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Modeling choices

Model: A statistical model is a set of probability distributions for your data.

• In HLM, the model is a specification of fixed effects and random effects.

• Once we select a model, we can estimate the parameters in the model and
make further inference.

nels[1:5,]

## school enroll flp public urbanicity hwh ses mscore
## 1 1011 5 3 1 urban 2 -0.23 52.11
## 2 1011 5 3 1 urban 0 0.69 57.65
## 3 1011 5 3 1 urban 4 -0.68 66.44
## 4 1011 5 3 1 urban 5 -0.89 44.68
## 5 1011 5 3 1 urban 3 -1.28 40.57

What kinds of effects could we include?

• fixed effects: enroll,flp,public,urbanicity,hwh,ses

• random effects: 1,hwh,ses

• fixed effect interactions: enroll*flp, public*flp,. . .

• random effect interactions: hwh*ses

• higher order terms: ses2,. . .
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Model selection

We would like a procedure that can identify the “best” model from the data.

• “best=true” if the truth is one of the potential models.

• “best” means giving the best prediction or description otherwise.

Setup: Let M1,M2, . . . ,MK be candidate models. For example, maybe

• M1: y ~ flp

• M2: y ~ flp + ses

• M3: y ~ flp + ses + (ses|school)

Model selection procedure: A procedure that takes data (y,X) as input and
outputs a model.

msel(y,X) ∈ {M1, . . . ,MK}
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Consistent model selection

As our data are subject to sampling variability, we can’t expect a model
selection procedure to select the best model with probability 1. However, we do
expect that

Pr(msel(y,X) = Mk) is large if Mk is correct.

As more data comes in, a good procedure should have an increasingly large
chance of selecting the right model. Such a procedure is consistent.

Consistency: msel(y,X)) is consistent if

when Mk is true, then Pr(msel(y,X) = Mk) → 1 as n,m → ∞.

Unfortunately, model selection based on p-values is not consistent.
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Backwards elimination

Diabetes example:

• 442 subjects

• yi = diabetes progression

• xi = explanatory variables.

Each xi includes

• 13 subject specific measurements (xage, xsex, . . .);

• 78 =
(
13
2

)
interaction terms (xage · xsex, . . .) ;

• 9 quadratic terms (xsex and three genetic variables are binary)

100 explanatory variables total!
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Backwards elimination

1. Obtain the estimator β̂ols = (XTX)−1XTy and its t-statistics.

2. If there are any regressors j such that |tj | < tcutoff ,
2.1 find the regressor jmin having the smallest value of |tj |;
2.2 remove column jmin from X;
2.3 return to step 1.

3. If |tj | > tcutoff for all variables j remaining in the model, then stop.
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Backwards elimination

### backwards elimination
ZSTATS<-NULL ; zmin<-0 ; zcut<-qnorm(.975)
while(zmin< zcut)
{

fit<-lm(y~ -1+XS)
zscore<-summary(fit)$coef[,3]

zmin<-min(abs(zscore))
if(zmin<zcut)
{

jmin<-which.min(abs(zscore))
XS<-XS[,-jmin]

}

zs<-rep(0,ncol(X))
zs[ match(substr(names(zscore),3,9),colnames(X)) ] <-zscore
ZSTATS<-rbind(ZSTATS,zs)

}
###
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Backwards elimination

Initial z-scores:
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Backwards elimination

After ten iterations:
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Backwards elimination

After twenty iterations:

0 10 20 30 40 50 60

−
5

0
5

10

predictor

zs
ta

t



The model selection problem Test-based selection Consistent model selection

Backwards elimination

Final solution:

0 10 20 30 40 50 60

−
5

0
5

10

predictor

zs
ta

t



The model selection problem Test-based selection Consistent model selection

Final solution
summary(fit)

##

## Call:

## lm(formula = y ~ -1 + XS)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.05779 -0.49533 -0.02017 0.40202 1.86086

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## XSsex -0.15026 0.03603 -4.171 3.67e-05 ***

## XSbmi 0.30789 0.03972 7.752 6.62e-14 ***

## XSmap 0.19982 0.03777 5.290 1.95e-07 ***

## XStc -0.44478 0.10561 -4.211 3.09e-05 ***

## XSldl 0.32683 0.09924 3.293 0.00107 **

## XSltg 0.57384 0.05415 10.598 < 2e-16 ***

## XSltg^2 0.30735 0.10591 2.902 0.00390 **

## XSglu^2 0.08227 0.03332 2.469 0.01393 *

## XSage:sex 0.13101 0.03297 3.974 8.29e-05 ***

## XSbmi:map 0.08699 0.03373 2.579 0.01024 *

## XStc:ltg -0.45086 0.15781 -2.857 0.00448 **

## XSldl:ltg 0.37997 0.12363 3.073 0.00225 **

## XShdl:ltg 0.16663 0.06323 2.635 0.00871 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.6752 on 429 degrees of freedom

