Subpopulation inferences

Population inferences

Cross-level inferences 00000000000000

Introduction

Peter Hoff Duke STA 610

Subpopulation inferences

Population inferences

Cross-level inferences 00000000000000

Multilevel data

Subpopulation inferences

Population inferences

Cross-level inferences

Subpopulation inferences

Population inferences

Cross-level inferences 0000000000000

Multilevel data

Multilevel data: Data for which there are

- multiple nested levels of sampling, and/or
- multiple nested sources of variability.

Such data are also often called *hierarchical data* or *clustered data*.

Examples:

Educational testing: students nested within classes;

Small area estimation: households nested within counties;

Agricultural experiments: subplots nested within whole plots;

Subpopulation inferences

Population inferences

Cross-level inferences 0000000000000

Multilevel data

Multilevel data: Data for which there are

- multiple nested levels of sampling, and/or
- multiple nested sources of variability.

Such data are also often called *hierarchical data* or *clustered data*.

Examples:

Educational testing: students nested within classes;

Small area estimation: households nested within counties;

Agricultural experiments: subplots nested within whole plots;

Subpopulation inferences

Population inferences

Cross-level inferences 0000000000000

Multilevel data

Multilevel data: Data for which there are

- multiple nested levels of sampling, and/or
- multiple nested sources of variability.

Such data are also often called *hierarchical data* or *clustered data*.

Examples:

Educational testing: students nested within classes;

Small area estimation: households nested within counties;

Agricultural experiments: subplots nested within whole plots;

Population inferences

Cross-level inferences

Multilevel data

Multilevel data: Data for which there are

- multiple nested levels of sampling, and/or
- multiple nested sources of variability.

Such data are also often called *hierarchical data* or *clustered data*.

Examples:

Educational testing: students nested within classes;

Small area estimation: households nested within counties;

Agricultural experiments: subplots nested within whole plots;

Cross-level inferences 00000000000000

Terminology

observational unit: an object or condition for which data are measured.

macro-level unit: a unit within which other units are nested.

micro-level unit: a unit nested within another unit.

Synonyms:

- macro-level unit, top-level unit, clusters, groups;
- micro-level unit, bottom-level unit, units.

If there are only two levels, we will say *units* are nested within *groups*.

Notation: $y_{i,j}$ = measurement of *i*th unit in *j*th group.

- The population: all possible units from all possible groups;
- A subpopulation: all possible units from a single group group.

Population inferences

Cross-level inferences 00000000000000

Terminology

observational unit: an object or condition for which data are measured. *macro-level unit:* a unit within which other units are nested.

micro-level unit: a unit nested within another unit.

Synonyms:

- macro-level unit, top-level unit, clusters, groups;
- micro-level unit, bottom-level unit, units.

If there are only two levels, we will say *units* are nested within *groups*.

Notation: $y_{i,j}$ = measurement of *i*th unit in *j*th group.

- The population: all possible units from all possible groups;
- A subpopulation: all possible units from a single group group.

Cross-level inferences 00000000000000

Terminology

observational unit: an object or condition for which data are measured.

macro-level unit: a unit within which other units are nested.

micro-level unit: a unit nested within another unit.

Synonyms:

- macro-level unit, top-level unit, clusters, groups;
- micro-level unit, bottom-level unit, units.

If there are only two levels, we will say *units* are nested within *groups*.

Notation: $y_{i,j}$ = measurement of *i*th unit in *j*th group.

- The population: all possible units from all possible groups;
- A subpopulation: all possible units from a single group group.

Cross-level inferences 00000000000000

Terminology

observational unit: an object or condition for which data are measured.

macro-level unit: a unit within which other units are nested.

micro-level unit: a unit nested within another unit.

Synonyms:

- macro-level unit, top-level unit, clusters, groups;
- micro-level unit, bottom-level unit, units.

If there are only two levels, we will say units are nested within groups.

Notation: $y_{i,j}$ = measurement of *i*th unit in *j*th group.

- The population: all possible units from all possible groups;
- A subpopulation: all possible units from a single group group.

Cross-level inferences 00000000000000

Terminology

observational unit: an object or condition for which data are measured.

macro-level unit: a unit within which other units are nested.

micro-level unit: a unit nested within another unit.

Synonyms:

- macro-level unit, top-level unit, clusters, groups;
- micro-level unit, bottom-level unit, units.

If there are only two levels, we will say units are nested within groups.

Notation: $y_{i,j}$ = measurement of *i*th unit in *j*th group.

- The population: all possible units from all possible groups;
- A subpopulation: all possible units from a single group group.

Cross-level inferences 00000000000000

Terminology

observational unit: an object or condition for which data are measured.

macro-level unit: a unit within which other units are nested.

micro-level unit: a unit nested within another unit.

Synonyms:

- macro-level unit, top-level unit, clusters, groups;
- micro-level unit, bottom-level unit, units.

If there are only two levels, we will say units are nested within groups.

Notation: $y_{i,j}$ = measurement of *i*th unit in *j*th group.

