Random effects ANOVA

Peter Hoff Duke STA 610

Estimation and inference

ANOVA limitations

Hierarchical normal model

Estimation and inference

Classical data analysis and estimation

The "classical" testing and estimation procedure is as follows: If the $p\mbox{-value} < 0.05,$

- reject H_0 , and conclude there are group differences,
- estimate θ_j with $\bar{y}_{\cdot j}$.

$$\hat{ heta}_j = ar{y}_{\cdot j}$$

If the p-value > 0.05,

accept H₀, and conclude there is no evidence of group differences,

• estimate θ_i with $\bar{y}_{..}$

 $\hat{\theta}_j = \bar{y}_{\cdots}$

$$\hat{ heta}_j = w ar{y}_j + (1-w) ar{y}_{...}$$

Classical data analysis and estimation

The "classical" testing and estimation procedure is as follows: If the p-value < 0.05,

- reject H_0 , and conclude there are group differences,
- estimate θ_j with $\overline{y}_{\cdot j}$.

$$\hat{\theta}_j = \bar{y}_{\cdot j}$$

If the p-value > 0.05,

accept H₀, and conclude there is no evidence of group differences,

• estimate θ_i with \bar{y} ..

 $\hat{\theta}_j = \bar{y}_{\cdots}$

$$\hat{ heta}_j = w ar{y}_j + (1-w) ar{y}_{..}$$

Classical data analysis and estimation

The "classical" testing and estimation procedure is as follows:

- If the p-value < 0.05,
 - reject H₀, and conclude there are group differences,
 - estimate θ_j with $\bar{y}_{\cdot j}$.

 $\hat{\theta}_j = \bar{y}_{\cdot j}$

If the p-value > 0.05,

accept H₀, and conclude there is no evidence of group differences.

• estimate θ_j with $\bar{y}_{..}$

 $\hat{\theta}_j = \bar{y}_{\cdots}$

$$\hat{ heta}_j = w ar{y}_j + (1-w) ar{y}_{..}$$

Classical data analysis and estimation

The "classical" testing and estimation procedure is as follows:

- If the p-value < 0.05,
 - reject H₀, and conclude there are group differences,
 - estimate θ_j with y
 _j.

$$\hat{\theta}_j = \bar{y}_{\cdot j}$$

If the p-value > 0.05,

- accept H_0 , and conclude there is no evidence of group differences,
- estimate θ_j with \overline{y} ...

$$\hat{\theta}_j = \bar{y}$$
.

$$\hat{ heta}_j = w ar{y}_j + (1-w) ar{y}_{...}$$

Classical data analysis and estimation

The "classical" testing and estimation procedure is as follows:

- If the p-value < 0.05,
 - reject H₀, and conclude there are group differences,
 - estimate θ_j with $\overline{y}_{.j}$.

$$\hat{\theta}_j = \bar{y}_{\cdot j}$$

If the p-value > 0.05,

- accept H_0 , and conclude there is no evidence of group differences,
- estimate θ_j with \overline{y} ...

$$\hat{\theta}_j = \bar{y}_{\cdot \cdot}$$

$$\hat{ heta}_j = w ar{y}_j + (1-w) ar{y}_{..}$$

Classical data analysis and estimation

The "classical" testing and estimation procedure is as follows:

- If the p-value < 0.05,
 - reject H₀, and conclude there are group differences,
 - estimate θ_j with y
 _j.

$$\hat{\theta}_j = \bar{y}_{\cdot j}$$

If the p-value > 0.05,

- accept H_0 , and conclude there is no evidence of group differences,
- estimate θ_j with \bar{y}_{\cdots}

 $\hat{\theta}_j = \bar{y}_{\cdot \cdot}$

$$\hat{ heta}_j = w ar{y}_j + (1-w) ar{y}_{...}$$

Classical data analysis and estimation

The "classical" testing and estimation procedure is as follows:

- If the p-value < 0.05,
 - reject H₀, and conclude there are group differences,
 - estimate θ_j with $\overline{y}_{.j}$.

$$\hat{\theta}_j = \bar{y}_{\cdot j}$$

If the p-value > 0.05,

- accept H_0 , and conclude there is no evidence of group differences,
- estimate θ_j with $\bar{y}_{...}$

$$\hat{\theta}_j = \bar{y}_{\cdot \cdot}$$

$$\hat{ heta}_j = w ar{y}_j + (1-w) ar{y}_{...}$$

Classical data analysis and estimation

The "classical" testing and estimation procedure is as follows:

- If the p-value < 0.05,
 - reject H₀, and conclude there are group differences,
 - estimate θ_j with $\overline{y}_{.j}$.

$$\hat{\theta}_j = \bar{y}_{\cdot j}$$

If the p-value > 0.05,

- accept H_0 , and conclude there is no evidence of group differences,
- estimate θ_j with $\bar{y}_{...}$

$$\hat{\theta}_j = \bar{y}_{\cdot \cdot}$$

$$\hat{ heta}_j = w ar{y}_j + (1-w) ar{y}_{...}$$

Classical data analysis and estimation

The "classical" testing and estimation procedure is as follows:

- If the p-value < 0.05,
 - reject H₀, and conclude there are group differences,
 - estimate θ_j with $\overline{y}_{.j}$.

$$\hat{\theta}_j = \bar{y}_{\cdot j}$$

If the p-value > 0.05,

- accept H_0 , and conclude there is no evidence of group differences,
- estimate θ_j with $\bar{y}_{...}$

$$\hat{\theta}_j = \bar{y}_{\cdot \cdot}$$

$$\hat{ heta}_j = war{y}_j + (1-w)ar{y}_j$$
 .

Hierarchical normal model

Classical data analysis and estimation

Advantages of classical procedure:

- controls the type I error rate of rejecting *H*₀;
- is easy to implement and report.

- rejecting H₀ doesn't mean no similarities across groups
 ⇒ y
 _j is an inefficient estimate of θ_j
- accepting H_0 doesn't mean no differences between groups $\Rightarrow \overline{y}_{..}$ is an inaccurate estimate of $\theta_{1..}$

Hierarchical normal model

Classical data analysis and estimation

Advantages of classical procedure:

- controls the type I error rate of rejecting H₀;
- is easy to implement and report.

- rejecting H₀ doesn't mean no similarities across groups
 ⇒ y
 _j is an inefficient estimate of θ_j
- accepting H_0 doesn't mean no differences between groups $\Rightarrow \overline{y}_{..}$ is an inaccurate estimate of $\theta_{1..}$

Hierarchical normal model

Classical data analysis and estimation

Advantages of classical procedure:

- controls the type I error rate of rejecting *H*₀;
- is easy to implement and report.

- rejecting H₀ doesn't mean no similarities across groups
 ⇒ y
 _j is an inefficient estimate of θ_j
- accepting H_0 doesn't mean no differences between groups $\Rightarrow \overline{y}_{\cdot}$ is an inaccurate estimate of θ_1 .

Classical data analysis and estimation

Advantages of classical procedure:

- controls the type I error rate of rejecting H₀;
- is easy to implement and report.

- rejecting H_0 doesn't mean no similarities across groups $\Rightarrow \bar{y}_{\cdot j}$ is an inefficient estimate of θ_j
- accepting H_0 doesn't mean no differences between groups $\Rightarrow \overline{y}$.. is an inaccurate estimate of θ_i .

Classical data analysis and estimation

Advantages of classical procedure:

- controls the type I error rate of rejecting H₀;
- is easy to implement and report.

- rejecting H_0 doesn't mean no similarities across groups $\Rightarrow \bar{y}_{\cdot j}$ is an inefficient estimate of θ_j
- accepting H_0 doesn't mean no differences between groups $\Rightarrow \bar{y}_{\cdot}$ is an inaccurate estimate of θ_i .

Classical data analysis and estimation

Advantages of classical procedure:

- controls the type I error rate of rejecting *H*₀;
- is easy to implement and report.

- rejecting H_0 doesn't mean no similarities across groups $\Rightarrow \bar{y}_{\cdot j}$ is an inefficient estimate of θ_j
- accepting H_0 doesn't mean no differences between groups $\Rightarrow \overline{y}$.. is an inaccurate estimate of θ_i .

Classical data analysis and estimation

Advantages of classical procedure:

- controls the type I error rate of rejecting *H*₀;
- is easy to implement and report.

- rejecting H_0 doesn't mean no similarities across groups $\Rightarrow \bar{y}_{\cdot j}$ is an inefficient estimate of θ_j
- accepting H_0 doesn't mean no differences between groups $\Rightarrow \overline{y}$.. is an inaccurate estimate of θ_i .

Classical data analysis and estimation

Advantages of classical procedure:

- controls the type I error rate of rejecting *H*₀;
- is easy to implement and report.

- rejecting H_0 doesn't mean no similarities across groups $\Rightarrow \bar{y}_{\cdot j}$ is an inefficient estimate of θ_j
- accepting H_0 doesn't mean no differences between groups $\Rightarrow \overline{y}$.. is an inaccurate estimate of θ_i .

Hierarchical normal model

An alternative strategy

$$\hat{ heta}_j = war{y}_j + (1-w)ar{y}_{\cdot\cdot}$$

Classical approach: w is the indicator of rejecting H_0 .

Multilevel approach: $w = \frac{n/\hat{\sigma}^2}{n/\hat{\sigma}^2 + 1/\hat{\tau}^2}$

- sharing of information across groups,
- the amount of sharing to be estimated from the data.

Hierarchical normal model

An alternative strategy

$$\hat{ heta}_j = w ar{y}_j + (1-w) ar{y}_{..}$$

Classical approach: w is the indicator of rejecting H_0 .

Multilevel approach: $w = \frac{n/\hat{\sigma}^2}{n/\hat{\sigma}^2 + 1/\hat{\tau}^2}$

- sharing of information across groups,
- the amount of sharing to be estimated from the data.

Hierarchical normal model

An alternative strategy

$$\hat{ heta}_j = w ar{y}_j + (1-w) ar{y}_{\cdot \cdot}$$

Classical approach: w is the indicator of rejecting H_0 .

Multilevel approach:
$$w = \frac{n/\hat{\sigma}^2}{n/\hat{\sigma}^2 + 1/\hat{\tau}^2}$$

- sharing of information across groups,
- the amount of sharing to be estimated from the data.

Hierarchical normal model

An alternative strategy

$$\hat{ heta}_j = w ar{y}_j + (1-w) ar{y}_{\cdot \cdot}$$

Classical approach: w is the indicator of rejecting H_0 .

Multilevel approach:
$$w = \frac{n/\hat{\sigma}^2}{n/\hat{\sigma}^2 + 1/\hat{\tau}^2}$$

- sharing of information across groups,
- the amount of sharing to be estimated from the data.

Hierarchical normal model

An alternative strategy

$$\hat{ heta}_j = w ar{y}_j + (1-w) ar{y}_{\cdot \cdot}$$

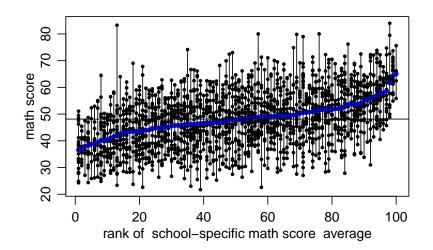
Classical approach: w is the indicator of rejecting H_0 .

Multilevel approach:
$$w = \frac{n/\hat{\sigma}^2}{n/\hat{\sigma}^2 + 1/\hat{\tau}^2}$$

- sharing of information across groups,
- the amount of sharing to be estimated from the data.