## Multiple R-squared: 0.5565, Adjusted R-squared: 0.5431

## F-statistic: 41.41 on 13 and 429 DF, p-value: < 2.2e-16

How would you interpret the p-values, standard errors, CIs?
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A problem with backwards selection

Let yπ be a permutation of y, eg.

y = (2.2,−1.2, 0.5, . . . ,−0.7)

yπ = (0.5,−0.7, 2.2, . . . ,−1.2)

Question: What is the relationship between yπ and X?

Question: What would happen if we did backwards elimination on yπ ∼ X?
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Backwards elimination on permuted data

yp<-sample(y)
XS<-X

### backwards elimination
ZSTATS<-NULL ; zmin<-0 ; zcut<-qnorm(.975)
while(zmin< zcut)
{

fit<-lm(yp~ -1+XS)
zscore<-summary(fit)$coef[,3]

zmin<-min(abs(zscore))
if(zmin<zcut)
{

jmin<-which.min(abs(zscore))
XS<-XS[,-jmin]

}

zs<-rep(0,ncol(X))
zs[ match(substr(names(zscore),3,9),colnames(X)) ] <-zscore
ZSTATS<-rbind(ZSTATS,zs)

}
###
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Backwards elimination

Initial z-scores:
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Backwards elimination

After 10 iterations:
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Backwards elimination

After twenty iterations:
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Backwards elimination

Final solution:
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Final solution
summary(fit)

##

## Call:

## lm(formula = yp ~ -1 + XS)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.8058 -0.7964 -0.1466 0.6645 2.4560

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## XStc -0.28628 0.13675 -2.094 0.03690 *

## XShdl 0.43316 0.19864 2.181 0.02976 *

## XStch 0.53841 0.22773 2.364 0.01852 *

## XSglu -0.12160 0.05366 -2.266 0.02395 *

## XSmap^2 0.12926 0.05345 2.418 0.01601 *

## XSldl^2 -0.58442 0.28590 -2.044 0.04156 *

## XShdl^2 -0.41785 0.14968 -2.792 0.00548 **

## XStch^2 -0.35026 0.16769 -2.089 0.03732 *

## XSltg^2 -0.24849 0.10444 -2.379 0.01779 *

## XSbmi:map -0.12095 0.05857 -2.065 0.03953 *

## XSbmi:tc -0.44804 0.21700 -2.065 0.03956 *

## XSbmi:ldl 0.53181 0.24448 2.175 0.03016 *

## XSbmi:tch -0.33768 0.12969 -2.604 0.00954 **

## XSbmi:ltg 0.33771 0.13029 2.592 0.00987 **

## XStc:ldl 0.76928 0.31857 2.415 0.01617 *

## XStc:ltg 0.41443 0.15371 2.696 0.00729 **

## XSldl:ltg -0.43629 0.15446 -2.825 0.00496 **

## XShdl:tch -0.58784 0.24778 -2.372 0.01812 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.9799 on 424 degrees of freedom

## Multiple R-squared: 0.07688, Adjusted R-squared: 0.03769

## F-statistic: 1.962 on 18 and 424 DF, p-value: 0.01076

Would you interpret the p-values, standard errors, CIs?
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Inconsistency of backwards elimination

Backwards elimination (and forwards selection) generally rely on a comparison
of models based on a p-value.

M1: y ∼ x1 + x2 + x3

M0: y ∼ x1 + x2

Variable x3 is eliminated if

• its z-score is < 1.96 in absolute value

• (more or less) equivalently, if the p-value from the LRT is > 0.05.
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Inconsistency of backwards elimination

Now suppose M0 is true. What is the probability of selecting M1?

Pr(bsel(y,X) = M1|M0) = Pr(reject M0|M0)

= type I error rate

= Pr(p − value > 0.05|M0) = 0.05

This does not change as m, n → ∞.

(Actually, for the LRT the probability gets closer to 0.05 as m, n → ∞).
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Problems with backwards elimination

There are other problems with backwards elimination (and forwards selection):

Problem 1: The method doesn’t search over all possible models.

Problem 2: The resulting p-values and standard errors may be misleading.

Problem 3: The model selection procedure is not consistent

Problems 1-2 are issues for any model selection procedure.

However, some model selection procedures do not have problem 3.
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Building a better model selection procedure

Suppose only two models are under consideration, M0 and M1.