- The population: all possible units from all possible groups;
- A subpopulation: all possible units from a single group group.

Population inferences

Cross-level inferences 0000000000000

Types of multilevel inference

Subpopulation inferences: Group-specific features are of primary interest.

- What is the mean within each group, based on a sample from each group?
- What is the treatment effect for each group?
- Do the groups differ? If so, how do they differ?

Population inferences: Across-group averages are of primary interest.

- What is the population mean, based on cluster sample?
- What is the population treatment effect?

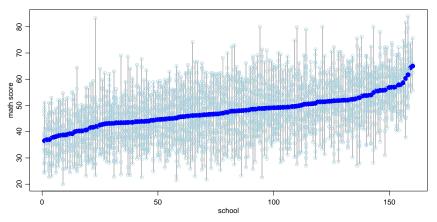
Cross-level inferences: Both types of features are important.

• What is the average treatment effect, adjusting for group differences?

Subpopulation inferences

Cross-level inferences

Example: Educational testing data

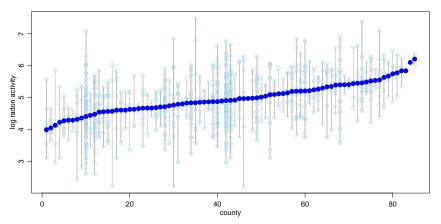


Exercise: Identify the population and subpopulations.

Subpopulation inferences

Cross-level inferences

Example: Environmental monitoring data



Exercise: Identify the population and subpopulations.

Group-specific inferences

Targets of inference: Subpopulation means $\theta_1, \ldots, \theta_m$.

Data: Subpopulation samples $\{y_{1,1}, ..., y_{1,n_1}\}, ..., \{y_{1,p}, ..., y_{1,n_m}\}.$

Statistical methods:

- Variance tests and estimation: What is $Var[\theta_1, \ldots, \theta_m]$? Is it zero?
- Estimates of θ_j : $\hat{\theta}_j = \bar{y}_{\cdot j}$ or $\hat{\theta}_j = w \bar{y}_{\cdot j} + (1 w) \bar{y}_{\cdot \cdot}$;
- Confidence intervals: Pr(θ_j ∈ C(y)|θ_j) = 1 − α, or Pr(θ^{*} ∈ C(y)) = 1 − α;

 Cross-level inferences 0000000000000

Cluster sampling

Survey design: Consider the costs of obtaining soil samples from

- 100 randomly sampled locations in a city, versus
- 10 randomly sampled locations from 10 randomly sampled neighborhoods.

Cluster sampling:

The second sampling scheme is called *cluster sampling* or *two-stage sampling*.

- is often cheaper per sampled unit;
- often gives less reliable estimates of population means.

 Cross-level inferences 0000000000000

Cluster sampling

Survey design: Consider the costs of obtaining soil samples from

- 100 randomly sampled locations in a city, versus
- 10 randomly sampled locations from 10 randomly sampled neighborhoods.

Cluster sampling:

The second sampling scheme is called *cluster sampling* or *two-stage sampling*.

- is often cheaper per sampled unit;
- often gives less reliable estimates of population means.

 Cross-level inferences 0000000000000

Cluster sampling

Survey design: Consider the costs of obtaining soil samples from

- 100 randomly sampled locations in a city, versus
- 10 randomly sampled locations from 10 randomly sampled neighborhoods.

Cluster sampling:

The second sampling scheme is called *cluster sampling* or *two-stage sampling*.

- is often cheaper per sampled unit;
- often gives less reliable estimates of population means.

 Cross-level inferences 0000000000000

Cluster sampling

Survey design: Consider the costs of obtaining soil samples from

- 100 randomly sampled locations in a city, versus
- 10 randomly sampled locations from 10 randomly sampled neighborhoods.

Cluster sampling:

The second sampling scheme is called *cluster sampling* or *two-stage sampling*.

- is often cheaper per sampled unit;
- often gives less reliable estimates of population means.

 Cross-level inferences 0000000000000

Cluster sampling

Survey design: Consider the costs of obtaining soil samples from

- 100 randomly sampled locations in a city, versus
- 10 randomly sampled locations from 10 randomly sampled neighborhoods.

Cluster sampling:

The second sampling scheme is called *cluster sampling* or *two-stage sampling*.

- is often cheaper per sampled unit;
- often gives less reliable estimates of population means.

Subpopulation inferences

 Cross-level inferences 0000000000000

Estimation of a population mean

Task: Estimate the population mean μ from sample data.

Questions:

- How do cluster sampling and SRS compare?
- How do you infer μ from cluster sample data?

Subpopulation inferences

Cross-level inferences 0000000000000

Estimation of a population mean

Task: Estimate the population mean μ from sample data.

Questions:

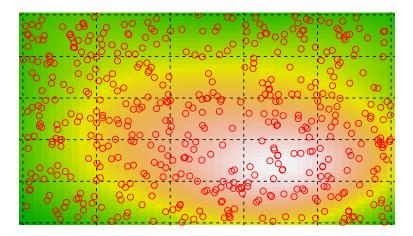
- How do cluster sampling and SRS compare?
- How do you infer μ from cluster sample data?