Hierarchical normal model

Example: Test scores



Hierarchical normal model

Example: Test scores

y.3122<-ndat\$mathscore[ndat\$school=="3122"]
y.2832<-ndat\$mathscore[ndat\$school=="2832"]</pre>

y.3122

[1] 75.62 55.86 66.16 62.43

y.2832

[1] 66.26 66.12 71.22 54.90 61.98 69.42 61.22 62.99 57.99 61.33 66.85 67.87 ## [13] 63.94 73.70 70.36 64.01 57.35 68.25 57.39

mean(ndat\$mathscore)
[1] 48.07446
mean(y.3122)
[1] 65.0175
mean(y.2832)
[1] 64.37632

Example: Test scores

but

$n_{3122} = 4 < 19 = n_{2832}$

Based on the data $\{y_{i,j}\}$, how would you estimate θ_{3122} and θ_{2832} ?

Ignoring across-group information :

- $\hat{\theta}_{2832} = \bar{y}_{2832} = 64.3763158$
- $\hat{\theta}_{3122} = \bar{y}_{3122} = 65.0175$
- $\hat{\theta}_{2832} < \hat{\theta}_{3122}$

- $\bar{y}_{..} < \hat{\theta}_{2832} < \bar{y}_{2832} = 64.3763158$
- $ar{y}_{..} < \hat{ heta}_{3122} < ar{y}_{3122} = 65.0175$
- $\hat{ heta}_{2832} \gtrless \hat{ heta}_{3122}$?

Example: Test scores

but

$$n_{3122} = 4 < 19 = n_{2832}$$

Based on the data $\{y_{i,j}\}$, how would you estimate θ_{3122} and θ_{2832} ?

Ignoring across-group information :

- $\hat{\theta}_{2832} = \bar{y}_{2832} = 64.3763158$
- $\hat{\theta}_{3122} = \bar{y}_{3122} = 65.0175$
- $\hat{ heta}_{2832} < \hat{ heta}_{3122}$

- $\bar{y}_{..} < \hat{\theta}_{2832} < \bar{y}_{2832} = 64.3763158$
- $ar{y}_{..} < \hat{ heta}_{3122} < ar{y}_{3122} = 65.0175$
- $\hat{ heta}_{2832} \gtrless \hat{ heta}_{3122}$?

Estimation and inference

Example: Test scores

but

$$n_{3122} = 4 < 19 = n_{2832}$$

Based on the data $\{y_{i,j}\}$, how would you estimate θ_{3122} and θ_{2832} ?

Ignoring across-group information :

- $\hat{\theta}_{2832} = \bar{y}_{2832} = 64.3763158$
- $\hat{\theta}_{3122} = \bar{y}_{3122} = 65.0175$
- $\hat{ heta}_{2832} < \hat{ heta}_{3122}$

- $\bar{y}_{..} < \hat{\theta}_{2832} < \bar{y}_{2832} = 64.3763158$
- $ar{y}_{..} < \hat{ heta}_{3122} < ar{y}_{3122} = 65.0175$
- $\hat{ heta}_{2832} \gtrless \hat{ heta}_{3122}$?

Estimation and inference

Example: Test scores

but

$$n_{3122} = 4 < 19 = n_{2832}$$

Based on the data $\{y_{i,j}\}$, how would you estimate θ_{3122} and θ_{2832} ?

Ignoring across-group information :

•
$$\hat{\theta}_{2832} = \bar{y}_{2832} = 64.3763158$$

•
$$\hat{\theta}_{3122} = \bar{y}_{3122} = 65.0175$$

• $\hat{ heta}_{2832} < \hat{ heta}_{3122}$

- $\bar{y}_{..} < \bar{\theta}_{2832} < \bar{y}_{2832} = 64.3763158$
- $ar{y}_{..} < \hat{ heta}_{3122} < ar{y}_{3122} = 65.0175$
- $\hat{ heta}_{2832} \gtrless \hat{ heta}_{3122}$?

Example: Test scores

but

$$n_{3122} = 4 < 19 = n_{2832}$$

Based on the data $\{y_{i,j}\}$, how would you estimate θ_{3122} and θ_{2832} ?

Ignoring across-group information :

- $\hat{\theta}_{2832} = \bar{y}_{2832} = 64.3763158$
- $\hat{\theta}_{3122} = \bar{y}_{3122} = 65.0175$
- $\hat{\theta}_{2832} < \hat{\theta}_{3122}$

- $\bar{y}_{..} < \hat{\theta}_{2832} < \bar{y}_{2832} = 64.3763158$
- $ar{y}_{..} < \hat{ heta}_{3122} < ar{y}_{3122} = 65.0175$
- $\hat{ heta}_{2832} \gtrless \hat{ heta}_{3122}$?

Example: Test scores

but

$$n_{3122} = 4 < 19 = n_{2832}$$

Based on the data $\{y_{i,j}\}$, how would you estimate θ_{3122} and θ_{2832} ?

Ignoring across-group information :

- $\hat{\theta}_{2832} = \bar{y}_{2832} = 64.3763158$
- $\hat{\theta}_{3122} = \bar{y}_{3122} = 65.0175$
- $\hat{\theta}_{2832} < \hat{\theta}_{3122}$

- $\bar{y}_{..} < \hat{\theta}_{2832} < \bar{y}_{2832} = 64.3763158$
- $ar{y}_{..} < \hat{ heta}_{3122} < ar{y}_{3122} = 65.0175$
- $\hat{ heta}_{2832} \gtrless \hat{ heta}_{3122}$?

Estimation and inference

Example: Test scores

but

$$n_{3122} = 4 < 19 = n_{2832}$$

Based on the data $\{y_{i,j}\}$, how would you estimate θ_{3122} and θ_{2832} ?

Ignoring across-group information :

- $\hat{\theta}_{2832} = \bar{y}_{2832} = 64.3763158$
- $\hat{\theta}_{3122} = \bar{y}_{3122} = 65.0175$
- $\hat{\theta}_{2832} < \hat{\theta}_{3122}$

- $\bar{y}_{..} < \hat{\theta}_{2832} < \bar{y}_{2832} = 64.3763158$
- $\bar{y}_{..} < \hat{\theta}_{3122} < \bar{y}_{3122} = 65.0175$
- $\hat{\theta}_{2832} \gtrless \hat{\theta}_{3122}$?

Example: Test scores

but

$$n_{3122} = 4 < 19 = n_{2832}$$

Based on the data $\{y_{i,j}\}$, how would you estimate θ_{3122} and θ_{2832} ?

Ignoring across-group information :

- $\hat{\theta}_{2832} = \bar{y}_{2832} = 64.3763158$
- $\hat{\theta}_{3122} = \bar{y}_{3122} = 65.0175$
- $\hat{\theta}_{2832} < \hat{\theta}_{3122}$

- $\bar{y}_{..} < \hat{\theta}_{2832} < \bar{y}_{2832} = 64.3763158$
- $\bar{y}_{..} < \hat{\theta}_{3122} < \bar{y}_{3122} = 65.0175$
- $\hat{\theta}_{2832} \geq \hat{\theta}_{3122}$?

Example: Test scores

but

$$n_{3122} = 4 < 19 = n_{2832}$$

Based on the data $\{y_{i,j}\}$, how would you estimate θ_{3122} and θ_{2832} ?

Ignoring across-group information :

- $\hat{\theta}_{2832} = \bar{y}_{2832} = 64.3763158$
- $\hat{\theta}_{3122} = \bar{y}_{3122} = 65.0175$
- $\hat{\theta}_{2832} < \hat{\theta}_{3122}$

- $\bar{y}_{..} < \hat{\theta}_{2832} < \bar{y}_{2832} = 64.3763158$
- $\bar{y}_{..} < \hat{\theta}_{3122} < \bar{y}_{3122} = 65.0175$
- $\hat{ heta}_{2832} \gtrless \hat{ heta}_{3122}$?

Example: Test scores

but

$$n_{3122} = 4 < 19 = n_{2832}$$

Based on the data $\{y_{i,j}\}$, how would you estimate θ_{3122} and θ_{2832} ?

Ignoring across-group information :

•
$$\hat{\theta}_{2832} = \bar{y}_{2832} = 64.3763158$$

•
$$\hat{\theta}_{3122} = \bar{y}_{3122} = 65.0175$$

•
$$\hat{\theta}_{2832} < \hat{\theta}_{3122}$$

- $\bar{y}_{..} < \hat{\theta}_{2832} < \bar{y}_{2832} = 64.3763158$
- $\bar{y}_{..} < \hat{\theta}_{3122} < \bar{y}_{3122} = 65.0175$

•
$$\hat{\theta}_{2832} \gtrless \hat{\theta}_{3122}$$
 ?

Example: Test scores

but

$$n_{3122} = 4 < 19 = n_{2832}$$

Based on the data $\{y_{i,j}\}$, how would you estimate θ_{3122} and θ_{2832} ?

Ignoring across-group information :

•
$$\hat{\theta}_{2832} = \bar{y}_{2832} = 64.3763158$$

•
$$\hat{\theta}_{3122} = \bar{y}_{3122} = 65.0175$$

•
$$\hat{\theta}_{2832} < \hat{\theta}_{3122}$$

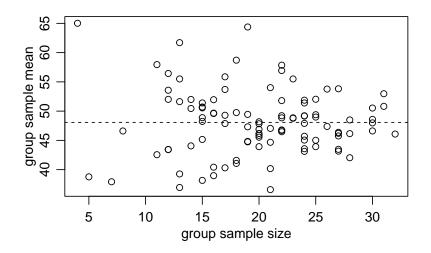
Considering across-group information and sample size: $\bar{y}_{..} = 48.0744556$.

- $\bar{y}_{..} < \hat{\theta}_{2832} < \bar{y}_{2832} = 64.3763158$
- $\bar{y}_{..} < \hat{\theta}_{3122} < \bar{y}_{3122} = 65.0175$

•
$$\hat{\theta}_{2832} \gtrless \hat{\theta}_{3122}$$
 ?

Hierarchical normal model

Example: Test scores



Hierarchical normal model

Estimation and inference

Example: Test scores

Possible explanations for \bar{y}_{3122} :

- \bar{y}_{3122} is large because θ_{3122} is large;
- \overline{y}_{3122} is large because sd(\overline{y}_{3122}) is large.

Possible explanations for \bar{y}_{2832} :

- \bar{y}_{2832} is large because $heta_{2832}$ is large;

- the group specific sample sizes, n_1, \ldots, n_m ;
- the observed across-group heterogeneity.

Hierarchical normal model

Estimation and inference

Example: Test scores

Possible explanations for \bar{y}_{3122} :

- \bar{y}_{3122} is large because θ_{3122} is large;
- \bar{y}_{3122} is large because sd(\bar{y}_{3122}) is large.

Possible explanations for \bar{y}_{2832} :

- \bar{y}_{2832} is large because θ_{2832} is large;
- \bar{y}_{2832} is large because sd(\bar{y}_{2832}) is large (but is smaller than sd(\bar{y}_{3122})).

- the group specific sample sizes, n_1, \ldots, n_m ;
- the observed across-group heterogeneity.

Hierarchical normal model

Estimation and inference

Example: Test scores

Possible explanations for \bar{y}_{3122} :

- \bar{y}_{3122} is large because θ_{3122} is large;
- \bar{y}_{3122} is large because sd(\bar{y}_{3122}) is large.

Possible explanations for \bar{y}_{2832} :

- \bar{y}_{2832} is large because θ_{2832} is large;
- \bar{y}_{2832} is large because sd(\bar{y}_{2832}) is large (but is smaller than sd(\bar{y}_{3122})).

- the group specific sample sizes, n_1, \ldots, n_m ;
- the observed across-group heterogeneity.