Maximize the likelihoods under each model:

l1 = log p(y|θ̂1)

l0 = log p(y|θ̂0)

If l1 is much bigger than l0, then it makes sense to prefer M1 to M0.

However, recall that if

• M0 is nested in M1, or

• M0 has many fewer parameters than M1,

then l1 will always/typically be larger than l0.
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Building a better model selection procedure

Idea: Prefer M1 to M0 if

• l1 is bigger than l0 by an amount that depends on p0, p1.

• l1 − l0 > cp0,p1

This should remind you of the LRT, where we prefer M1 to M0 if

λ = 2× (l1 − l0) > qp0,p1 ,

where qp0,,p1 is a quantile of the appropriate null distribution.

Exercise: Show that the LRT procedure has the above form.
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LRT as a model selection procedure

LRT: Reject M0, favor M1 if

λ = 2× (l1 − l0) > χ2
p1−p0,.95

l1 − l0 >
1
2
χ2
p1−p0,.95 = cp1,p0

Problem: If M0 is true, probability of selecting M1 is ≈ 0.05, regardless of m, n.

Model selection via hypotheses test is not consistent.
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Modified selection criteria

Consider any procedure that prefers M1 to M0 if

l1 − l0 > cp0,p1 ,

where cp0,p1 is constant in m, n.

Any such procedure corresponds to a LRT for some particular type I error rate,
and hence will not be consistent.

Solution: Have the cutoff c depend on m, n - favor M1 over M0 if

l1 − l0 > cp0,p1,m,n
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Modified selection criteria

Question: How should c change with N = m × n? Go up, or go down?

Answer:

• The inconsistency comes from rejecting M0 too often.

• The threshold for favoring M1 over M0 should go up.

• We will still be able to select M1 correctly if M1 is true - as N increases
our ability to distinguish M1 from M0 increases as well.

Selection criteria: Favor M1 over M0 if

l1 − l0 > cp0,p1,m,n,

where cp0,p1,m,n is increasing in m, n.
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BIC - Bayes information criteria

b0 = l0 − 1
2
p0 logN

b1 = l1 − 1
2
p1 logN

Model selection via BIC: Favor M1 over M0 if b1 > b0.

Exercise: Rewrite this procedure to have the form used previously.

b1 > b0 ⇔ l1 − l0 >
1
2

(
(p1 − p0)× logN

)
Notice: The cutoff

• is increasing in p1 − p0,

• is increasing in N = m × n.
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BIC - standard form

BIC0 = −2× l0 + p0 logN

BIC1 = −2× l1 + p1 logN

Model selection via BIC: Favor M1 over M0 if BIC1 < BIC0.

This is the same as favoring M1 over M0 if b1 < b0:

BIC0 = −2× b0

BIC1 = −2× b1
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Do we trust BIC?

yi,j = β1 + β2xi,j + a1,j + ϵi,j

a1,1, . . . , a1,m ∼ i.i.d. N(0, τ 2)

Consider selecting from among the following four models:

M00: β2 = 0, τ 2 = 0

M10: β2 ̸= 0, τ 2 = 0

M01: β2 = 0, τ 2 ̸= 0

M11: β2 ̸= 0, τ 2 ̸= 0

Question: What are the number of parameters in each model?

M11 p = 4

M01 p = 3

M10 p = 3

M00 p = 2

Comment: Which models could be compared with LRT?
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Simulation study

m<-50 ; n<-5 ; g<-rep(1:m,times=rep(n,m))

BIC.RES<-NULL

for(t2 in c(0,1)){
for(beta2 in c(0,1)) {

BIC.SIM<-NULL
for(s in 1:100)
{

b<-rnorm(m,0,sqrt(t2) )
x<-rnorm(m*n)

y<- 1 + beta2*x + b[g] + rnorm(m*n)

fit.00<-lm(y~1)
fit.01<-lm(y~x)

fit.10<-lmer(y ~ 1 + (1|g), REML=FALSE )
fit.11<-lmer(y ~ x + (1|g), REML=FALSE )

BIC.SIM<-rbind(BIC.SIM,c(BIC(fit.00),BIC(fit.01),BIC(fit.10),BIC(fit.11)))
}

BIC.RES<-rbind(BIC.RES,(table( c(1:4,apply(BIC.SIM,1,which.min)) ) -1))
}}
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Simulation study

BIC.RES

## 1 2 3 4
## [1,] 99 0 1 0
## [2,] 0 100 0 0
## [3,] 0 0 100 0
## [4,] 0 0 0 100
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A harder simulation study

m<-10 ; n<-5 ; g<-rep(1:m,times=rep(n,m))