Subpopulation inferences

Population inferences

Cross-level inferences 00000000000000

Two-stage sampling



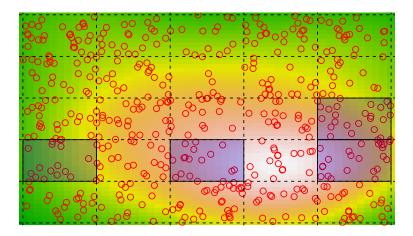
 μ =2.0494009

Subpopulation inferences

Population inferences

Cross-level inferences 00000000000000

Two-stage sampling



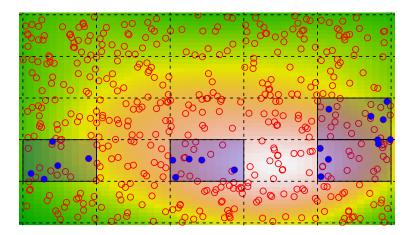
 μ =2.0494009

Subpopulation inferences

Population inferences

Cross-level inferences

Two-stage sampling



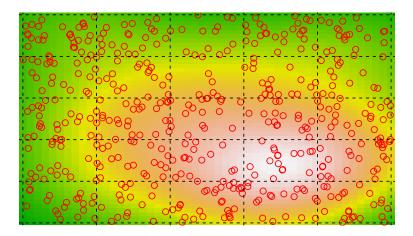
 $\mu{=}2.0494009$, $\bar{y}{=}2.3547727$

Subpopulation inferences

Population inferences

Cross-level inferences

Two-stage sampling



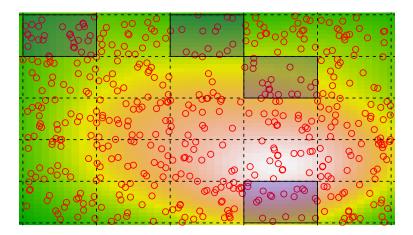
 μ =2.0494009

Subpopulation inferences

Population inferences

Cross-level inferences

Two-stage sampling



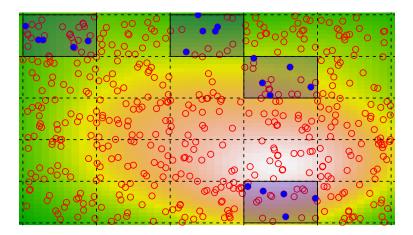
 μ =2.0494009

Subpopulation inferences

Population inferences

Cross-level inferences

Two-stage sampling



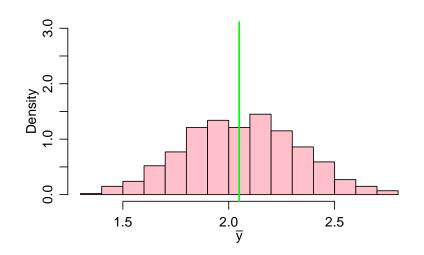
 $\mu {=} 2.0494009$, $\bar{y} {=} 1.896463$

Subpopulation inferences

Population inferences

Cross-level inferences 0000000000000

Variability of sample mean

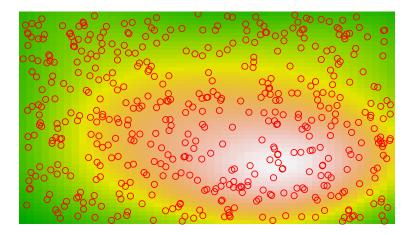


Subpopulation inferences

Population inferences

Cross-level inferences

Comparison to SRS



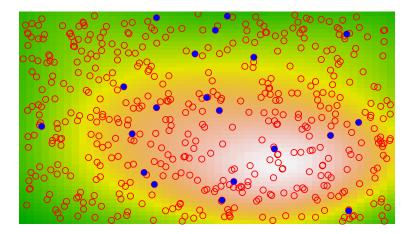
 μ =2.0494009

Subpopulation inferences

Population inferences

Cross-level inferences

Comparison to SRS



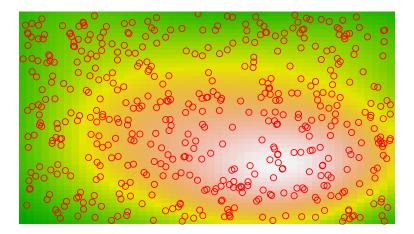
 $\mu {=} 2.0494009$, $\bar{y} {=} 2.1696295$