Hierarchical normal model

Estimation and inference

Example: Test scores

Possible explanations for \bar{y}_{3122} :

- \bar{y}_{3122} is large because θ_{3122} is large;
- \bar{y}_{3122} is large because sd(\bar{y}_{3122}) is large.

Possible explanations for \bar{y}_{2832} :

- \bar{y}_{2832} is large because θ_{2832} is large;
- \bar{y}_{2832} is large because sd(\bar{y}_{2832}) is large (but is smaller than sd(\bar{y}_{3122})).

- the group specific sample sizes, n_1, \ldots, n_m ;
- the observed across-group heterogeneity.

Hierarchical normal model

Estimation and inference

Example: Test scores

Possible explanations for \bar{y}_{3122} :

- \bar{y}_{3122} is large because θ_{3122} is large;
- \bar{y}_{3122} is large because sd(\bar{y}_{3122}) is large.

Possible explanations for \bar{y}_{2832} :

- \bar{y}_{2832} is large because θ_{2832} is large;
- \bar{y}_{2832} is large because sd(\bar{y}_{2832}) is large (but is smaller than sd(\bar{y}_{3122})).

- the group specific sample sizes, n_1, \ldots, n_m ;
- the observed across-group heterogeneity.

Hierarchical normal model

Estimation and inference

Example: Test scores

Possible explanations for \bar{y}_{3122} :

- \bar{y}_{3122} is large because θ_{3122} is large;
- \bar{y}_{3122} is large because sd(\bar{y}_{3122}) is large.

Possible explanations for \bar{y}_{2832} :

- \bar{y}_{2832} is large because θ_{2832} is large;
- \bar{y}_{2832} is large because sd(\bar{y}_{2832}) is large (but is smaller than sd(\bar{y}_{3122})).

- the group specific sample sizes, n_1, \ldots, n_m ;
- the observed across-group heterogeneity.

Hierarchical normal model

Estimation and inference

Example: Test scores

Possible explanations for \bar{y}_{3122} :

- \bar{y}_{3122} is large because θ_{3122} is large;
- \bar{y}_{3122} is large because sd(\bar{y}_{3122}) is large.

Possible explanations for \bar{y}_{2832} :

- \bar{y}_{2832} is large because θ_{2832} is large;
- \bar{y}_{2832} is large because sd(\bar{y}_{2832}) is large (but is smaller than sd(\bar{y}_{3122})).

- the group specific sample sizes, n_1, \ldots, n_m ;
- the observed across-group heterogeneity.

Example: Free throws

ftdat[1:20,]

##	PLAYER1	PLAYER2	TEAM	MIN	FTM	FTA	FT.
## 1	Sam	Jacobson	LAL	12	2	2	1.000
## 2	Steve	Henson	DET	25	2	2	1.000
## 3	Radoslav	Nesterovic	MIN	30	2	2	1.000
## 4	Bryce	Drew	HOU	441	8	8	1.000
## 5	Charles	0'bannon	DET	165	8	8	1.000
## 6	Marty	Conlon	MIA	35	2	2	1.000
## 7	Mikki	Moore	DET	6	2	2	1.000
## 8	John	Crotty	POR	19	3	3	1.000
## 9	Gerald	Wilkins	ORL	28	2	2	1.000
## 1) Korleone	Young	DET	15	2	2	1.000
## 1	l Brian	Evans	MIN	145	4	4	1.000
## 1	2 Pooh	Richardson	LAC	130	4	4	1.000
## 1	3 Michael	Hawkins	SAC	203	3	3	1.000
## 14	1 Randy	Livingston	PHO	22	2	2	1.000
## 1	5 Rusty	Larue	CHI	732	17	17	1.000
## 1	6 Fred	Hoiberg	IND	87	6	6	1.000
## 1	7 Herb	Williams	NYK	34	2	2	1.000
## 13	3 Ryan	Stack	CLE	199	19	20	0.950
## 1	9 Sam	Cassell	MIL	199	47	50	0.940
## 2) Reggie	Miller	IND	1787	226	247	0.915

Who does Indiana pick to shoot its technical foul free throws?

Further limitations of ANOVA

In the wheat yield example we might be interested in

- (1) what the yield might be in other plots of land in these 10 regions, or
- (2) what the yield might be in other regions.
- For general hierarchical data, these questions translate into
- (1) making inference about units within groups in our study;
- (2) making inference about groups that weren't in our study.

Inference for (1) can be obtained with ANOVA.

- treating the m groups as a sample from a larger population;
- a statistical model for this larger population.

Further limitations of ANOVA

In the wheat yield example we might be interested in

- (1) what the yield might be in other plots of land in these 10 regions, or
- (2) what the yield might be in other regions.

For general hierarchical data, these questions translate into

- (1) making inference about units within groups in our study;
- (2) making inference about groups that weren't in our study.

Inference for (1) can be obtained with ANOVA.

- treating the m groups as a sample from a larger population;
- a statistical model for this larger population.

Further limitations of ANOVA

In the wheat yield example we might be interested in

- $\left(1\right)$ what the yield might be in other plots of land in these 10 regions, or
- (2) what the yield might be in other regions.

For general hierarchical data, these questions translate into

- (1) making inference about units within groups in our study;
- (2) making inference about groups that weren't in our study.

Inference for (1) can be obtained with ANOVA.

- treating the m groups as a sample from a larger population;
- a statistical model for this larger population.

Further limitations of ANOVA

In the wheat yield example we might be interested in

- (1) what the yield might be in other plots of land in these 10 regions, or
- (2) what the yield might be in other regions.

For general hierarchical data, these questions translate into

(1) making inference about units within groups in our study;

(2) making inference about groups that weren't in our study.

Inference for (1) can be obtained with ANOVA.

- treating the m groups as a sample from a larger population;
- a statistical model for this larger population.

Further limitations of ANOVA

In the wheat yield example we might be interested in

- (1) what the yield might be in other plots of land in these 10 regions, or
- (2) what the yield might be in other regions.

For general hierarchical data, these questions translate into

- (1) making inference about units within groups in our study;
- (2) making inference about groups that weren't in our study.

Inference for (1) can be obtained with ANOVA.

- treating the m groups as a sample from a larger population;
- a statistical model for this larger population.

Further limitations of ANOVA

In the wheat yield example we might be interested in

- (1) what the yield might be in other plots of land in these 10 regions, or
- (2) what the yield might be in other regions.

For general hierarchical data, these questions translate into

- (1) making inference about units within groups in our study;
- (2) making inference about groups that weren't in our study.

Inference for (1) can be obtained with ANOVA.

- treating the m groups as a sample from a larger population;
- a statistical model for this larger population.

Further limitations of ANOVA

In the wheat yield example we might be interested in

- (1) what the yield might be in other plots of land in these 10 regions, or
- (2) what the yield might be in other regions.

For general hierarchical data, these questions translate into

- (1) making inference about units within groups in our study;
- (2) making inference about groups that weren't in our study.

Inference for (1) can be obtained with ANOVA.

- treating the m groups as a sample from a larger population;
- a statistical model for this larger population.

Further limitations of ANOVA

In the wheat yield example we might be interested in

- (1) what the yield might be in other plots of land in these 10 regions, or
- (2) what the yield might be in other regions.

For general hierarchical data, these questions translate into

- (1) making inference about units within groups in our study;
- (2) making inference about groups that weren't in our study.

Inference for (1) can be obtained with ANOVA.

- treating the *m* groups as a sample from a larger population;
- a statistical model for this larger population.

Further limitations of ANOVA

In the wheat yield example we might be interested in

- (1) what the yield might be in other plots of land in these 10 regions, or
- (2) what the yield might be in other regions.

For general hierarchical data, these questions translate into

- (1) making inference about units within groups in our study;
- (2) making inference about groups that weren't in our study.

Inference for (1) can be obtained with ANOVA.

- treating the *m* groups as a sample from a larger population;
- a statistical model for this larger population.

The hierarchical normal model

$$y_{i,j} = \mu + a_j + \epsilon_{i,j} \tag{1}$$

$$\{\epsilon_{1,1}, \dots, \epsilon_{n_1,1}\}, \dots, \{\epsilon_{1,m}, \dots, \epsilon_{n_m,m}\} \sim \text{ i.i.d. normal}(0, \sigma^2)$$
(2)
$$a_1, \dots, a_m \sim \text{ i.i.d. normal}(0, \tau^2)$$
(3)

The HNM assumes the sampling model (3) for the groups.

- {*a*₁,..., *a_m*} represent differences across groups
- {\(\epsilon_{i,j}\)\)} represent differences within groups

The HNM represents this heterogeneity in terms of population variances:

$$Var[a] = \tau^2 = across-group variance$$

 $Var[\epsilon] = \sigma^2 = within-group variance$

The hierarchical normal model

$$y_{i,j} = \mu + a_j + \epsilon_{i,j} \tag{1}$$

$$\{\epsilon_{1,1}, \dots, \epsilon_{n_1,1}\}, \dots, \{\epsilon_{1,m}, \dots, \epsilon_{n_m,m}\} \sim \text{ i.i.d. normal}(0, \sigma^2)$$
(2)
$$a_1, \dots, a_m \sim \text{ i.i.d. normal}(0, \tau^2)$$
(3)

The classical ANOVA model consists of (1) and (2).

The HNM assumes the sampling model (3) for the groups.

- {*a*₁,..., *a_m*} represent differences across groups
- {\epsilon_{i,j}} represent differences within groups

The HNM represents this heterogeneity in terms of population variances:

$$Var[a] = \tau^2 = across-group variance$$

 $Var[\epsilon] = \sigma^2 = within-group variance$

The hierarchical normal model

$$y_{i,j} = \mu + a_j + \epsilon_{i,j} \tag{1}$$

$$\{\epsilon_{1,1},\ldots,\epsilon_{n_1,1}\},\ldots,\{\epsilon_{1,m},\ldots,\epsilon_{n_m,m}\}$$
 ~ i.i.d. normal $(0,\sigma^2)$ (2)

$$a_1,\ldots,a_m \sim \text{ i.i.d. normal}(0,\tau^2)$$
 (3)

The classical ANOVA model consists of (1) and (2).

The HNM assumes the sampling model (3) for the groups.

- {*a*₁,..., *a_m*} represent differences across groups
- {\(\epsilon_{i,j}\)\)} represent differences within groups

The HNM represents this heterogeneity in terms of population variances:

 $Var[a] = \tau^2 = across-group variance$ $Var[\epsilon] = \sigma^2 = within-group variance$

The hierarchical normal model

$$y_{i,j} = \mu + a_j + \epsilon_{i,j} \tag{1}$$

$$\{\epsilon_{1,1},\ldots,\epsilon_{n_1,1}\},\ldots,\{\epsilon_{1,m},\ldots,\epsilon_{n_m,m}\} \sim \text{ i.i.d. normal}(0,\sigma^2)$$
(2)

$$a_1,\ldots,a_m \sim \text{ i.i.d. normal}(0,\tau^2)$$
 (3)

The classical ANOVA model consists of (1) and (2).

The HNM assumes the sampling model (3) for the groups.

- {*a*₁,..., *a_m*} represent differences across groups
- {\(\epsilon_{i,j}\)\)} represent differences within groups

The HNM represents this heterogeneity in terms of population variances:

$$Var[a] = \tau^2 = across-group variance$$

 $Var[\epsilon] = \sigma^2 = within-group variance$

Marginal and conditional variation

Two levels of heterogeneity require two versions of variance and covariance:

Within-group variance:

- The variance of $y_{i,j}$ around θ_j ;
- Describes heterogeneity/variance within a particular group;
- Mathematically, is calculated *conditionally* on group-level parameters.