BIC.RES<-NULL

for(t2 in c(0,.5)){
for(beta2 in c(0,.5)) {

BIC.SIM<-NULL
for(s in 1:100)
{

b<-rnorm(m,0,sqrt(t2) )
x<-rnorm(m*n)

y<- 1 + beta2*x + b[g] + rnorm(m*n)

fit.00<-lm(y~1)
fit.01<-lm(y~x)

fit.10<-lmer(y ~ 1 + (1|g), REML=FALSE )
fit.11<-lmer(y ~ x + (1|g), REML=FALSE )

BIC.SIM<-rbind(BIC.SIM,c(BIC(fit.00),BIC(fit.01),BIC(fit.10),BIC(fit.11)))
}

BIC.RES<-rbind(BIC.RES,(table( c(1:4,apply(BIC.SIM,1,which.min)) ) -1))
}}
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Simulation study

BIC.RES

## 1 2 3 4
## [1,] 92 7 1 0
## [2,] 6 93 0 1
## [3,] 30 1 66 3
## [4,] 5 28 5 62
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Model selection for NELS data

fit.full<-lmer( mscore ~
as.factor(flp) + as.factor(urbanicity) + public +
ses + ses:public + (ses|school) , data=nels,REML=FALSE)

summary(fit.full)$coef

## Estimate Std. Error t value
## (Intercept) 53.72704978 0.4672579 114.98371763
## as.factor(flp)2 -1.73548708 0.4026467 -4.31019849
## as.factor(flp)3 -4.45001943 0.4379125 -10.16189084
## as.factor(urbanicity)suburban -0.02067462 0.3833574 -0.05393039
## as.factor(urbanicity)urban -0.94654261 0.4193025 -2.25742178
## public -0.84372430 0.4425283 -1.90659944
## ses 3.41745532 0.2586162 13.21438763
## public:ses 0.90865289 0.2946272 3.08407716
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Model selection for NELS data

BIC(fit.full)

## [1] 92472.76

fit.r1<-lmer( mscore ~
as.factor(flp) + as.factor(urbanicity) + public +
ses + (ses|school) , data=nels,REML=FALSE)

BIC(fit.r1)

## [1] 92472.71

fit.r2<-lmer( mscore ~
as.factor(flp) + as.factor(urbanicity) +
ses + (ses|school) , data=nels,REML=FALSE)

BIC(fit.r2)

## [1] 92464.98
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Futher reductions

fit.r3<-lmer(mscore~ as.factor(flp) + ses + (ses|school) , data=nels,REML=FALSE)

BIC(fit.r3)

## [1] 92454.31
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Futher reductions

fit.r4a<-lm( mscore ~ as.factor(flp) + ses , data=nels)
BIC(fit.r4a)

## [1] 93151.9

fit.r4b<-lmer( mscore ~ ses + (ses|school) , data=nels,REML=FALSE)
BIC(fit.r4b)

## [1] 92597.89

fit.r4c<-lmer( mscore ~ (ses|school) , data=nels,REML=FALSE)
BIC(fit.r4c)

## [1] 93267.56
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Where does BIC come from?

Suppose there are only two models M0 and M1.

In a Bayesian analysis, one would be able to compute

Pr(M1|y) =
Pr(M1)p(y|M1)

Pr(M1)p(y|M1) + Pr(M0)p(y|M0)

Alternatively, the odds that M1 is true are

Pr(M1|y,X)
Pr(M0|y,X)

=
Pr(M1)

Pr(M0)
× p(y|M1)

p(y|M0)

If Pr(M1) = Pr(M0), then

Pr(M1|y,X)
Pr(M0|y,X)

=
p(y|M1)

p(y|M0)
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Where does BIC come from?

We would select M1 if p(y|M1)
p(y|M0)

> 1, or equivalently

log
p(y|M1)

p(y|M0)
= log p(y|M1) > p(y|M0).

It can be shown that in many cases for large N,

log p(y|M1) ≈ log p(y|θ̂1)− 1
2
p1 logN

log p(y|M0) ≈ log p(y|θ̂0)− 1
2
p0 logN

and so we prefer M1 to M0 if

log p(y|θ̂1)− 1
2
p1 logN > log p(y|θ̂0)− 1

2
p0 logN

− 2 log p(y|θ̂1) + p1 logN < −2 log p(y|θ̂0) + p0 logN

BIC(M1) < BIC(M0)
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Comments

Other information criteria: AIC, TIC, GIC.
See Müller, Sealy and Welsh (2013) for a review.

Don’t do the following:

• BIC(M1) = 100, but has many parameters;

• BIC(M0) = 101, but has few parameters.

“Since the BICs are close, and M1 has more parameters, I’ll go with M0.”

M1 has already been penalized for its number of parameters.
The BIC selection rule would be to select M1.
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