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Assumptions of the HNM

yij =0 +eij
{eij} ~iid N(0,0?) (1)
01,...,0m ~iid N(u,°) (2)

Assumptions concerning within-group variation: Item (1) implies

Assumptions concerning between-group variation: ltem (2) implies
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Hierarchy of micro-level assumptions

Some assumptions are more important than others. Statistical folklore (and
theoretical results) suggest the order of importance of the assumptions is

independence: the ¢;j's are independent;
constant variance: the ¢;;'s have the same variance in each group;

normality: the €;;’s are normally distributed.

Cautions: Ignoring violations can lead to invalid inference
dependence: can lead to inaccurate p-values and confidence intervals;
nonconstant variance: can affect type | error rates and estimation efficiency;

nonnormality: our procedures are somewhat robust to nonnormality (CLT).
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Checking micro-level assumptions with residuals

We don't observe the €; ;'s, so we can’t check these assumptions directly.
Standard practice is to evaluate the residuals:

yij =0 +eij
€ij = Yij = b

If §; ~ 6;, then

€ij=yij— 0=y, -0 =8,
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Checking micro-level assumptions with residuals

We don't observe the €; ;'s, so we can’t check these assumptions directly.
Standard practice is to evaluate the residuals:

yij =0 +eij
€ij = Yij = b
If §; ~ 6;, then
€ij=yij— 0=y, -0 =8,
Here, GAJ- could be either y; or the shrinkage estimator.

Standard practice is to use ;.
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Q-Q plots: A useful visual tool for checking normality is the normal scores
plot. This plots the sample quantiles versus those of the normal distribution.

y10<-rnorm(10) ; y50<-rnorm(50) ; y100<-rnorm(100)

qgnorm(y10) ; qqline(y10)
qqnorm(y50) ; qqline(y50)
qgnorm(y100) ; gqline(y100)

Normal Q-Q Plot
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The wrong way to check normality

par (mfrow=c(1,2))
hist (y)
qgnorm(y) ; qqgline(y)

Histogram of y Normal Q-Q Plot
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The right way to check normality
par (nfrow=c(1,2))
fit<-1m(y~as.factor(g))
res<-fit$res
hist(res)

qgnorm(res) ; qqline(res)

Histogram of res Normal Q-Q Plot
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Example: Wheat yield
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Example: Wheat yield
par (nfrow=c(1,2))
fit.wheat<-1m(y.wheat~as.factor(g.wheat))
res<-fit.wheat$res
hist(res)

qgnorm(res) ; qqline(res)

Histogram of res Normal Q-Q Plot
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Example: Nels data
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Example: NELS data

par (mfrow=c(1,2))

fit.nels<-1m(y.nels~as.factor(g.nels))

res<-fit.nels$res
hist(res)

qqnorm(res) ; qqline(res)

Histogram of res
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Question: Why do you think these data look so normal?
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grouseticks([1:5,]
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Example: Grouse ticks
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Example: Grouse ticks

par (mfrow=c(1,2))
fit.grouse<-1m(y.grouse~as.factor(g.grouse))
res<-fit.grouse$res

hist(res)

qgnorm(res) ; qqline(res)

Histogram of res Normal Q-Q Plot
8 5
1%
< -1 (e}
> k=
g = g S
g g -
5 o -
Eog g
1) @ n
[ o
N o 0
T T T T T 1 ! T T T T T T T
-20 -10 0 10 20 30 -3 -2 -1 0 1 2 3
res Theoretical Quantiles

15/48



Checking for nonnormality Checking for heteroscedasticity Macro-level assumptions
000000000080 000000000000 0000 0000000000000 00

Example: Grouse ticks normality evaluation, the wrong way

par (mfrow=c(1,2))
hist(y.grouse)

qqnorm(y.grouse) ; qqline(y.grouse)

Histogram of y.grouse Normal Q-Q Plot
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Sample Quantiles
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Within-group variance

{ei } ~ N(0,0%)

This implies that not only are the errors normal, but their variance is the same

for all groups.
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Within-group variance

{eij} ~ N(0,0°)
This implies that not only are the errors normal, but their variance is the same
for all groups.