Subpopulation inferences

Population inferences

Cross-level inferences 0000000000000

Comparison to SRS



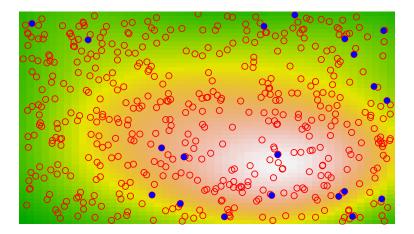
 μ =2.0494009

Subpopulation inferences

Population inferences

Cross-level inferences 0000000000000

Comparison to SRS



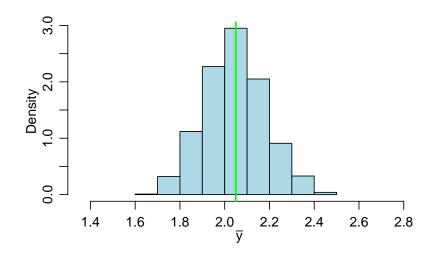
 $\mu = 2.0494009$, $\bar{y} = 1.9804926$

Subpopulation inferences

Population inferences

Cross-level inferences 00000000000000

Variability of sample mean

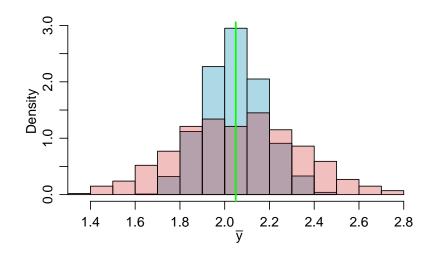


Subpopulation inferences

Population inferences

Cross-level inferences

Comparison of sampling variability



Subpopulation inferences

 Cross-level inferences 0000000000000

Heterogeneity, homogeneity and dependence

As we will show mathematically,

across-group heterogeneity \Leftrightarrow within-group homogeneity \Leftrightarrow within-group correlation or dependence

Across-group heterogeneity increases the variance of the sample mean, and so ${\rm Var}[\bar{y}_{tss}]\geq {\rm Var}[\bar{y}_{srs}]$

if the total samples sizes are the same.

Subpopulation inferences

 Cross-level inferences 0000000000000

Heterogeneity, homogeneity and dependence

As we will show mathematically,

across-group heterogeneity \Leftrightarrow within-group homogeneity \Leftrightarrow within-group correlation or dependence

Across-group heterogeneity increases the variance of the sample mean, and so

 $Var[\bar{y}_{tss}] \geq Var[\bar{y}_{srs}]$

if the total samples sizes are the same.

Subpopulation inferences

Cross-level inferences 0000000000000

Confidence interval from a SRS

Task: Construct a 95% CI for the population mean.

t-interval for SRS: If y_1, \ldots, y_n is an iid sample with $E[y_i] = \mu$ and $Var[y_i] = \sigma^2$

$$\mathsf{E}[\bar{y}] = \mu \ , \ \mathsf{Var}[\bar{y}] = \sigma^2/n.$$

By the central limit theorem,

$$ar{y} \sim N(\mu, \sigma^2/n) \ , \ rac{ar{y} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

As σ^2 is generally unknown, we use

$$rac{ar y-\mu}{s/\sqrt{n}} \dot\sim t_{n-1}, \,\, ext{, where } s^2 = rac{1}{n-1}\sum(y_i-ar y)^2.$$

$$ar{y} \pm t_{n-1,.975} imes s/\sqrt{n}$$
 is a 95% CI for μ .

Subpopulation inferences

Cross-level inferences 0000000000000

Confidence interval from a SRS

Task: Construct a 95% CI for the population mean.

t-interval for SRS: If y_1, \ldots, y_n is an iid sample with $E[y_i] = \mu$ and $Var[y_i] = \sigma^2$,

$$\mathsf{E}[\bar{y}] = \mu$$
, $\mathsf{Var}[\bar{y}] = \sigma^2/n$.

By the central limit theorem,

$$ar{y} \sim N(\mu, \sigma^2/n) \;,\; rac{ar{y}-\mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

As σ^2 is generally unknown, we use

$$rac{ar y-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \,$$
 , where $s^2=rac{1}{n-1}\sum(y_i-ar y)^2.$

$$ar{y} \pm t_{n-1,.975} imes s/\sqrt{n}$$
 is a 95% CI for μ .

Subpopulation inferences

Cross-level inferences 0000000000000

Confidence interval from a SRS

Task: Construct a 95% CI for the population mean.

t-interval for SRS: If y_1, \ldots, y_n is an iid sample with $E[y_i] = \mu$ and $Var[y_i] = \sigma^2$,

$$\mathsf{E}[\bar{y}] = \mu \ , \ \mathsf{Var}[\bar{y}] = \sigma^2/n.$$

By the central limit theorem,

$$\bar{y} \sim N(\mu, \sigma^2/n) , \ \frac{\bar{y}-\mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

As σ^2 is generally unknown, we use

$$rac{ar y-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \,\, ext{, where } s^2 = rac{1}{n-1}\sum(y_i-ar y)^2$$

$$ar{y} \pm t_{n-1,.975} imes s/\sqrt{n}$$
 is a 95% CI for μ .