- Variance of $y_{i,j}$ around μ ;
- Describes heterogeneity/variance across the population;
- Mathematically, is calculated *marginally* over group-level parameters.

Marginal and conditional variation

Two levels of heterogeneity require two versions of variance and covariance:

Within-group variance:

- The variance of $y_{i,j}$ around θ_j ;
- Describes heterogeneity/variance within a particular group;
- Mathematically, is calculated *conditionally* on group-level parameters.

- Variance of $y_{i,j}$ around μ ;
- Describes heterogeneity/variance across the population;
- Mathematically, is calculated *marginally* over group-level parameters.

Marginal and conditional variation

Two levels of heterogeneity require two versions of variance and covariance:

Within-group variance:

- The variance of $y_{i,j}$ around θ_j ;
- Describes heterogeneity/variance within a particular group;
- Mathematically, is calculated *conditionally* on group-level parameters.

- Variance of $y_{i,j}$ around μ ;
- Describes heterogeneity/variance across the population;
- Mathematically, is calculated *marginally* over group-level parameters.

Marginal and conditional variation

Two levels of heterogeneity require two versions of variance and covariance:

Within-group variance:

- The variance of $y_{i,j}$ around θ_j ;
- Describes heterogeneity/variance within a particular group;
- Mathematically, is calculated *conditionally* on group-level parameters.

- Variance of $y_{i,j}$ around μ ;
- Describes heterogeneity/variance across the population;
- Mathematically, is calculated *marginally* over group-level parameters.

Marginal and conditional variation

Two levels of heterogeneity require two versions of variance and covariance:

Within-group variance:

- The variance of $y_{i,j}$ around θ_j ;
- Describes heterogeneity/variance within a particular group;
- Mathematically, is calculated *conditionally* on group-level parameters.

- Variance of y_{i,j} around μ;
- Describes heterogeneity/variance across the population;
- Mathematically, is calculated *marginally* over group-level parameters.

Marginal and conditional variation

Two levels of heterogeneity require two versions of variance and covariance:

Within-group variance:

- The variance of $y_{i,j}$ around θ_j ;
- Describes heterogeneity/variance within a particular group;
- Mathematically, is calculated *conditionally* on group-level parameters.

- Variance of $y_{i,j}$ around μ ;
- Describes heterogeneity/variance across the population;
- Mathematically, is calculated *marginally* over group-level parameters.

Marginal and conditional variation

Two levels of heterogeneity require two versions of variance and covariance:

Within-group variance:

- The variance of $y_{i,j}$ around θ_j ;
- Describes heterogeneity/variance within a particular group;
- Mathematically, is calculated *conditionally* on group-level parameters.

- Variance of y_{i,j} around μ;
- Describes heterogeneity/variance across the population;
- Mathematically, is calculated *marginally* over group-level parameters.

Marginal and conditional variation

Two levels of heterogeneity require two versions of variance and covariance:

Within-group variance:

- The variance of $y_{i,j}$ around θ_j ;
- Describes heterogeneity/variance within a particular group;
- Mathematically, is calculated *conditionally* on group-level parameters.

- Variance of y_{i,j} around μ;
- Describes heterogeneity/variance across the population;
- Mathematically, is calculated *marginally* over group-level parameters.

For a fixed group j,

$$\begin{aligned} &\{y_{1,j}, \dots, y_{n_j,j}\} | \mu, a_j, \sigma^2 \quad \sim \quad \text{i.i.d. normal}(\mu + a_j, \sigma^2) \\ &\{y_{1,j}, \dots, y_{n_j,j}\} | \theta_j, \sigma^2 \quad \sim \quad \text{i.i.d. normal}(\theta_j, \sigma^2) \end{aligned}$$

Variation *around the group mean* θ_j is as follows

$$\begin{aligned} \mathsf{E}[y_{i,j}|\mu, a_j] &= \mu + a_j = \theta \\ \mathsf{Var}[y_{i,j}|\mu, a_j] &= \sigma^2, \\ \mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu, a_j] &= 0. \end{aligned}$$

In words,

- sample observations from the group are centered around θ_j ;
- the variation of the sample *around* θ_j is σ^2 ;
- the observations within a group are uncorrelated around θ_j .

For a fixed group j,

$$\begin{cases} y_{1,j}, \dots, y_{n_j,j} \} | \mu, a_j, \sigma^2 & \sim \text{ i.i.d. normal}(\mu + a_j, \sigma^2) \\ \\ \{y_{1,j}, \dots, y_{n_j,j} \} | \theta_j, \sigma^2 & \sim \text{ i.i.d. normal}(\theta_j, \sigma^2) \end{cases}$$

Variation *around the group mean* θ_j is as follows

$$\begin{aligned} \mathsf{E}[y_{i,j}|\mu, \mathbf{a}_j] &= \mu + \mathbf{a}_j = \theta_j \\ \mathrm{Var}[y_{i,j}|\mu, \mathbf{a}_j] &= \sigma^2, \\ \mathrm{Cov}[y_{i_1,j}, y_{2,j}|\mu, \mathbf{a}_j] &= 0. \end{aligned}$$

In words,

- sample observations from the group are centered around θ_j ;
- the variation of the sample *around* θ_j is σ^2 ;
- the observations within a group are uncorrelated around θ_j .

For a fixed group j,

$$\begin{cases} y_{1,j}, \dots, y_{n_j,j} \} | \mu, a_j, \sigma^2 & \sim \text{ i.i.d. normal}(\mu + a_j, \sigma^2) \\ \\ \{y_{1,j}, \dots, y_{n_j,j} \} | \theta_j, \sigma^2 & \sim \text{ i.i.d. normal}(\theta_j, \sigma^2) \end{cases}$$

Variation *around the group mean* θ_j is as follows

$$\begin{aligned} \mathsf{E}[y_{i,j}|\mu, \mathbf{a}_j] &= \mu + \mathbf{a}_j = \theta_j \\ \mathsf{Var}[y_{i,j}|\mu, \mathbf{a}_j] &= \sigma^2, \\ \mathsf{Cov}[y_{i,j}, y_{2,j}|\mu, \mathbf{a}_j] &= 0. \end{aligned}$$

In words,

- sample observations from the group are centered around θ_j ;
- the variation of the sample *around* θ_j is σ^2 ;
- the observations within a group are uncorrelated around θ_j .

For a fixed group j,

$$\begin{aligned} &\{y_{1,j}, \dots, y_{n_j,j}\} | \mu, a_j, \sigma^2 \quad \sim \quad \text{i.i.d. normal}(\mu + a_j, \sigma^2) \\ &\{y_{1,j}, \dots, y_{n_j,j}\} | \theta_j, \sigma^2 \quad \sim \quad \text{i.i.d. normal}(\theta_j, \sigma^2) \end{aligned}$$

Variation *around the group mean* θ_j is as follows

$$\begin{aligned} \mathsf{E}[y_{i,j}|\mu,a_j] &= \mu + a_j = \theta_j \\ \mathsf{Var}[y_{i,j}|\mu,a_j] &= \sigma^2, \\ \mathsf{Cov}[y_{i,j},y_{i_2,j}|\mu,a_j] &= 0. \end{aligned}$$

In words,

- sample observations from the group are centered around θ_j ;
- the variation of the sample *around* θ_j is σ^2 ;
- the observations within a group are uncorrelated around θ_j .

For a fixed group j,

$$\begin{aligned} &\{y_{1,j}, \dots, y_{n_j,j}\} | \mu, a_j, \sigma^2 \quad \sim \quad \text{i.i.d. normal}(\mu + a_j, \sigma^2) \\ &\{y_{1,j}, \dots, y_{n_j,j}\} | \theta_j, \sigma^2 \quad \sim \quad \text{i.i.d. normal}(\theta_j, \sigma^2) \end{aligned}$$

Variation *around the group mean* θ_j is as follows

$$\begin{aligned} \mathsf{E}[y_{i,j}|\mu,a_j] &= \mu + a_j = \theta_j \\ \mathsf{Var}[y_{i,j}|\mu,a_j] &= \sigma^2, \\ \mathsf{Cov}[y_{i,j},y_{i_2,j}|\mu,a_j] &= 0. \end{aligned}$$

In words,

- sample observations from the group are centered around θ_j ;
- the variation of the sample *around* θ_j is σ^2 ;
- the observations within a group are uncorrelated around θ_j .

For a fixed group j,

$$\begin{aligned} \{y_{1,j}, \dots, y_{n_j,j}\} | \mu, a_j, \sigma^2 & \sim \quad \text{i.i.d. normal}(\mu + a_j, \sigma^2) \\ \{y_{1,j}, \dots, y_{n_j,j}\} | \theta_j, \sigma^2 & \sim \quad \text{i.i.d. normal}(\theta_j, \sigma^2) \end{aligned}$$

Variation *around the group mean* θ_j is as follows

$$\begin{aligned} \mathsf{E}[y_{i,j}|\mu, a_j] &= \mu + a_j = \theta_j \\ \mathsf{Var}[y_{i,j}|\mu, a_j] &= \sigma^2, \\ \mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu, a_j] &= 0. \end{aligned}$$

In words,

- sample observations from the group are centered around θ_j;
- the variation of the sample *around* θ_j is σ^2 ;
- the observations within a group are uncorrelated around θ_j .

For a fixed group j,

$$\begin{aligned} &\{y_{1,j}, \dots, y_{n_j,j}\} | \mu, a_j, \sigma^2 \quad \sim \quad \text{i.i.d. normal}(\mu + a_j, \sigma^2) \\ &\{y_{1,j}, \dots, y_{n_j,j}\} | \theta_j, \sigma^2 \quad \sim \quad \text{i.i.d. normal}(\theta_j, \sigma^2) \end{aligned}$$

Variation *around the group mean* θ_j is as follows

$$\begin{split} \mathsf{E}[y_{i,j}|\mu, a_j] &= \mu + a_j = \theta_j \\ \mathsf{Var}[y_{i,j}|\mu, a_j] &= \sigma^2, \\ \mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu, a_j] &= 0. \end{split}$$

In words,

- sample observations from the group are centered around θ_j;
- the variation of the sample *around* θ_j is σ^2 ;
- the observations within a group are uncorrelated around θ_j .

For a fixed group j,

$$\begin{aligned} \{y_{1,j}, \dots, y_{n_j,j}\} | \mu, a_j, \sigma^2 & \sim \quad \text{i.i.d. normal}(\mu + a_j, \sigma^2) \\ \{y_{1,j}, \dots, y_{n_j,j}\} | \theta_j, \sigma^2 & \sim \quad \text{i.i.d. normal}(\theta_j, \sigma^2) \end{aligned}$$

Variation *around the group mean* θ_j is as follows

$$\begin{split} \mathsf{E}[y_{i,j}|\mu, a_j] &= \mu + a_j = \theta_j \\ \mathsf{Var}[y_{i,j}|\mu, a_j] &= \sigma^2, \\ \mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu, a_j] &= 0. \end{split}$$

In words,

- sample observations from the group are centered around θ_j;
- the variation of the sample *around* θ_j is σ^2 ;
- the observations within a group are uncorrelated around θ_j .