How might we evaluate this assumption?

Idea: Suppose €1, ..., €y ~ iid N(0,07)

2 2
[ ] S~ o
SJ UJ

® differences between 01-2’5 can be evaluated by differences between s;'s.
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Example: wheat yield

s2.wheat<-c(tapply(y.wheat,g.wheat,var))

s2.wheat

## 1 2 3 4 5 6 7 8 9 10
## 4.49173 0.43388 2.88970 0.99197 1.94843 0.95908 0.67748 0.86467 1.96792 2.64720

max(s2.wheat) /min(s2.wheat)

## [1] 10.35247
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Is the heterogeneity large? Remember n; =5 for all groups.
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Example: wheat yield

s2.wheat<-c(tapply(y.wheat,g.wheat,var))

s2.wheat

## 1 2 3 4 5 6 7 8 9 10
## 4.49173 0.43388 2.88970 0.99197 1.94843 0.95908 0.67748 0.86467 1.96792 2.64720

max(s2.wheat) /min(s2.wheat)

## [1] 10.35247

Is the heterogeneity large? Remember n; =5 for all groups.

Fmax test: A test of equality of variances - reject Hp : aj2 =02 if
2 2
smax/smin > Fmaxlfa,m,n

The critical value must be looked up on a table.
It is not the same as the usual F-distribution.
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Levene's test

Idea: If o7 is large, then |y;; — ;| = |&j| should be large.

® |et Zij = ‘€;7j|
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® |et Zij = |€,',j|

Checking for heteroscedasticity

z.wheat<-abs( fit.wheat$res )
anova(lm(z.wheat~as.factor(g.wheat)) )

##
##
##
##
##
##

Analysis of Variance Table

Response: z.wheat

as.factor(g.wheat)
Residuals

® Use the ANOVA F-test for across-group differences in the z;j's

Df Sum Sq Mean Sq F value Pr(>F)

9 4.8893 0.54325
40 20.9174 0.52294

1.0389 0.4273

Macro-level assumptions
0000000000000 00
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Example: NELS data

s2.nels<-c(tapply(y.nels,g.nels,var))
max(s2.nels,na.rm=TRUE)

## [1] 187.082
min(s2.nels,na.rm=TRUE)

## [1] 3.20045

n.nels<-table(g.nels)

n.nels[ which.max(s2.nels)]

## 320
## 19

n.nels[ which.min(s2.nels)]

## 643
# 0 2
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z.nels<-abs( fit.nels$res )

Checking for heteroscedasticity Macro-level assumptions
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Example: NELS data

anova(lm(z.nels~as.factor(g.nels)) )

##
##
##
##
##
##
##
##

Analysis of Variance Table

Response: z.nels

Df
as.factor(g.nels) 683
Residuals 12290
Signif. codes: 0 '¥xx*'

Sum Sq Mean Sq F value Pr (>F)
27078 39.645 1.6092 < 2.2e-16 *xx*
302776 24.636

0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
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Example: Grouse tick data

s2.grouse<-c(tapply(y.grouse,g.grouse,var))
max (s2.grouse,na.rm=TRUE)

## [1] 346.3

min(sQ.grouse,na.rm=TRUE)

## [1] 0

n.grouse<-table(g.grouse)

n.grouse[ which.max(s2.grouse)]

## 626
## 5

n.grouse[ which.min(s2.grouse)]

## 501
# 0 2
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Example: Grouse tick data

z.grouse<-abs( fit.grouse$res )
anova(lm(z.grouse~as.factor(g.grouse)) )

##
##
##
##
##
##
##
##

Analysis of Variance Table

Response: z.grouse

Df Sum Sq Mean Sq F value Pr (>F)
as.factor(g.grouse) 117 3954.0 33.795 4.8627 < 2.2e-16 **x
Residuals 285 1980.7  6.950

Signif. codes: O '**x*' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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Remedies

NELS data:

® The evidence suggests the residual variance is not equal across schools.
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NELS data:
® The evidence suggests the residual variance is not equal across schools.