Subpopulation inferences

Cross-level inferences 0000000000000

Confidence interval from a SRS

Task: Construct a 95% CI for the population mean.

t-interval for SRS: If y_1, \ldots, y_n is an iid sample with $E[y_i] = \mu$ and $Var[y_i] = \sigma^2$,

$$\mathsf{E}[\bar{y}] = \mu \ , \ \mathsf{Var}[\bar{y}] = \sigma^2/n.$$

By the central limit theorem,

$$ar{y} \sim N(\mu, \sigma^2/n) \ , \ rac{ar{y} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

As σ^2 is generally unknown, we use

$$rac{ar y-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \,\, ext{, where } s^2 = rac{1}{n-1}\sum(y_i-ar y)^2.$$

From this, we have

 $ar{y} \pm t_{n-1,.975} imes s/\sqrt{n}$ is a 95% CI for μ

Subpopulation inferences

Cross-level inferences 0000000000000

Confidence interval from a SRS

Task: Construct a 95% CI for the population mean.

t-interval for SRS: If y_1, \ldots, y_n is an iid sample with $E[y_i] = \mu$ and $Var[y_i] = \sigma^2$,

$$\mathsf{E}[\bar{y}] = \mu \ , \ \mathsf{Var}[\bar{y}] = \sigma^2/n.$$

By the central limit theorem,

$$ar{y} \sim N(\mu, \sigma^2/n) \ , \ rac{ar{y} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

As σ^2 is generally unknown, we use

$$rac{ar y-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \,\, ext{, where } s^2 = rac{1}{n-1}\sum(y_i-ar y)^2.$$

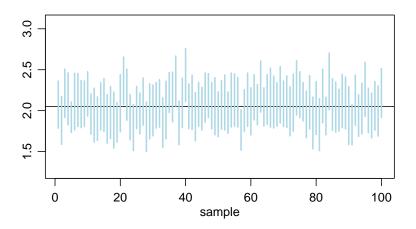
$$ar{y} \pm t_{n-1,.975} imes s/\sqrt{n}$$
 is a 95% CI for μ .

Subpopulation inferences

Population inferences

Cross-level inferences 0000000000000

Frequentist coverage



Subpopulation inferences

 Cross-level inferences 00000000000000

Ignoring across-group heterogeneity

$$ar{y} \pm t_{n-1,.975} imes s/\sqrt{n}$$

What if we apply the formula to data from a cluster sample?

If y_1, \ldots, y_n are from a SRS, then

$$\operatorname{Var}[\bar{y}] = \sigma^2/n = \operatorname{E}[s^2/n].$$

 s/\sqrt{n} provides a good estimate of the sd of \bar{y} .

If y_1, \ldots, y_n are from a cluster sample, then generally

$$\operatorname{Var}[\bar{y}] > \sigma^2/n \approx \operatorname{E}[s^2/n].$$

Subpopulation inferences

 Cross-level inferences

Ignoring across-group heterogeneity

$$ar{y} \pm t_{n-1,.975} imes s/\sqrt{n}$$

What if we apply the formula to data from a cluster sample? If y_1, \ldots, y_n are from a SRS, then

$$\mathsf{Var}[\bar{y}] = \sigma^2/n = \mathsf{E}[s^2/n].$$

 s/\sqrt{n} provides a good estimate of the sd of \bar{y} .

If y_1, \ldots, y_n are from a cluster sample, then generally

$$\operatorname{Var}[\bar{y}] > \sigma^2/n \approx \operatorname{E}[s^2/n].$$

Subpopulation inferences

 Cross-level inferences 0000000000000

Ignoring across-group heterogeneity

$$ar{y} \pm t_{n-1,.975} imes s/\sqrt{n}$$

What if we apply the formula to data from a cluster sample? If y_1, \ldots, y_n are from a SRS, then

$$\operatorname{Var}[\bar{y}] = \sigma^2/n = \mathsf{E}[s^2/n].$$

 s/\sqrt{n} provides a good estimate of the sd of \bar{y} .

If y_1, \ldots, y_n are from a cluster sample, then generally

$$\operatorname{Var}[\bar{y}] > \sigma^2/n \approx \operatorname{E}[s^2/n].$$

Subpopulation inferences

Cross-level inferences 0000000000000

Ignoring across-group heterogeneity

$$ar{y} \pm t_{n-1,.975} imes s/\sqrt{n}$$

What if we apply the formula to data from a cluster sample? If y_1, \ldots, y_n are from a SRS, then

$$\mathsf{Var}[\bar{y}] = \sigma^2/n = \mathsf{E}[s^2/n].$$

 s/\sqrt{n} provides a good estimate of the sd of \bar{y} .

If y_1, \ldots, y_n are from a cluster sample, then generally

$$\operatorname{Var}[\bar{y}] > \sigma^2/n \approx \operatorname{E}[s^2/n].$$

Subpopulation inferences

Cross-level inferences 0000000000000

Ignoring across-group heterogeneity

$$ar{y} \pm t_{n-1,.975} imes s/\sqrt{n}$$

What if we apply the formula to data from a cluster sample? If y_1, \ldots, y_n are from a SRS, then

$$\mathsf{Var}[\bar{y}] = \sigma^2/n = \mathsf{E}[s^2/n].$$

 s/\sqrt{n} provides a good estimate of the sd of \bar{y} .