For a fixed group j,

$$\begin{aligned} &\{y_{1,j}, \dots, y_{n_j,j}\} | \mu, a_j, \sigma^2 \quad \sim \quad \text{i.i.d. normal}(\mu + a_j, \sigma^2) \\ &\{y_{1,j}, \dots, y_{n_j,j}\} | \theta_j, \sigma^2 \quad \sim \quad \text{i.i.d. normal}(\theta_j, \sigma^2) \end{aligned}$$

Variation *around the group mean* θ_j is as follows

$$\begin{split} \mathsf{E}[y_{i,j}|\mu, a_j] &= \mu + a_j = \theta_j \\ \mathsf{Var}[y_{i,j}|\mu, a_j] &= \sigma^2, \\ \mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu, a_j] &= 0. \end{split}$$

In words,

- sample observations from the group are centered around θ_j ;
- the variation of the sample *around* θ_j is σ^2 ;
- the observations within a group are uncorrelated *around* θ_j .

For a fixed group j,

$$\begin{aligned} &\{y_{1,j}, \dots, y_{n_j,j}\} | \mu, a_j, \sigma^2 \quad \sim \quad \text{i.i.d. normal}(\mu + a_j, \sigma^2) \\ &\{y_{1,j}, \dots, y_{n_j,j}\} | \theta_j, \sigma^2 \quad \sim \quad \text{i.i.d. normal}(\theta_j, \sigma^2) \end{aligned}$$

Variation *around the group mean* θ_j is as follows

$$\begin{split} \mathsf{E}[y_{i,j}|\mu, a_j] &= \mu + a_j = \theta_j \\ \mathsf{Var}[y_{i,j}|\mu, a_j] &= \sigma^2, \\ \mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu, a_j] &= 0. \end{split}$$

In words,

- sample observations *from the group* are centered around θ_j ;
- the variation of the sample *around* θ_j is σ^2 ;
- the observations within a group are uncorrelated *around* θ_j .

For a fixed group j,

$$\begin{aligned} \{y_{1,j}, \dots, y_{n_j,j}\} | \mu, a_j, \sigma^2 & \sim \quad \text{i.i.d. normal}(\mu + a_j, \sigma^2) \\ \{y_{1,j}, \dots, y_{n_j,j}\} | \theta_j, \sigma^2 & \sim \quad \text{i.i.d. normal}(\theta_j, \sigma^2) \end{aligned}$$

Variation *around the group mean* θ_j is as follows

$$\begin{split} \mathsf{E}[y_{i,j}|\mu, a_j] &= \mu + a_j = \theta_j \\ \mathsf{Var}[y_{i,j}|\mu, a_j] &= \sigma^2, \\ \mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu, a_j] &= 0. \end{split}$$

In words,

- sample observations *from the group* are centered around θ_j ;
- the variation of the sample around θ_j is σ^2 ;
- the observations within a group are uncorrelated around θ_j .

For a fixed group j,

$$\begin{aligned} \{y_{1,j}, \dots, y_{n_j,j}\} | \mu, a_j, \sigma^2 & \sim \quad \text{i.i.d. normal}(\mu + a_j, \sigma^2) \\ \{y_{1,j}, \dots, y_{n_j,j}\} | \theta_j, \sigma^2 & \sim \quad \text{i.i.d. normal}(\theta_j, \sigma^2) \end{aligned}$$

Variation *around the group mean* θ_j is as follows

$$\begin{split} \mathsf{E}[y_{i,j}|\mu, a_j] &= \mu + a_j = \theta_j \\ \mathsf{Var}[y_{i,j}|\mu, a_j] &= \sigma^2, \\ \mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu, a_j] &= 0. \end{split}$$

In words,

- sample observations *from the group* are centered around θ_j ;
- the variation of the sample around θ_j is σ^2 ;
- the observations within a group are uncorrelated *around* θ_j .

For a fixed group j,

$$\begin{aligned} &\{y_{1,j}, \dots, y_{n_j,j}\} | \mu, a_j, \sigma^2 \quad \sim \quad \text{i.i.d. normal}(\mu + a_j, \sigma^2) \\ &\{y_{1,j}, \dots, y_{n_j,j}\} | \theta_j, \sigma^2 \quad \sim \quad \text{i.i.d. normal}(\theta_j, \sigma^2) \end{aligned}$$

Variation *around the group mean* θ_j is as follows

$$\begin{split} \mathsf{E}[y_{i,j}|\mu, a_j] &= \mu + a_j = \theta_j \\ \mathsf{Var}[y_{i,j}|\mu, a_j] &= \sigma^2, \\ \mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu, a_j] &= 0. \end{split}$$

In words,

- sample observations *from the group* are centered around θ_j ;
- the variation of the sample *around* θ_j is σ^2 ;
- the observations within a group are uncorrelated *around* θ_j .

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

 $y_{i,j} = \theta_j + \epsilon_{i,j}$

$$\begin{aligned} \operatorname{Var}[y_{i,j}|\theta_j] &\equiv & \operatorname{E}[(y_{i,j} - \operatorname{E}[y_{i,j}|\theta_j])^2|\theta_j] \\ &= & \operatorname{E}[(y_{i,j} - \theta_j)^2|\theta_j] \\ &= & \operatorname{E}[(\theta_j + \epsilon_{i,j} - \theta_j)^2|\theta_j] \\ &= & \operatorname{E}[\epsilon_{i,j}^2|\theta_j] = \sigma^2 \end{aligned}$$

$$\begin{aligned} \mathsf{Cov}[y_{i_{1},j}, y_{i_{2},j} | \theta_{j}] &\equiv \mathsf{E}[(y_{i_{1},j} - \mathsf{E}[y_{i_{1},j} | \theta_{j}]) \times (y_{i_{2},j} - \mathsf{E}[y_{i_{2},j} | \theta_{j}]) | \theta_{j}] \\ &= \mathsf{E}[(y_{i_{1},j} - \theta_{j}) \times (y_{i_{2},j} - \theta_{j}) | \theta_{j}] \\ &= \mathsf{E}[\epsilon_{i_{1},j} \epsilon_{i_{2},j} | \theta_{j}] = \mathsf{0} \end{aligned}$$

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

 $y_{i,j} = \theta_j + \epsilon_{i,j}$

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\theta_j] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\theta_j])^2|\theta_j] \\ &= \mathsf{E}[(y_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[(\theta_j + \epsilon_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[\epsilon_{i,j}^2|\theta_j] = \sigma^2 \end{aligned}$$

$$\begin{aligned} \mathsf{Cov}[y_{i_1,j}, y_{i_2,j} | \theta_j] &\equiv \mathsf{E}[(y_{i_1,j} - \mathsf{E}[y_{i_1,j} | \theta_j]) \times (y_{i_2,j} - \mathsf{E}[y_{i_2,j} | \theta_j]) | \theta_j] \\ &= \mathsf{E}[(y_{i_1,j} - \theta_j) \times (y_{i_2,j} - \theta_j) | \theta_j] \\ &= \mathsf{E}[\epsilon_{i_1,j} \epsilon_{i_2,j} | \theta_j] = \mathsf{0} \end{aligned}$$

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

 $y_{i,j} = \theta_j + \epsilon_{i,j}$

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\theta_j] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\theta_j])^2|\theta_j] \\ &= \mathsf{E}[(y_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[(\theta_j + \epsilon_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[\epsilon_{i,j}^2|\theta_j] = \sigma^2 \end{aligned}$$

$$\begin{aligned} \mathsf{Cov}[y_{i_1,j}, y_{i_2,j} | \theta_j] &\equiv \mathsf{E}[(y_{i_1,j} - \mathsf{E}[y_{i_1,j} | \theta_j]) \times (y_{i_2,j} - \mathsf{E}[y_{i_2,j} | \theta_j]) | \theta_j] \\ &= \mathsf{E}[(y_{i_1,j} - \theta_j) \times (y_{i_2,j} - \theta_j) | \theta_j] \\ &= \mathsf{E}[\epsilon_{i_1,j} \epsilon_{i_2,j} | \theta_j] = \mathsf{0} \end{aligned}$$

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

 $y_{i,j} = \theta_j + \epsilon_{i,j}$

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\theta_j] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\theta_j])^2|\theta_j] \\ &= \mathsf{E}[(y_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[(\theta_j + \epsilon_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[\epsilon_{i,j}^2|\theta_j] = \sigma^2 \end{aligned}$$

$$\begin{aligned} \mathsf{Cov}[y_{i_1,j}, y_{i_2,j} | \theta_j] &\equiv \mathsf{E}[(y_{i_1,j} - \mathsf{E}[y_{i_1,j} | \theta_j]) \times (y_{i_2,j} - \mathsf{E}[y_{i_2,j} | \theta_j]) | \theta_j] \\ &= \mathsf{E}[(y_{i_1,j} - \theta_j) \times (y_{i_2,j} - \theta_j) | \theta_j] \\ &= \mathsf{E}[\epsilon_{i_1,j} \epsilon_{i_2,j} | \theta_j] = \mathsf{0} \end{aligned}$$

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

 $y_{i,j} = \theta_j + \epsilon_{i,j}$

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\theta_j] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\theta_j])^2|\theta_j] \\ &= \mathsf{E}[(y_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[(\theta_j + \epsilon_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[\epsilon_{i,j}^2|\theta_j] = \sigma^2 \end{aligned}$$

$$\begin{aligned} \mathsf{Cov}[y_{i_1,j}, y_{i_2,j} | \theta_j] &\equiv \mathsf{E}[(y_{i_1,j} - \mathsf{E}[y_{i_1,j} | \theta_j]) \times (y_{i_2,j} - \mathsf{E}[y_{i_2,j} | \theta_j]) | \theta_j] \\ &= \mathsf{E}[(y_{i_1,j} - \theta_j) \times (y_{i_2,j} - \theta_j) | \theta_j] \\ &= \mathsf{E}[\epsilon_{i_1,j} \epsilon_{i_2,j} | \theta_j] = \mathsf{0} \end{aligned}$$

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

 $y_{i,j} = \theta_j + \epsilon_{i,j}$

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\theta_j] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\theta_j])^2|\theta_j] \\ &= \mathsf{E}[(y_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[(\theta_j + \epsilon_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[\epsilon_{i,j}^2|\theta_j] = \sigma^2 \end{aligned}$$

$$\begin{aligned} \mathsf{Cov}[y_{i_1,j}, y_{i_2,j} | \theta_j] &\equiv \mathsf{E}[(y_{i_1,j} - \mathsf{E}[y_{i_1,j} | \theta_j]) \times (y_{i_2,j} - \mathsf{E}[y_{i_2,j} | \theta_j]) | \theta_j] \\ &= \mathsf{E}[(y_{i_1,j} - \theta_j) \times (y_{i_2,j} - \theta_j) | \theta_j] \\ &= \mathsf{E}[\epsilon_{i_1,j} \epsilon_{i_2,j} | \theta_j] = \mathsf{0} \end{aligned}$$

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

 $y_{i,j} = \theta_j + \epsilon_{i,j}$

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\theta_j] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\theta_j])^2|\theta_j] \\ &= \mathsf{E}[(y_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[(\theta_j + \epsilon_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[\epsilon_{i,j}^2|\theta_j] = \sigma^2 \end{aligned}$$

$$\begin{aligned} \mathsf{Cov}[y_{i_1,j}, y_{i_2,j} | \theta_j] &\equiv \mathsf{E}[(y_{i_1,j} - \mathsf{E}[y_{i_1,j} | \theta_j]) \times (y_{i_2,j} - \mathsf{E}[y_{i_2,j} | \theta_j]) | \theta_j] \\ &= \mathsf{E}[(y_{i_1,j} - \theta_j) \times (y_{i_2,j} - \theta_j) | \theta_j] \\ &= \mathsf{E}[\epsilon_{i_1,j} \epsilon_{i_2,j} | \theta_j] = \mathsf{0} \end{aligned}$$