® |t seems plausible that some schools are more heterogeneous than others
due to observable factors (SES, for example)

® However, we've seen previously that heteroscedasticity is reduced after
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Why are data normal?

Additiive effects: Often, an outcome is the result of many additive effects:

yij =0 +eij
=0;+ X1+ X2+ + Xijp
CLT:

In such cases, if the x;«'s vary somewhat independently across subjects,the
distribution of the y; ;'s should look normal (even if the x;  «'s are not normal).
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Multiplicative effects

Multiplicative effects: Some outcomes are the result of multiplicative effects:
Yij = 0) X Xij1 X Xij2 X - X Xijp
eg., the outcome when x; ;1 = 2 is twice that when x; ;1 = 1.

Mean-variance relationship: Let €;; = x;j1 X - -+ X Xjjp. Then

yij=0; X ¢€ij
Varlyi,;j|0;] = Var[0; x «;,]0}]
= 912 X Var[e,—,j|6’j]

If there are multiplicative effects, we expect heteroscedasticity:
® groups with large means will have large variances;

® groups with small means will have small variances.
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Mean-variance relationships

A mean-variance relationship can be evaluated with a fitted versus residual plot.

plot( fit.grouse$fit, fit.grouse$res)
abline (h=0,1ty=2)
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Variance stabilizing transformations

Log transformation: Suppose the multiplicative model is correct.

Vij = logyij = log(6 X Xij,1 X Xij2 X =+ + X Xij,p)
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Power transformations

In many cases, the effects are neither strictly additive or multiplicative.
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Power transformations

In many cases, the effects are neither strictly additive or multiplicative.
In such cases, we might hope that there is some value p for which

Vij =yl =0 teij
holds approximately.

Common power transformations:
p name

1 no transformation

1/2  square-root transformation

1/4  quarter-power transformation

0 log transformation (in a limiting sense)
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Example: Tick data

ty.grouse<-sqrt(y.grouse)
fit.tgrouse<-lm(ty.grouse~as.factor(g.grouse))

mpar ()
par (mfrow=c(1,2))

plot(fit.tgrouse$fit, fit.tgrouse$res) ; abline(h=0)
plot(fit.grouse$fit, fit.grouse$res) ; abline(h=0)
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What about normality?

mpar ()
par (mfrow=c(1,2))

qqnorm(fit.tgrouse$res) ; qqline(fit.tgrouse$res)
qqnorm(fit.grouse$res) ; qqline(fit.grouse$res)
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Recommendations

Power transformations: Pros
If your data are non-normal and exhibit a mean variance relation, a
transformation can

® stabilize the variance across groups;
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Macro-level assumptions

yij =0 +eij
{eij} ~iid N(0,0%)
01,...,0m ~iid N(u,°)

Assumptions concerning between-group variation:

There is no heteroscedasticity to check.

Only normality and independence need to be considered.
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Checking the macro level distribution
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35/48



Checking for nonnormality Checking for heteroscedasticity Macro-level assumptions
000000000000 000000000000 0000 0Oe0000000000000

Checking the macro level distribution

01,...,0m~ iid N(u,o?)

Evaluation via group sample means:
Assumptions about 6;'s can be assesed via the the j;'s.

vi=5 ) (0 +e)

35/48



Checking for nonnormality Checking for heteroscedasticity Macro-level assumptions
000000000000 000000000000 0000 0Oe0000000000000

Checking the macro level distribution

01,...,0m~ iid N(u,o?)

Evaluation via group sample means:
Assumptions about 6;'s can be assesed via the the j;'s.

vi=5 ) (0 +e)

35/48



Checking for nonnormality Checking for heteroscedasticity Macro-level assumptions
000000000000 000000000000 0000 0Oe0000000000000

Checking the macro level distribution

01,...,0m~ iid N(u,o?)

Evaluation via group sample means:
Assumptions about 6;'s can be assesed via the the j;'s.