If y_1, \ldots, y_n are from a cluster sample, then generally

$$\operatorname{Var}[\bar{y}] > \sigma^2/n \approx \operatorname{E}[s^2/n].$$

 s/\sqrt{n} is generally an underestimate of the sd of \bar{y} .

How will the resulting confidence interval behave if $sd(\bar{y}) > s/\sqrt{n}$?

Subpopulation inferences

Cross-level inferences 0000000000000

Ignoring across-group heterogeneity

$$ar{y} \pm t_{n-1,.975} imes s/\sqrt{n}$$

What if we apply the formula to data from a cluster sample? If y_1, \ldots, y_n are from a SRS, then

$$\mathsf{Var}[\bar{y}] = \sigma^2/n = \mathsf{E}[s^2/n].$$

 s/\sqrt{n} provides a good estimate of the sd of \bar{y} .

If y_1, \ldots, y_n are from a cluster sample, then generally

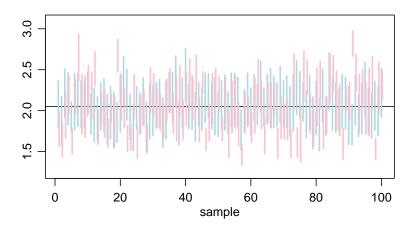
$$\operatorname{Var}[\bar{y}] > \sigma^2/n \approx \operatorname{E}[s^2/n].$$

Subpopulation inferences

Population inferences

Cross-level inferences

Ignoring across-group heterogeneity



Subpopulation inferences

 Cross-level inferences 0000000000000

Ignoring across-group heterogeneity

Summary:

- Across-group heterogeneity = within-group similarity.
- Within-group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is higher than that of the mean of uncorrelated data.
- Statistical inference ignoring such correlation will be inaccurate.

- evaluate within- and across-group heterogeneity;
- provide accurate statistical inference based on cluster samples.

Population inferences 0000000000000000000000000 Cross-level inferences 0000000000000

Ignoring across-group heterogeneity

Summary:

- Across-group heterogeneity = within-group similarity.
- Within-group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is higher than that of the mean of uncorrelated data.
- Statistical inference ignoring such correlation will be inaccurate.

- evaluate within- and across-group heterogeneity;
- provide accurate statistical inference based on cluster samples.

Population inferences 000000000000000000000000 Cross-level inferences

Ignoring across-group heterogeneity

Summary:

- Across-group heterogeneity = within-group similarity.
- Within-group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is higher than that of the mean of uncorrelated data.
- Statistical inference ignoring such correlation will be inaccurate.

- evaluate within- and across-group heterogeneity;
- provide accurate statistical inference based on cluster samples.

Population inferences 000000000000000000000000 Cross-level inferences

Ignoring across-group heterogeneity

Summary:

- Across-group heterogeneity = within-group similarity.
- Within-group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is higher than that of the mean of uncorrelated data.
- Statistical inference ignoring such correlation will be inaccurate.

- evaluate within- and across-group heterogeneity;
- provide accurate statistical inference based on cluster samples.

Population inferences 000000000000000000000000 Cross-level inferences 0000000000000

Ignoring across-group heterogeneity

Summary:

- Across-group heterogeneity = within-group similarity.
- Within-group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is higher than that of the mean of uncorrelated data.
- Statistical inference ignoring such correlation will be inaccurate.

- evaluate within- and across-group heterogeneity;
- provide accurate statistical inference based on cluster samples.

Population inferences 000000000000000000000000 Cross-level inferences 0000000000000

Ignoring across-group heterogeneity

Summary:

- Across-group heterogeneity = within-group similarity.
- Within-group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is higher than that of the mean of uncorrelated data.
- Statistical inference ignoring such correlation will be inaccurate.

- evaluate within- and across-group heterogeneity;
- provide accurate statistical inference based on cluster samples.

Population inferences 000000000000000000000000 Cross-level inferences 0000000000000

Ignoring across-group heterogeneity

Summary:

- Across-group heterogeneity = within-group similarity.
- Within-group similarity leads to positively correlated cluster sample data.
- The variance of the sample mean from (positively) correlated data is higher than that of the mean of uncorrelated data.
- Statistical inference ignoring such correlation will be inaccurate.

- evaluate within- and across-group heterogeneity;
- provide accurate statistical inference based on cluster samples.

Subpopulation inferences

Population inferences

Cross-level inferences •000000000000

Estimation of a treatment effect

Suppose

- $x \in \{0, 1\}$
- $\mu_1 = \mathsf{E}[y|x=1]$
- $\mu_0 = \mathsf{E}[y|x=0]$

Task: Estimate the difference $\delta = \mu_1 - \mu_0$ based on cluster sample data.

Data: For each group j, we have $(y_{1,j}, x_{1,j}), \ldots, (y_{n,j}, x_{n,j})$.