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

 $y_{i,j} = \theta_j + \epsilon_{i,j}$

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\theta_j] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\theta_j])^2|\theta_j] \\ &= \mathsf{E}[(y_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[(\theta_j + \epsilon_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[\epsilon_{i,j}^2|\theta_j] = \sigma^2 \end{aligned}$$

$$\begin{aligned} \mathsf{Cov}[y_{i_1,j}, y_{i_2,j} | \theta_j] &\equiv \mathsf{E}[(y_{i_1,j} - \mathsf{E}[y_{i_1,j} | \theta_j]) \times (y_{i_2,j} - \mathsf{E}[y_{i_2,j} | \theta_j]) | \theta_j] \\ &= \mathsf{E}[(y_{i_1,j} - \theta_j) \times (y_{i_2,j} - \theta_j) | \theta_j] \\ &= \mathsf{E}[\epsilon_{i_1,j} \epsilon_{i_2,j} | \theta_j] = \mathsf{0} \end{aligned}$$

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

 $y_{i,j} = \theta_j + \epsilon_{i,j}$

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\theta_j] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\theta_j])^2|\theta_j] \\ &= \mathsf{E}[(y_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[(\theta_j + \epsilon_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[\epsilon_{i,j}^2|\theta_j] = \sigma^2 \end{aligned}$$

$$\begin{aligned} \mathsf{Cov}[y_{i_1,j}, y_{i_2,j} | \theta_j] &\equiv \mathsf{E}[(y_{i_1,j} - \mathsf{E}[y_{i_1,j} | \theta_j]) \times (y_{i_2,j} - \mathsf{E}[y_{i_2,j} | \theta_j]) | \theta_j] \\ &= \mathsf{E}[(y_{i_1,j} - \theta_j) \times (y_{i_2,j} - \theta_j) | \theta_j] \\ &= \mathsf{E}[\epsilon_{i_1,j} \epsilon_{i_2,j} | \theta_j] = \mathsf{0} \end{aligned}$$

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

 $y_{i,j} = \theta_j + \epsilon_{i,j}$

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\theta_j] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\theta_j])^2|\theta_j] \\ &= \mathsf{E}[(y_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[(\theta_j + \epsilon_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[\epsilon_{i,j}^2|\theta_j] = \sigma^2 \end{aligned}$$

$$\begin{aligned} \mathsf{Cov}[y_{i_1,j}, y_{i_2,j} | \theta_j] &\equiv \mathsf{E}[(y_{i_1,j} - \mathsf{E}[y_{i_1,j} | \theta_j]) \times (y_{i_2,j} - \mathsf{E}[y_{i_2,j} | \theta_j]) | \theta_j] \\ &= \mathsf{E}[(y_{i_1,j} - \theta_j) \times (y_{i_2,j} - \theta_j) | \theta_j] \\ &= \mathsf{E}[\epsilon_{i_1,j} \epsilon_{i_2,j} | \theta_j] = \mathsf{0} \end{aligned}$$

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

 $y_{i,j} = \theta_j + \epsilon_{i,j}$

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\theta_j] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\theta_j])^2|\theta_j] \\ &= \mathsf{E}[(y_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[(\theta_j + \epsilon_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[\epsilon_{i,j}^2|\theta_j] = \sigma^2 \end{aligned}$$

$$\begin{aligned} \mathsf{Cov}[y_{i_1,j}, y_{i_2,j} | \theta_j] &\equiv \mathsf{E}[(y_{i_1,j} - \mathsf{E}[y_{i_1,j} | \theta_j]) \times (y_{i_2,j} - \mathsf{E}[y_{i_2,j} | \theta_j]) | \theta_j] \\ &= \mathsf{E}[(y_{i_1,j} - \theta_j) \times (y_{i_2,j} - \theta_j) | \theta_j] \\ &= \mathsf{E}[\epsilon_{i_1,j} \epsilon_{i_2,j} | \theta_j] = \mathsf{0} \end{aligned}$$

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

 $y_{i,j} = \theta_j + \epsilon_{i,j}$

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\theta_j] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\theta_j])^2|\theta_j] \\ &= \mathsf{E}[(y_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[(\theta_j + \epsilon_{i,j} - \theta_j)^2|\theta_j] \\ &= \mathsf{E}[\epsilon_{i,j}^2|\theta_j] = \sigma^2 \end{aligned}$$

$$\begin{aligned} \mathsf{Cov}[y_{i_1,j}, y_{i_2,j} | \theta_j] &\equiv \mathsf{E}[(y_{i_1,j} - \mathsf{E}[y_{i_1,j} | \theta_j]) \times (y_{i_2,j} - \mathsf{E}[y_{i_2,j} | \theta_j]) | \theta_j] \\ &= \mathsf{E}[(y_{i_1,j} - \theta_j) \times (y_{i_2,j} - \theta_j) | \theta_j] \\ &= \mathsf{E}[\epsilon_{i_1,j} \epsilon_{i_2,j} | \theta_j] = \mathsf{0} \end{aligned}$$

Across all groups,

$$a_1, \ldots, a_m \sim \text{ i.i.d. normal}(0, \tau^2)$$

 $\{y_{1,j}, \ldots, y_{n_j,j}\} \sim \text{ i.i.d. normal}(\mu + a_j, \sigma^2)$

For a randomly sampled observation i from a randomly sampled group j,

$$E[y_{i,j}|\mu] = E[\mu + a_j + \epsilon_{i,j}|\mu]$$

= $E[\mu|\mu] + E[a_j|\mu] + E[\epsilon_{i,j}|\mu]$
= $\mu + 0 + 0 = \mu$

This is the *population mean*.

Across all groups,

$$a_1, \ldots, a_m \sim \text{ i.i.d. normal}(0, \tau^2)$$

 $\{y_{1,j}, \ldots, y_{n_j,j}\} \sim \text{ i.i.d. normal}(\mu + a_j, \sigma^2)$

For a randomly sampled observation i from a randomly sampled group j,

$$E[y_{i,j}|\mu] = E[\mu + a_j + \epsilon_{i,j}|\mu]$$

=
$$E[\mu|\mu] + E[a_j|\mu] + E[\epsilon_{i,j}|\mu]$$

=
$$\mu + 0 + 0 = \mu$$

This is the *population mean*.

Variation *around the population mean* μ is as follows:

$$\begin{split} \mathsf{E}[y_{i,j}|\mu] &= \mathsf{E}[\mu + a_j|\mu] = \mu + 0 = \mu, \\ \mathsf{Var}[y_{i,j}|\mu] &= \sigma^2 + \tau^2, \\ \mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu] &= \tau^2. \end{split}$$

In words,

- sampled observations across groups are centered around μ;
- the variation of the sample around μ is $\sigma^2+ au^2$
- the observations within a group are correlated around μ.

Variation *around the population mean* μ is as follows:

$$\begin{split} \mathsf{E}[y_{i,j}|\mu] &= \mathsf{E}[\mu + a_j|\mu] = \mu + 0 = \mu, \\ \mathsf{Var}[y_{i,j}|\mu] &= \sigma^2 + \tau^2, \\ \mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu] &= \tau^2. \end{split}$$

- In words,
 - sampled observations *across groups* are centered around μ;
 - the variation of the sample *around* μ is $\sigma^2 + \tau^2$;
 - the observations within a group are correlated *around* μ .

Variation *around the population mean* μ is as follows:

$$\begin{split} \mathsf{E}[y_{i,j}|\mu] &= \mathsf{E}[\mu + a_j|\mu] = \mu + 0 = \mu, \\ \mathsf{Var}[y_{i,j}|\mu] &= \sigma^2 + \tau^2, \\ \mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu] &= \tau^2. \end{split}$$

In words,

- sampled observations across groups are centered around μ;
- the variation of the sample around μ is $\sigma^2 + \tau^2$;
- the observations within a group are correlated *around* μ .

Variation *around the population mean* μ is as follows:

$$\begin{split} \mathsf{E}[y_{i,j}|\mu] &= \mathsf{E}[\mu + a_j|\mu] = \mu + 0 = \mu, \\ \mathsf{Var}[y_{i,j}|\mu] &= \sigma^2 + \tau^2, \\ \mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu] &= \tau^2. \end{split}$$

In words,

- sampled observations across groups are centered around μ;
- the variation of the sample *around* μ is $\sigma^2 + \tau^2$;
- the observations within a group are correlated around μ .

Variation *around the population mean* μ is as follows:

$$\begin{split} \mathsf{E}[y_{i,j}|\mu] &= \mathsf{E}[\mu + a_j|\mu] = \mu + 0 = \mu, \\ \mathsf{Var}[y_{i,j}|\mu] &= \sigma^2 + \tau^2, \\ \mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu] &= \tau^2. \end{split}$$

In words,

- sampled observations across groups are centered around μ;
- the variation of the sample *around* μ is $\sigma^2 + \tau^2$;
- the observations within a group are correlated around μ .

Variation *around the population mean* μ is as follows:

$$\begin{split} \mathsf{E}[y_{i,j}|\mu] &= \mathsf{E}[\mu + a_j|\mu] = \mu + 0 = \mu, \\ \mathsf{Var}[y_{i,j}|\mu] &= \sigma^2 + \tau^2, \\ \mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu] &= \tau^2. \end{split}$$

In words,

- sampled observations across groups are centered around μ;
- the variation of the sample *around* μ is $\sigma^2 + \tau^2$;
- the observations within a group are correlated around μ .

Hierarchical normal model

Population level variance

$$\begin{aligned} \mathsf{Var}[\mathbf{y}_{i,j}|\boldsymbol{\mu}] &\equiv \mathsf{E}[(\mathbf{y}_{i,j} - \mathsf{E}[\mathbf{y}_{i,j}|\boldsymbol{\mu}])^2|\boldsymbol{\mu}] \\ &= \mathsf{E}[(\mathbf{y}_{i,j} - \boldsymbol{\mu})^2|\boldsymbol{\mu}] \\ &= \mathsf{E}[(\mu + a_j + \epsilon_{i,j} - \boldsymbol{\mu})^2|\boldsymbol{\mu}] \\ &= \mathsf{E}[(a_j + \epsilon_{i,j})^2|\boldsymbol{\mu}] \\ &= \mathsf{E}[a_j^2 + 2a_j\epsilon_{i,j} + \epsilon_{i,j}^2|\boldsymbol{\mu}] \\ &= \tau^2 + 0 + \sigma^2 = \sigma^2 + \tau^2 \end{aligned}$$

Hierarchical normal model

Population level variance

$$\begin{aligned} \mathsf{Var}[\mathbf{y}_{i,j}|\boldsymbol{\mu}] &\equiv \mathsf{E}[(\mathbf{y}_{i,j} - \mathsf{E}[\mathbf{y}_{i,j}|\boldsymbol{\mu}])^2|\boldsymbol{\mu}] \\ &= \mathsf{E}[(\mathbf{y}_{i,j} - \boldsymbol{\mu})^2|\boldsymbol{\mu}] \\ &= \mathsf{E}[(\mu + a_j + \epsilon_{i,j} - \boldsymbol{\mu})^2|\boldsymbol{\mu}] \\ &= \mathsf{E}[(a_j + \epsilon_{i,j})^2|\boldsymbol{\mu}] \\ &= \mathsf{E}[a_j^2 + 2a_j\epsilon_{i,j} + \epsilon_{i,j}^2|\boldsymbol{\mu}] \\ &= \tau^2 + 0 + \sigma^2 = \sigma^2 + \tau^2 \end{aligned}$$