S
I

=52 (0 +e)
0; + % Z €ij

35/48



Checking for nonnormality Checking for heteroscedasticity Macro-level assumptions
000000000000 000000000000 0000 0Oe0000000000000

Checking the macro level distribution

01,...,0m~ iid N(u,o?)

Evaluation via group sample means:
Assumptions about 6;'s can be assesed via the the j;'s.

S
I

=52 (0 +e)
0; + % Z €ij

35/48



Checking for nonnormality Checking for heteroscedasticity Macro-level assumptions
000000000000 000000000000 0000 0Oe0000000000000

Checking the macro level distribution

01,...,0m~ iid N(u,o?)

Evaluation via group sample means:
Assumptions about 6;'s can be assesed via the the j;'s.

V=13 2(91 +€ij)
0; + % Z €ij

=p+E

35/48



Checking for nonnormality Checking for heteroscedasticity Macro-level assumptions
000000000000 000000000000 0000 0Oe0000000000000

Checking the macro level distribution

01,...,0m~ iid N(u,o?)

Evaluation via group sample means:
Assumptions about 6;'s can be assesed via the the j;'s.

V=13 2(91 +€ij)
0; + % Z €ij

=p+E

35/48



Checking for nonnormality Checking for heteroscedasticity
000000000000 000000000000 0000

Distribution of group sample means

Assume for the moment that the sample sizes are constant.
Expectation of y;: Under the assumptions,
Ely] = E[0; + €]
= E[6;] + E[¢]]
=p
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Distribution of group sample means

Assume for the moment that the sample sizes are constant.
Expectation of y;: Under the assumptions,
Ely;] = E[6) + &]

= E[9)] + E[¢]

=p
Variance of y;: Under the assumptions,

Var[yj] = Var[Hj + Ej]
= Var[0;] + Var[g]

:7'2+02/n
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Distribution of group sample means

Assume for the moment that the sample sizes are constant.
Expectation of y;: Under the assumptions,
Ely;] = E[6) + &]
= E[0;] + E[&]
=p
Variance of y;: Under the assumptions,
Var[yj] = Var[Hj + Ej]
= Var[0;] + Var[g]
=7>40°/n

Distribution of y;: If €;;'s are iid normal and, independently, 6;'s are iid
normal, then

ViyeoosYm ~ iid N(u, 7> 4 0 /n)
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Example: Wheat yield

ybar.wheat<-c(tapply(y.wheat,g.wheat,mean))

qgnorm(ybar.wheat) ; qqline(ybar.wheat)

Normal Q-Q Plot

Sample Quantiles

15.0

15

Theoretical Quantiles
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Example: Wheat yield

ybar.wheat<-c(tapply(y.wheat,g.wheat,mean))

qgnorm(ybar.wheat) ; qqline(ybar.wheat)

Normal Q-Q Plot

Sample Quantiles

15.0

15

Theoretical Quantiles

No cause for alarm.
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Unequal sample sizes

Var[y] = 2+ az/nj
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If sample sizes are unequal, then
® ¥i,...,Vm's are not identically distributed.

® the variance of y; depends on its sample size.
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A fabricated example

t2<-1 ; s2<-8 ; mu<-60
m<-200
mu. group<-rnorm(m,mu,sqrt (t2))

n.sim<-y.sim<-g.sim<-NULL
for(j in 1:m)

n.j<-round(1+49*rbeta(l,.1,.1))
y.j<-rnorm(n.j,mu.group[j]l,sqrt(s2))

y.sim<-c(y.sim,y.j)

g.sim<-c(g.sim,rep(j,n.j))
n.sim<-c(n.sim,n.j)

table(n.sim)

## n.sim

## 1 2 3 4 5 6 7 8 9 10 11 13 17 19 20 21 22 23 26 27 31 32 34 35 36 37
##74 5 6 7 1 1 2 1 3 1 111 1 2 1111 3 1 2 11 2 1
## 41 42 43 44 45 46 47 48 49 50

