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Multilevel data

Multilevel data: Data for which there are

• multiple nested levels of sampling, and/or

• multiple nested sources of variability.

Such data are also often called hierarchical data or clustered data.

Examples:

Educational testing: students nested within classes;

Small area estimation: households nested within counties;

Agricultural experiments: subplots nested within whole plots;

Clinical trials: measurements nested within patients, patients within hospitals.
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Terminology

observational unit: an object or condition for which data are measured.

macro-level unit: a unit within which other units are nested.

micro-level unit: a unit nested within another unit.

Synonyms:

• macro-level unit, top-level unit, clusters, groups;

• micro-level unit, bottom-level unit, units.

If there are only two levels, we will say units are nested within groups.

Notation: yi,j = measurement of ith unit in jth group.

Populations:

• The population: all possible units from all possible groups;

• A subpopulation: all possible units from a single group group.
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Types of multilevel inference

Subpopulation inferences: Group-specific features are of primary interest.

• What is the mean within each group, based on a sample from each group?

• What is the treatment effect for each group?

• Do the groups differ? If so, how do they differ?

Population inferences: Across-group averages are of primary interest.

• What is the population mean, based on cluster sample?

• What is the population treatment effect?

Cross-level inferences: Both types of features are important.

• What is the average treatment effect, adjusting for group differences?



Multilevel data Subpopulation inferences Population inferences Cross-level inferences

Example: Educational testing data
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Example: Environmental monitoring data
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Group-specific inferences

Targets of inference: Subpopulation means θ1, . . . , θm.

Data: Subpopulation samples {y1,1, . . . , y1,n1}, . . . , {y1,p, . . . , y1,nm}.

Statistical methods:

• Variance tests and estimation: What is Var[θ1, . . . , θm]? Is it zero?

• Estimates of θj : θ̂j = ȳ·j or θ̂j = wȳ·j + (1− w)ȳ··;

• Confidence intervals: Pr(θj ∈ C(y)|θj) = 1− α, or Pr(θ∗ ∈ C(y)) = 1− α;
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Cluster sampling

Survey design: Consider the costs of obtaining soil samples from

• 100 randomly sampled locations in a city, versus

• 10 randomly sampled locations from 10 randomly sampled neighborhoods.

Cluster sampling:
The second sampling scheme is called cluster sampling or two-stage sampling.

Cluster sampling

• is often cheaper per sampled unit;

• often gives less reliable estimates of population means.
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Estimation of a population mean

Task: Estimate the population mean µ from sample data.

Questions:

• How do cluster sampling and SRS compare?

• How do you infer µ from cluster sample data?
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Two-stage sampling
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Two-stage sampling
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Two-stage sampling
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Variability of sample mean
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Comparison to SRS
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Comparison to SRS
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Variability of sample mean
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Comparison of sampling variability
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Heterogeneity, homogeneity and dependence

As we will show mathematically,

across-group heterogeneity ⇔ within-group homogeneity

⇔ within-group correlation or dependence

Across-group heterogeneity increases the variance of the sample mean, and so

Var[ȳtss ] ≥ Var[ȳsrs ]

if the total samples sizes are the same.
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Confidence interval from a SRS

Task: Construct a 95% CI for the population mean.

t-interval for SRS:
If y1, . . . , yn is an iid sample with E[yi ] = µ and Var[yi ] = σ2,

E[ȳ ] = µ , Var[ȳ ] = σ2/n.

By the central limit theorem,

ȳ ∼̇ N(µ, σ2/n) ,
ȳ − µ

σ/
√
n

∼̇ N(0, 1).

As σ2 is generally unknown, we use

ȳ − µ

s/
√
n

∼̇ tn−1, ,where s2 =
1

n − 1

∑
(yi − ȳ)2.

From this, we have

ȳ ± tn−1,.975 × s/
√
n is a 95% CI for µ.
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ȳ − µ

σ/
√
n

∼̇ N(0, 1).

As σ2 is generally unknown, we use
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From this, we have
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Frequentist coverage
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Ignoring across-group heterogeneity

ȳ ± tn−1,.975 × s/
√
n

What if we apply the formula to data from a cluster sample?

