}p_1 \log N$$
$$\log p(\mathbf{y}|M_0) \approx \log p(\mathbf{y}|\hat{\theta}_0) - \frac{1}{2}p_0 \log N$$

$$\log p(\mathbf{y}|\hat{\theta}_1) - \frac{1}{2}p_1 \log N > \log p(\mathbf{y}|\hat{\theta}_0) - \frac{1}{2}p_0 \log N$$
$$- 2\log p(\mathbf{y}|\hat{\theta}_1) + p_1 \log N < -2\log p(\mathbf{y}|\hat{\theta}_0) + p_0 \log N$$
$$BIC(M_1) < BIC(M_0)$$

We would select
$$M_1$$
 if $\frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} > 1$, or equivalently
 $\log \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} = \log p(\mathbf{y}|M_1) > p(\mathbf{y}|M_0).$

It can be shown that in many cases for large N,

$$\log p(\mathbf{y}|M_1) \approx \log p(\mathbf{y}|\hat{\theta}_1) - \frac{1}{2}p_1 \log N$$
$$\log p(\mathbf{y}|M_0) \approx \log p(\mathbf{y}|\hat{\theta}_0) - \frac{1}{2}p_0 \log N$$

$$\log p(\mathbf{y}|\hat{\theta}_1) - \frac{1}{2}p_1 \log N > \log p(\mathbf{y}|\hat{\theta}_0) - \frac{1}{2}p_0 \log N$$
$$- 2\log p(\mathbf{y}|\hat{\theta}_1) + p_1 \log N < -2\log p(\mathbf{y}|\hat{\theta}_0) + p_0 \log N$$
$$BIC(M_1) < BIC(M_0)$$

We would select
$$M_1$$
 if $\frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} > 1$, or equivalently
 $\log \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} = \log p(\mathbf{y}|M_1) > p(\mathbf{y}|M_0).$

It can be shown that in many cases for large N,

$$\log p(\mathbf{y}|M_1) \approx \log p(\mathbf{y}|\hat{\theta}_1) - \frac{1}{2}p_1 \log N$$
$$\log p(\mathbf{y}|M_0) \approx \log p(\mathbf{y}|\hat{\theta}_0) - \frac{1}{2}p_0 \log N$$

$$\log p(\mathbf{y}|\hat{\theta}_1) - \frac{1}{2}p_1 \log N > \log p(\mathbf{y}|\hat{\theta}_0) - \frac{1}{2}p_0 \log N$$
$$- 2\log p(\mathbf{y}|\hat{\theta}_1) + p_1 \log N < -2\log p(\mathbf{y}|\hat{\theta}_0) + p_0 \log N$$
$$BIC(M_1) < BIC(M_0)$$

We would select
$$M_1$$
 if $\frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} > 1$, or equivalently
 $\log \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} = \log p(\mathbf{y}|M_1) > p(\mathbf{y}|M_0).$

It can be shown that in many cases for large N,

$$\log p(\mathbf{y}|M_1) \approx \log p(\mathbf{y}|\hat{\theta}_1) - \frac{1}{2}p_1 \log N$$
$$\log p(\mathbf{y}|M_0) \approx \log p(\mathbf{y}|\hat{\theta}_0) - \frac{1}{2}p_0 \log N$$

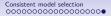
$$\log p(\mathbf{y}|\hat{\theta}_1) - \frac{1}{2}p_1 \log N > \log p(\mathbf{y}|\hat{\theta}_0) - \frac{1}{2}p_0 \log N$$
$$- 2\log p(\mathbf{y}|\hat{\theta}_1) + p_1 \log N < -2\log p(\mathbf{y}|\hat{\theta}_0) + p_0 \log N$$
$$BIC(M_1) < BIC(M_0)$$

We would select
$$M_1$$
 if $\frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} > 1$, or equivalently
 $\log \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_0)} = \log p(\mathbf{y}|M_1) > p(\mathbf{y}|M_0).$

It can be shown that in many cases for large N,

$$\log p(\mathbf{y}|M_1) \approx \log p(\mathbf{y}|\hat{\theta}_1) - \frac{1}{2}p_1 \log N$$
$$\log p(\mathbf{y}|M_0) \approx \log p(\mathbf{y}|\hat{\theta}_0) - \frac{1}{2}p_0 \log N$$

$$\log p(\mathbf{y}|\hat{\theta}_1) - \frac{1}{2}p_1 \log N > \log p(\mathbf{y}|\hat{\theta}_0) - \frac{1}{2}p_0 \log N$$
$$- 2\log p(\mathbf{y}|\hat{\theta}_1) + p_1 \log N < -2\log p(\mathbf{y}|\hat{\theta}_0) + p_0 \log N$$
$$BIC(M_1) < BIC(M_0)$$



Other information criteria: AIC, TIC, GIC.

See Müller, Sealy and Welsh (2013) for a review.

Don't do the following:

- BIC(M₁) = 100, but has many parameters;
- $BIC(M_0) = 101$, but has few parameters.

"Since the BICs are close, and M_1 has more parameters, I'll go with M_0 ."

Comments

Other information criteria: AIC, TIC, GIC. See Müller, Sealy and Welsh (2013) for a review.

Don't do the following:

- BIC(M₁) = 100, but has many parameters;
- $BIC(M_0) = 101$, but has few parameters.

"Since the BICs are close, and M_1 has more parameters, I'll go with M_0 ."

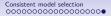
Comments

Other information criteria: AIC, TIC, GIC. See Müller, Sealy and Welsh (2013) for a review.

Don't do the following:

- BIC(M₁) = 100, but has many parameters;
- $BIC(M_0) = 101$, but has few parameters.

"Since the BICs are close, and M_1 has more parameters, I'll go with M_0 ."

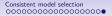


Other information criteria: AIC, TIC, GIC. See Müller, Sealy and Welsh (2013) for a review.

Don't do the following:

- BIC(M₁) = 100, but has many parameters;
- $BIC(M_0) = 101$, but has few parameters.

"Since the BICs are close, and M_1 has more parameters, I'll go with M_0 ."

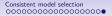


Other information criteria: AIC, TIC, GIC. See Müller, Sealy and Welsh (2013) for a review.

Don't do the following:

- BIC(M₁) = 100, but has many parameters;
- $BIC(M_0) = 101$, but has few parameters.

"Since the BICs are close, and M_1 has more parameters, I'll go with M_0 ."



Other information criteria: AIC, TIC, GIC. See Müller, Sealy and Welsh (2013) for a review.

Don't do the following:

- BIC(M₁) = 100, but has many parameters;
- $BIC(M_0) = 101$, but has few parameters.

"Since the BICs are close, and M_1 has more parameters, I'll go with M_0 ."