## 1 3 3 1 2 1 3 4 555
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A fabricated example

ybar.sim<-c(tapply(y.sim,g.sim,mean))

mpar ()
par (mfrow=c(1,4))

qgqnorm(ybar.sim); qqline(ybar.sim)

z<-rnorm(length(ybar.sim))
z<-rnorm(length(ybar.sim))

z<-rnorm(length(ybar.sim))

H

H

B

qgnorm(z) ; qqline(z)
qgnorm(z) ; qqline(z)

qgnorm(z); qqline(z)

Macro-level assumptions
000000800000 000
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Standardized effects

If we knew 1, 02, 72, we could standardize the ¥;'s appropriately:

N F N, 1)
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Standardized effects

If we knew 1, 02, 72, we could standardize the ¥;'s appropriately:
il N ,1)

zbar.sim<- (ybar.sim -mu)/sqrt( t2+ s2/n.sim)
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Standardized effects

mpar ()

par (mfrow=c(1,2))
qqnorm(ybar.sim); gqline(ybar.sim)
qqnorm(zbar.sim); qqline(zbar.sim)

Normal Q—Q Plot

Checking for heteroscedasticity
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Normal Q-Q Plot

Macro-level assumptions
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Standardized effects

An ad-hoc approach is to replace i, 0%, 72 with their estimates:
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Standardized effects

An ad-hoc approach is to replace i, 0%, 72 with their estimates:

Y E LN 0,1)

## fit mized effects model and extract coefficients
fit.lme<-lmer(y.sim~1+(1lg.sim))

mu.mle<-fixef (fit.lme)

s2.mle<- sigma(fit.lme) 2

t2.mle <- as.numeric(VarCorr(fit.lme)$g)

## compuate standardized group means
zbar.sim<- (ybar.sim -mu.mle)/sqrt( t2.mle+ s2.mle/n.sim)



Checking for nonnormality
000000000000

44 /48

Standardized effects

mpar ()

par (mfrow=c(1,2))
qqnorm(ybar.sim); gqline(ybar.sim)
qqnorm(zbar.sim); qqline(zbar.sim)

Normal Q—Q Plot

Checking for heteroscedasticity
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Normal Q-Q Plot

Macro-level assumptions
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Example: NELS data

Checking for heteroscedasticity
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ybar.nels<-c(tapply(y.nels,g.nels,mean))

mpar () par(mfrow=c(1,4)) qgnorm(ybar.nels) ;
z<-rnorm(length(ybar.nels))
z<-rnorm(length(ybar.nels))
z<-rnorm(length(ybar.nels))

Normal Q-Q Plot

3
3
5

Normal Q-Q Plot

qgnorm(z) ;
qqnorm(z) ;
qqnorm(z) ;

qqline(z)
qqline(z)
qqline(z)

Normal Q-Q Plot

qqline(ybar.nels)

Macro-level assumptions
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Normal Q-Q Plot
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Standardized effects

## fit mized effects model and extract coefficients
fit.lme<-lmer(y.nels~1+(1|g.nels))

mu.mle<-fixef (fit.lme)

s2.mle<- sigma(fit.lme) 2

t2.mle <- as.numeric(VarCorr(fit.lme)$g)

## compuate standardized group means
zbar.nels<- (ybar.nels -mu.mle)/sqrt( t2.mle+ s2.mle/n.nels)
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Standardized effects

mpar ()

par (mfrow=c(1,2))

qqnorm(ybar.nels); qqline(ybar.nels)
qgnorm(zbar.nels); qqline(zbar.nels)

Normal Q-Q Plot Normal Q-Q Plot
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Comments

QQplots of sample means should be sufficient:
It is hard to imagine erroneously rejecting normality because of a sample size
difference.
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Comments

QQplots of sample means should be sufficient:
It is hard to imagine erroneously rejecting normality because of a sample size
difference.

Nonnormality may be due to observable group-level factors:
Yij =0 +€ij
0; = Bo + Bix; + i
Y1y e e ey Ym ~ iid N(0,77)
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