Subpopulation inferences

Cross-level inferences •000000000000

Estimation of a treatment effect

Suppose

- $x \in \{0, 1\}$
- $\mu_1 = \mathsf{E}[y|x=1]$
- $\mu_0 = \mathsf{E}[y|x=0]$

Task: Estimate the difference $\delta = \mu_1 - \mu_0$ based on cluster sample data.

Data: For each group j, we have $(y_{1,j}, x_{1,j}), \ldots, (y_{n,j}, x_{n,j})$.

Subpopulation inferences

Population inferences

Cross-level inferences •000000000000

Estimation of a treatment effect

Suppose

- $x \in \{0, 1\}$
- $\mu_1 = \mathsf{E}[y|x=1]$
- $\mu_0 = \mathsf{E}[y|x=0]$

Task: Estimate the difference $\delta = \mu_1 - \mu_0$ based on cluster sample data.

Data: For each group j, we have $(y_{1,j}, x_{1,j}), \ldots, (y_{n,j}, x_{n,j})$.

Subpopulation inferences

Population inferences

Cross-level inferences •000000000000

Estimation of a treatment effect

Suppose

- $x \in \{0, 1\}$
- $\mu_1 = \mathsf{E}[y|x=1]$
- $\mu_0 = \mathsf{E}[y|x=0]$

Task: Estimate the difference $\delta = \mu_1 - \mu_0$ based on cluster sample data.

Data: For each group j, we have $(y_{1,j}, x_{1,j}), \ldots, (y_{n,j}, x_{n,j})$.

Subpopulation inferences

Population inferences

Cross-level inferences •000000000000

Estimation of a treatment effect

Suppose

- $x \in \{0, 1\}$
- $\mu_1 = \mathsf{E}[y|x=1]$
- $\mu_0 = \mathsf{E}[y|x=0]$

Task: Estimate the difference $\delta = \mu_1 - \mu_0$ based on cluster sample data.

Data: For each group j, we have $(y_{1,j}, x_{1,j}), \ldots, (y_{n,j}, x_{n,j})$.

Subpopulation inferences

Population inferences

Cross-level inferences •000000000000

Estimation of a treatment effect

Suppose

- $x \in \{0, 1\}$
- $\mu_1 = \mathsf{E}[y|x=1]$
- $\mu_0 = \mathsf{E}[y|x=0]$

Task: Estimate the difference $\delta = \mu_1 - \mu_0$ based on cluster sample data.

Data: For each group j, we have $(y_{1,j}, x_{1,j}), \ldots, (y_{n,j}, x_{n,j})$.

Subpopulation inferences

Population inferences

Cross-level inferences •000000000000

Estimation of a treatment effect

Suppose

- $x \in \{0, 1\}$
- $\mu_1 = \mathsf{E}[y|x=1]$
- $\mu_0 = \mathsf{E}[y|x=0]$

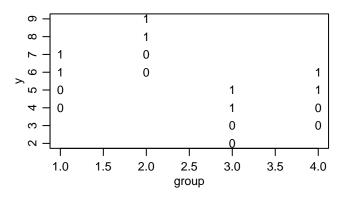
Task: Estimate the difference $\delta = \mu_1 - \mu_0$ based on cluster sample data.

Data: For each group j, we have $(y_{1,j}, x_{1,j}), \ldots, (y_{n,j}, x_{n,j})$.

Subpopulation inferences

Population inferences

Overconservative analysis



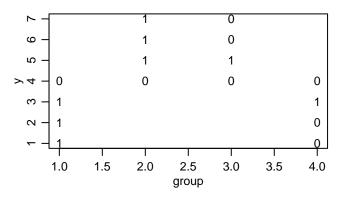
- Overlap across groups, no overlap within groups.
- Across-group variation is *large* compared to the treatment effect.
- Ignoring group differences can lead to overconservative analysis.

Subpopulation inferences

Population inferences

Cross-level inferences

Underconservative analysis



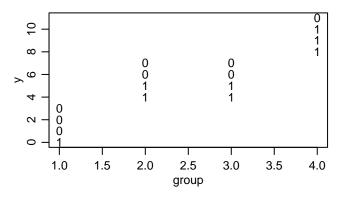
- The population mean difference is zero.
- The sample mean difference based on pairs of two groups is not zero.
- Ignoring group differences can lead to *underconservative analysis*.

Subpopulation inferences

Population inferences

Cross-level inferences

Effect reversal



• $\mu_1 - \mu_0 > 0$ in population, $\mu_{1,j} - \mu_{0,j} < 0$ in every group.

- Within-group effects may be different from population effects.
- This is sometimes called *Simpson's paradox*.

Subpopulation inferences

Population inferences

Cross-level inferences

Consequences of across-group heterogeneity

Summary:

- Across-group heterogeneity can lead to over or under conservative analysis.
- Population-level effects may be different from group-level effects.
- Data analysis ignoring groups can be inaccurate in *unpredictable* ways.

- differentiate between macro and micro level effects;
- appropriately control for within and between-group heterogeneity.