Hierarchical normal model

Population level variance

$$Var[y_{i,j}|\mu] \equiv E[(y_{i,j} - E[y_{i,j}|\mu])^{2}|\mu]$$

= $E[(y_{i,j} - \mu)^{2}|\mu]$
= $E[(\mu + a_{j} + \epsilon_{i,j} - \mu)^{2}|\mu]$
= $E[(a_{j} + \epsilon_{i,j})^{2}|\mu]$
= $E[a_{j}^{2} + 2a_{j}\epsilon_{i,j} + \epsilon_{i,j}^{2}|\mu]$
= $\tau^{2} + 0 + \sigma^{2} = \sigma^{2} + \tau^{2}$

Hierarchical normal model

Population level variance

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\mu] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\mu])^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(\mu + a_j + \epsilon_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(a_j + \epsilon_{i,j})^2|\mu] \\ &= \mathsf{E}[a_j^2 + 2a_j\epsilon_{i,j} + \epsilon_{i,j}^2|\mu] \\ &= \tau^2 + 0 + \sigma^2 = \sigma^2 + \tau^2 \end{aligned}$$

Hierarchical normal model

Population level variance

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\mu] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\mu])^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(\mu + a_j + \epsilon_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(a_j + \epsilon_{i,j})^2|\mu] \\ &= \mathsf{E}[a_j^2 + 2a_j\epsilon_{i,j} + \epsilon_{i,j}^2|\mu] \\ &= \tau^2 + 0 + \sigma^2 = \sigma^2 + \tau^2 \end{aligned}$$

Hierarchical normal model

Population level variance

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\mu] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\mu])^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(\mu + a_j + \epsilon_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(a_j + \epsilon_{i,j})^2|\mu] \\ &= \mathsf{E}[a_j^2 + 2a_j\epsilon_{i,j} + \epsilon_{i,j}^2|\mu] \\ &= \tau^2 + 0 + \sigma^2 = \sigma^2 + \tau^2 \end{aligned}$$

Hierarchical normal model

Population level variance

$$Var[y_{i,j}|\mu] \equiv E[(y_{i,j} - E[y_{i,j}|\mu])^{2}|\mu] \\ = E[(y_{i,j} - \mu)^{2}|\mu] \\ = E[(y_{i,j} - \mu)^{2}|\mu] \\ = E[(\mu + a_{j} + \epsilon_{i,j} - \mu)^{2}|\mu] \\ = E[(a_{j} + \epsilon_{i,j})^{2}|\mu] \\ = E[a_{j}^{2} + 2a_{j}\epsilon_{i,j} + \epsilon_{i,j}^{2}|\mu] \\ = \tau^{2} + 0 + \sigma^{2} = \sigma^{2} + \tau^{2}$$

Hierarchical normal model

Population level variance

$$Var[y_{i,j}|\mu] \equiv E[(y_{i,j} - E[y_{i,j}|\mu])^{2}|\mu] \\ = E[(y_{i,j} - \mu)^{2}|\mu] \\ = E[(y_{i,j} - \mu)^{2}|\mu] \\ = E[(\mu + a_{j} + \epsilon_{i,j} - \mu)^{2}|\mu] \\ = E[(a_{j} + \epsilon_{i,j})^{2}|\mu] \\ = E[a_{j}^{2} + 2a_{j}\epsilon_{i,j} + \epsilon_{i,j}^{2}|\mu] \\ = \tau^{2} + 0 + \sigma^{2} = \sigma^{2} + \tau^{2}$$

Hierarchical normal model

Population level variance

$$Var[y_{i,j}|\mu] \equiv E[(y_{i,j} - E[y_{i,j}|\mu])^{2}|\mu] \\ = E[(y_{i,j} - \mu)^{2}|\mu] \\ = E[(y_{i,j} - \mu)^{2}|\mu] \\ = E[(\mu + a_{j} + \epsilon_{i,j} - \mu)^{2}|\mu] \\ = E[(a_{j} + \epsilon_{i,j})^{2}|\mu] \\ = E[a_{j}^{2} + 2a_{j}\epsilon_{i,j} + \epsilon_{i,j}^{2}|\mu] \\ = \tau^{2} + 0 + \sigma^{2} = \sigma^{2} + \tau^{2}$$

Hierarchical normal model

Population level variance

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\mu] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\mu])^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(\mu + a_j + \epsilon_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(a_j + \epsilon_{i,j})^2|\mu] \\ &= \mathsf{E}[a_j^2 + 2a_j\epsilon_{i,j} + \epsilon_{i,j}^2|\mu] \\ &= \tau^2 + 0 + \sigma^2 = \sigma^2 + \tau^2 \end{aligned}$$

Hierarchical normal model

Population level variance

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\mu] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\mu])^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(\mu + a_j + \epsilon_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(a_j + \epsilon_{i,j})^2|\mu] \\ &= \mathsf{E}[a_j^2 + 2a_j\epsilon_{i,j} + \epsilon_{i,j}^2|\mu] \\ &= \tau^2 + 0 + \sigma^2 = \sigma^2 + \tau^2 \end{aligned}$$

Hierarchical normal model

Population level variance

$$Var[y_{i,j}|\mu] \equiv E[(y_{i,j} - E[y_{i,j}|\mu])^{2}|\mu] \\ = E[(y_{i,j} - \mu)^{2}|\mu] \\ = E[(y_{i,j} - \mu)^{2}|\mu] \\ = E[(\mu + a_{j} + \epsilon_{i,j} - \mu)^{2}|\mu] \\ = E[(a_{j} + \epsilon_{i,j})^{2}|\mu] \\ = E[a_{j}^{2} + 2a_{j}\epsilon_{i,j} + \epsilon_{i,j}^{2}|\mu] \\ = \tau^{2} + 0 + \sigma^{2} = \sigma^{2} + \tau^{2}$$

Hierarchical normal model

Population level variance

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\mu] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\mu])^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(\mu + a_j + \epsilon_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(a_j + \epsilon_{i,j})^2|\mu] \\ &= \mathsf{E}[a_j^2 + 2a_j\epsilon_{i,j} + \epsilon_{i,j}^2|\mu] \\ &= \tau^2 + 0 + \sigma^2 = \sigma^2 + \tau^2 \end{aligned}$$

Hierarchical normal model

Population level variance

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\mu] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\mu])^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(\mu + a_j + \epsilon_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(a_j + \epsilon_{i,j})^2|\mu] \\ &= \mathsf{E}[a_j^2 + 2a_j\epsilon_{i,j} + \epsilon_{i,j}^2|\mu] \\ &= \tau^2 + 0 + \sigma^2 = \sigma^2 + \tau^2 \end{aligned}$$

Hierarchical normal model

Population level variance

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\mu] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\mu])^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(\mu + a_j + \epsilon_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(a_j + \epsilon_{i,j})^2|\mu] \\ &= \mathsf{E}[a_j^2 + 2a_j\epsilon_{i,j} + \epsilon_{i,j}^2|\mu] \\ &= \tau^2 + 0 + \sigma^2 = \sigma^2 + \tau^2 \end{aligned}$$

Hierarchical normal model

Population level variance

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\mu] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\mu])^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(\mu + a_j + \epsilon_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(a_j + \epsilon_{i,j})^2|\mu] \\ &= \mathsf{E}[a_j^2 + 2a_j\epsilon_{i,j} + \epsilon_{i,j}^2|\mu] \\ &= \tau^2 + 0 + \sigma^2 = \sigma^2 + \tau^2 \end{aligned}$$

Hierarchical normal model

Population level variance

$$\begin{aligned} \mathsf{Var}[y_{i,j}|\mu] &\equiv \mathsf{E}[(y_{i,j} - \mathsf{E}[y_{i,j}|\mu])^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(y_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(\mu + a_j + \epsilon_{i,j} - \mu)^2|\mu] \\ &= \mathsf{E}[(a_j + \epsilon_{i,j})^2|\mu] \\ &= \mathsf{E}[a_j^2 + 2a_j\epsilon_{i,j} + \epsilon_{i,j}^2|\mu] \\ &= \tau^2 + 0 + \sigma^2 = \sigma^2 + \tau^2 \end{aligned}$$

$$\begin{aligned} \mathsf{Cov}[y_{i_1,j}, y_{i_2,j} | \mu] &\equiv \mathsf{E}[(y_{i_1,j} - \mathsf{E}[y_{i_1,j} | \mu]) \times (y_{i_2,j} - \mathsf{E}[y_{i_2,j}]) | \mu] \\ &= \mathsf{E}[(y_{i_1,j} - \mu) \times (y_{i_2,j} - \mu) | \mu] \\ &= \tau^2 \end{aligned}$$

$$Cor[y_{i_1,j}, y_{i_2,j}|\mu] \equiv \frac{Cov[y_{i_1,j}, y_{i_2,j}|\mu]}{\sqrt{Var[y_{i_1,j}|\mu]Var[y_{i_2,j}|\mu]}}$$
$$= \frac{\tau^2}{\tau^2 + \sigma^2} \equiv \rho$$

$$\begin{aligned} \mathsf{Cov}[y_{i_1,j}, y_{i_2,j} | \mu] &\equiv \mathsf{E}[(y_{i_1,j} - \mathsf{E}[y_{i_1,j} | \mu]) \times (y_{i_2,j} - \mathsf{E}[y_{i_2,j}]) | \mu] \\ &= \mathsf{E}[(y_{i_1,j} - \mu) \times (y_{i_2,j} - \mu) | \mu] \\ &= \tau^2 \end{aligned}$$

$$Cor[y_{i_1,j}, y_{i_2,j}|\mu] \equiv \frac{Cov[y_{i_1,j}, y_{i_2,j}|\mu]}{\sqrt{Var[y_{i_1,j}|\mu]Var[y_{i_2,j}|\mu]}}$$
$$= \frac{\tau^2}{\tau^2 + \sigma^2} \equiv \rho$$

$$\begin{aligned} \mathsf{Cov}[y_{i_1,j}, y_{i_2,j} | \mu] &\equiv \mathsf{E}[(y_{i_1,j} - \mathsf{E}[y_{i_1,j} | \mu]) \times (y_{i_2,j} - \mathsf{E}[y_{i_2,j}]) | \mu] \\ &= \mathsf{E}[(y_{i_1,j} - \mu) \times (y_{i_2,j} - \mu) | \mu] \\ &= \tau^2 \end{aligned}$$

$$\begin{aligned} \mathsf{Cor}[y_{i_1,j}, y_{i_2,j}|\mu] &\equiv \frac{\mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu]}{\sqrt{\mathsf{Var}[y_{i_1,j}|\mu]}\mathsf{Var}[y_{i_2,j}|\mu]} \\ &= \frac{\tau^2}{\tau^2 + \sigma^2} \equiv \rho \end{aligned}$$

$$Cov[y_{i_1,j}, y_{i_2,j}|\mu] \equiv E[(y_{i_1,j} - E[y_{i_1,j}|\mu]) \times (y_{i_2,j} - E[y_{i_2,j}])|\mu] \\ = E[(y_{i_1,j} - \mu) \times (y_{i_2,j} - \mu)|\mu] \\ = \tau^2$$

$$Cor[y_{i_1,j}, y_{i_2,j}|\mu] \equiv \frac{Cov[y_{i_1,j}, y_{i_2,j}|\mu]}{\sqrt{Var[y_{i_1,j}|\mu]Var[y_{i_2,j}|\mu]}}$$
$$= \frac{\tau^2}{\tau^2 + \sigma^2} \equiv \rho$$

$$Cov[y_{i_1,j}, y_{i_2,j}|\mu] \equiv E[(y_{i_1,j} - E[y_{i_1,j}|\mu]) \times (y_{i_2,j} - E[y_{i_2,j}])|\mu] \\ = E[(y_{i_1,j} - \mu) \times (y_{i_2,j} - \mu)|\mu] \\ = \tau^2$$