If y1, . . . , yn are from a SRS, then

Var[ȳ ] = σ2/n = E[s2/n].

s/
√
n provides a good estimate of the sd of ȳ .

If y1, . . . , yn are from a cluster sample, then generally

Var[ȳ ] > σ2/n ≈ E[s2/n].

s/
√
n is generally an underestimate of the sd of ȳ .

How will the resulting confidence interval behave if sd(ȳ) > s/
√
n?
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ȳ ± tn−1,.975 × s/
√
n

What if we apply the formula to data from a cluster sample?

If y1, . . . , yn are from a SRS, then
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Ignoring across-group heterogeneity

Summary:

• Across-group heterogeneity = within-group similarity.

• Within-group similarity leads to positively correlated cluster sample data.

• The variance of the sample mean from (positively) correlated data is
higher than that of the mean of uncorrelated data.

• Statistical inference ignoring such correlation will be inaccurate.

Remedy: We will develop techniques to

• evaluate within- and across-group heterogeneity;

• provide accurate statistical inference based on cluster samples.
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Estimation of a treatment effect

Suppose

• x ∈ {0, 1}
• µ1 = E[y |x = 1]

• µ0 = E[y |x = 0]

Task: Estimate the difference δ = µ1 − µ0 based on cluster sample data.

Data: For each group j , we have (y1,j , x1,j), . . . , (yn,j , xn,j).

Question: What could go wrong by ignoring the multilevel nature of the data?
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Overconservative analysis
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• Overlap across groups, no overlap within groups.

• Across-group variation is large compared to the treatment effect.

• Ignoring group differences can lead to overconservative analysis.
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Underconservative analysis
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• The population mean difference is zero.

• The sample mean difference based on pairs of two groups is not zero.

• Ignoring group differences can lead to underconservative analysis.
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Effect reversal
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• µ1 − µ0 > 0 in population, µ1,j − µ0,j < 0 in every group.

• Within-group effects may be different from population effects.

• This is sometimes called Simpson’s paradox.
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Consequences of across-group heterogeneity

Summary:

• Across-group heterogeneity can lead to over or under conservative analysis.

• Population-level effects may be different from group-level effects.

• Data analysis ignoring groups can be inaccurate in unpredictable ways.

Remedy: We will develop techniques to

• differentiate between macro and micro level effects;

• appropriately control for within and between-group heterogeneity.
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Summary:

• Across-group heterogeneity can lead to over or under conservative analysis.

• Population-level effects may be different from group-level effects.

• Data analysis ignoring groups can be inaccurate in unpredictable ways.

Remedy: We will develop techniques to

• differentiate between macro and micro level effects;

• appropriately control for within and between-group heterogeneity.
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Macro and micro effects

X , x are macro and micro level explanatory variables

Y , y are macro and micro level outcome variables

x

X

y

Y

What are the effects of SES (x) on political opinion (y)?

(a micro-micro effect)
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Macro, micro and cross-level effects

X , x are macro and micro level explanatory variables

Y , y are macro and micro level outcome variables

x

X

y

Y

What are the effects of State GDP (X ) on political opinion (y) ?

(a macro-micro effect)
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Macro, micro and cross-level effects

X , x are macro and micro level explanatory variables

Y , y are macro and micro level outcome variables

x

X

y

Y

What are the effects of State GDP (X ) on statewide political opinion (Y )?

(a macro-macro effect)
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Macro, micro and cross-level effects

X , x are macro and micro level explanatory variables

Y , y are macro and micro level outcome variables

x

X

y

Y

What are the effects of State GDP (X ) and SES (x) on political opinion (y)?

(multilevel effects)
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Example: Income and voting patterns

Exit poll data from 2004 presidential election

• j ∈ {1, . . . , 50} indexes the states,

• yi,j is the voting variable for person i in state j ,

• xi,j is a measure of income for person (i , j).
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Macro effects
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Micro effects
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Joint estimation of effects

In general we may be interested in understanding all of the following:

• macro level effects,

• micro level effects,

• macro effects on micro variables,

• heterogeneity of micro effects across groups.

Inference for these items can be made with LME and GLME models:

yi,j ∼ aj + bjxi,j + ϵi,j
= (α0 + α1wj + zj) + (β0 + β1wj + ej)xi,j + ϵi,j .
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