Subpopulation inferences

Population inferences

Cross-level inferences

Consequences of across-group heterogeneity

Summary:

- Across-group heterogeneity can lead to over or under conservative analysis.
- Population-level effects may be different from group-level effects.
- Data analysis ignoring groups can be inaccurate in *unpredictable* ways.

- differentiate between macro and micro level effects;
- appropriately control for within and between-group heterogeneity.

Cross-level inferences

Macro and micro effects

- X, x are macro and micro level explanatory variables
- Y, y are macro and micro level outcome variables

What are the effects of SES (x) on political opinion (y)? (a *micro-micro effect*)

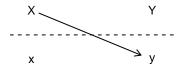
Population inferences

Cross-level inferences

Macro, micro and cross-level effects

X, x are macro and micro level explanatory variables

Y, y are macro and micro level outcome variables



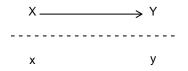
What are the effects of State GDP (X) on political opinion (y) ? (a macro-micro effect)

Cross-level inferences

Macro, micro and cross-level effects

X, x are macro and micro level explanatory variables

Y, y are macro and micro level outcome variables



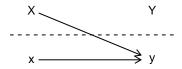
What are the effects of State GDP (X) on statewide political opinion (Y)? (a macro-macro effect)

Cross-level inferences

Macro, micro and cross-level effects

X, x are macro and micro level explanatory variables

Y, y are macro and micro level outcome variables



What are the effects of State GDP (X) and SES (x) on political opinion (y)? (*multilevel effects*)

Subpopulation inferences

Population inferences

Cross-level inferences

Example: Income and voting patterns

Exit poll data from 2004 presidential election

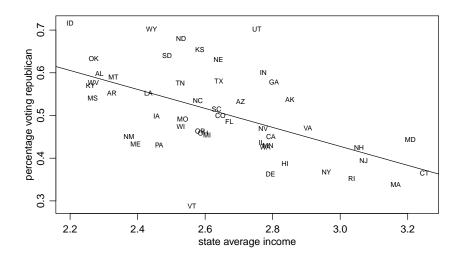
- $j \in \{1, \dots, 50\}$ indexes the states,
- $y_{i,j}$ is the voting variable for person *i* in state *j*,
- $x_{i,j}$ is a measure of income for person (i,j).

Subpopulation inferences

Population inferences

Cross-level inferences

Macro effects

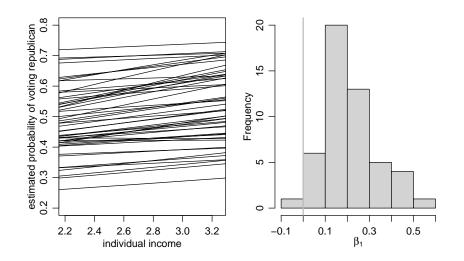


Subpopulation inferences

Population inferences

Cross-level inferences

Micro effects



Cross-level inferences

Joint estimation of effects

In general we may be interested in understanding all of the following:

- macro level effects,
- micro level effects,
- macro effects on micro variables,
- heterogeneity of micro effects across groups.

$$\begin{array}{rcl} y_{i,j} &\sim & a_j &+ & b_j x_{i,j} &+ & \epsilon_{i,j} \\ &= & \left(\alpha_0 + \alpha_1 w_j + z_j\right) &+ & \left(\beta_0 + \beta_1 w_j + e_j\right) x_{i,j} &+ & \epsilon_{i,j}. \end{array}$$

Cross-level inferences

Joint estimation of effects

In general we may be interested in understanding all of the following:

- macro level effects,
- micro level effects,
- macro effects on micro variables,
- heterogeneity of micro effects across groups.

$$\begin{array}{rcl} y_{i,j} &\sim & a_j &+ & b_j x_{i,j} &+ & \epsilon_{i,j} \\ &= & (\alpha_0 + \alpha_1 w_j + z_j) &+ & (\beta_0 + \beta_1 w_j + e_j) x_{i,j} &+ & \epsilon_{i,j}. \end{array}$$

Cross-level inferences

Joint estimation of effects

In general we may be interested in understanding all of the following:

- macro level effects,
- micro level effects,
- macro effects on micro variables,
- heterogeneity of micro effects across groups.

$$\begin{array}{rcl} y_{i,j} &\sim & a_j &+ & b_j x_{i,j} &+ & \epsilon_{i,j} \\ &= & (\alpha_0 + \alpha_1 w_j + z_j) &+ & (\beta_0 + \beta_1 w_j + e_j) x_{i,j} &+ & \epsilon_{i,j}. \end{array}$$

Cross-level inferences

Joint estimation of effects

In general we may be interested in understanding all of the following:

- macro level effects,
- micro level effects,
- macro effects on micro variables,
- heterogeneity of micro effects across groups.

$$\begin{array}{rcl} y_{i,j} & \sim & a_j & + & b_j x_{i,j} & + & \epsilon_{i,j} \\ & = & (\alpha_0 + \alpha_1 w_j + z_j) & + & (\beta_0 + \beta_1 w_j + e_j) x_{i,j} & + & \epsilon_{i,j}. \end{array}$$