$$Cor[y_{i_1,j}, y_{i_2,j}|\mu] \equiv \frac{Cov[y_{i_1,j}, y_{i_2,j}|\mu]}{\sqrt{Var[y_{i_1,j}|\mu]Var[y_{i_2,j}|\mu]}}$$
$$= \frac{\tau^2}{\tau^2 + \sigma^2} \equiv \rho$$

$$Cov[y_{i_1,j}, y_{i_2,j}|\mu] \equiv E[(y_{i_1,j} - E[y_{i_1,j}|\mu]) \times (y_{i_2,j} - E[y_{i_2,j}])|\mu] \\ = E[(y_{i_1,j} - \mu) \times (y_{i_2,j} - \mu)|\mu] \\ = \tau^2$$

$$Cor[y_{i_1,j}, y_{i_2,j}|\mu] \equiv \frac{Cov[y_{i_1,j}, y_{i_2,j}|\mu]}{\sqrt{Var[y_{i_1,j}|\mu]Var[y_{i_2,j}|\mu]}}$$
$$= \frac{\tau^2}{\tau^2 + \sigma^2} \equiv \rho$$

$$\begin{aligned} \mathsf{Cov}[y_{i_1,j}, y_{i_2,j} | \mu] &\equiv \mathsf{E}[(y_{i_1,j} - \mathsf{E}[y_{i_1,j} | \mu]) \times (y_{i_2,j} - \mathsf{E}[y_{i_2,j}]) | \mu] \\ &= \mathsf{E}[(y_{i_1,j} - \mu) \times (y_{i_2,j} - \mu) | \mu] \\ &= \tau^2 \end{aligned}$$

$$Cor[y_{i_1,j}, y_{i_2,j}|\mu] \equiv \frac{Cov[y_{i_1,j}, y_{i_2,j}|\mu]}{\sqrt{Var[y_{i_1,j}|\mu]Var[y_{i_2,j}|\mu]}}$$
$$= \frac{\tau^2}{\tau^2 + \sigma^2} \equiv \rho$$

$$\begin{aligned} \mathsf{Cov}[y_{i_1,j}, y_{i_2,j} | \mu] &\equiv \mathsf{E}[(y_{i_1,j} - \mathsf{E}[y_{i_1,j} | \mu]) \times (y_{i_2,j} - \mathsf{E}[y_{i_2,j}]) | \mu] \\ &= \mathsf{E}[(y_{i_1,j} - \mu) \times (y_{i_2,j} - \mu) | \mu] \\ &= \tau^2 \end{aligned}$$

$$\begin{aligned} \mathsf{Cor}[y_{i_1,j}, y_{i_2,j}|\mu] &\equiv \frac{\mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu]}{\sqrt{\mathsf{Var}[y_{i_1,j}|\mu]}\mathsf{Var}[y_{i_2,j}|\mu]} \\ &= \frac{\tau^2}{\tau^2 + \sigma^2} \equiv \rho \end{aligned}$$

$$Cov[y_{i_1,j}, y_{i_2,j}|\mu] \equiv E[(y_{i_1,j} - E[y_{i_1,j}|\mu]) \times (y_{i_2,j} - E[y_{i_2,j}])|\mu]$$

= E[(y_{i_1,j} - \mu) \times (y_{i_2,j} - \mu)|\mu]
= \tau^2

$$\begin{aligned} \mathsf{Cor}[y_{i_1,j}, y_{i_2,j}|\mu] &\equiv \frac{\mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu]}{\sqrt{\mathsf{Var}[y_{i_1,j}|\mu]}\mathsf{Var}[y_{i_2,j}|\mu]} \\ &= \frac{\tau^2}{\tau^2 + \sigma^2} \equiv \rho \end{aligned}$$

$$Cov[y_{i_1,j}, y_{i_2,j}|\mu] \equiv E[(y_{i_1,j} - E[y_{i_1,j}|\mu]) \times (y_{i_2,j} - E[y_{i_2,j}])|\mu]$$

= E[(y_{i_1,j} - \mu) \times (y_{i_2,j} - \mu)|\mu]
= \tau^2

$$\begin{aligned} \mathsf{Cor}[y_{i_1,j}, y_{i_2,j}|\mu] &\equiv \frac{\mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu]}{\sqrt{\mathsf{Var}[y_{i_1,j}|\mu]}\mathsf{Var}[y_{i_2,j}|\mu]} \\ &= \frac{\tau^2}{\tau^2 + \sigma^2} \equiv \rho \end{aligned}$$

$$Cov[y_{i_1,j}, y_{i_2,j}|\mu] \equiv E[(y_{i_1,j} - E[y_{i_1,j}|\mu]) \times (y_{i_2,j} - E[y_{i_2,j}])|\mu]$$

= E[(y_{i_1,j} - \mu) \times (y_{i_2,j} - \mu)|\mu]
= \tau^2

$$\begin{aligned} \mathsf{Cor}[y_{i_1,j}, y_{i_2,j}|\mu] &\equiv \frac{\mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu]}{\sqrt{\mathsf{Var}[y_{i_1,j}|\mu]}\mathsf{Var}[y_{i_2,j}|\mu]} \\ &= \frac{\tau^2}{\tau^2 + \sigma^2} \equiv \rho \end{aligned}$$

$$Cov[y_{i_1,j}, y_{i_2,j}|\mu] \equiv E[(y_{i_1,j} - E[y_{i_1,j}|\mu]) \times (y_{i_2,j} - E[y_{i_2,j}])|\mu]$$

= E[(y_{i_1,j} - \mu) \times (y_{i_2,j} - \mu)|\mu]
= \tau^2

$$\begin{aligned} \mathsf{Cor}[y_{i_1,j}, y_{i_2,j}|\mu] &\equiv \frac{\mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu]}{\sqrt{\mathsf{Var}[y_{i_1,j}|\mu]}\mathsf{Var}[y_{i_2,j}|\mu]} \\ &= \frac{\tau^2}{\tau^2 + \sigma^2} \equiv \rho \end{aligned}$$

$$Cov[y_{i_1,j}, y_{i_2,j}|\mu] \equiv E[(y_{i_1,j} - E[y_{i_1,j}|\mu]) \times (y_{i_2,j} - E[y_{i_2,j}])|\mu]$$

= E[(y_{i_1,j} - \mu) \times (y_{i_2,j} - \mu)|\mu]
= \tau^2

$$\begin{aligned} \mathsf{Cor}[y_{i_1,j}, y_{i_2,j}|\mu] &\equiv \frac{\mathsf{Cov}[y_{i_1,j}, y_{i_2,j}|\mu]}{\sqrt{\mathsf{Var}[y_{i_1,j}|\mu]}\mathsf{Var}[y_{i_2,j}|\mu]} \\ &= \frac{\tau^2}{\tau^2 + \sigma^2} \equiv \rho \end{aligned}$$

$$Cov[y_{i_1,j}, y_{i_2,j}|\mu] \equiv E[(y_{i_1,j} - E[y_{i_1,j}|\mu]) \times (y_{i_2,j} - E[y_{i_2,j}])|\mu]$$

= E[(y_{i_1,j} - \mu) \times (y_{i_2,j} - \mu)|\mu]
= \tau^2

$$\begin{aligned} \mathsf{Cor}[y_{i_1,j}, y_{i_2,j} | \mu] &\equiv \frac{\mathsf{Cov}[y_{i_1,j}, y_{i_2,j} | \mu]}{\sqrt{\mathsf{Var}[y_{i_1,j} | \mu]} \mathsf{Var}[y_{i_2,j} | \mu]} \\ &= \frac{\tau^2}{\tau^2 + \sigma^2} \equiv \rho \end{aligned}$$

$$Cov[y_{i_1,j}, y_{i_2,j}|\mu] \equiv E[(y_{i_1,j} - E[y_{i_1,j}|\mu]) \times (y_{i_2,j} - E[y_{i_2,j}])|\mu]$$

= E[(y_{i_1,j} - \mu) \times (y_{i_2,j} - \mu)|\mu]
= \tau^2

$$\begin{aligned} \mathsf{Cor}[y_{i_1,j}, y_{i_2,j} | \mu] &\equiv \frac{\mathsf{Cov}[y_{i_1,j}, y_{i_2,j} | \mu]}{\sqrt{\mathsf{Var}[y_{i_1,j} | \mu]} \mathsf{Var}[y_{i_2,j} | \mu]} \\ &= \frac{\tau^2}{\tau^2 + \sigma^2} \equiv \rho \end{aligned}$$

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate τ^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, \dots, a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n}\sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of *MSA* over samples *and groups* is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n\tau^2.$$

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate τ^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, \ldots, a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n}\sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of *MSA* over samples *and groups* is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n\tau^2.$$

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate τ^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, \dots, a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n}\sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of *MSA* over samples *and groups* is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n\tau^2.$$

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate τ^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, \ldots, a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n}\sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of *MSA* over samples *and groups* is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n\tau^2.$$

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate τ^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1},...,a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n}\sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of *MSA* over samples *and groups* is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n\tau^2.$$

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate τ^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, ..., a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n} \sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of *MSA* over samples *and groups* is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n\tau^2.$$

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate τ^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, ..., a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n} \sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of *MSA* over samples *and groups* is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n\tau^2.$$

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate τ^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, ..., a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n} \sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of *MSA* over samples *and groups* is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n\tau^2.$$

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate τ^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, ..., a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n} \sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of *MSA* over samples *and groups* is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n\tau^2.$$

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate τ^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, \ldots, a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n}\sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of *MSA* over samples *and groups* is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n\tau^2.$$

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate au^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, ..., a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n}\sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of MSA over samples and groups is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n\tau^2.$$

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate au^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, ..., a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n} \sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of MSA over samples and groups is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n\tau^2.$$

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate au^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, ..., a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n} \sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of MSA over samples and groups is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n\tau^2.$$

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate au^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, ..., a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n}\sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of MSA over samples and groups is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n\tau^2.$$

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate au^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, ..., a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n}\sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of MSA over samples and groups is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n\tau^2.$$

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate au^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, ..., a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n}\sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of MSA over samples and groups is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$$
$$= \sigma^2 + n\tau^2.$$

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate au^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, ..., a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n}\sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of MSA over samples and groups is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$

= $\sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$
= $\sigma^2 + n\tau^2$.

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate au^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, ..., a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n}\sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of MSA over samples and groups is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$

= $\sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$
= $\sigma^2 + n\tau^2$.

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate au^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, ..., a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n}\sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of MSA over samples and groups is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$

= $\sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$
= $\sigma^2 + n\tau^2$.

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate au^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, ..., a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n}\sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of MSA over samples and groups is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$

= $\sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$
= $\sigma^2 + n\tau^2.$

Hierarchical normal model 00000000

Estimation of τ^2 and ρ

The easiest way to estimate τ^2 is using the method-of-moments. Recall,

$$MSA = \frac{1}{m-1} \sum_{j} \sum_{i} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$= \frac{n}{m-1} \sum_{j} (\bar{y}_{j} - \bar{y}_{..})^{2}$$
$$E[MSA|a_{1}, \ldots, a_{m}] = \frac{n}{m-1} \left(\frac{m-1}{n}\sigma^{2} + \sum_{j} a_{j}^{2}\right)$$
$$= \sigma^{2} + n \times \frac{1}{m-1} \sum_{j} a_{j}^{2}.$$

The expectation of MSA over samples and groups is given by

$$E[E[MSA|a_1,...,a_m]] = E[\sigma^2 + n \times \frac{1}{m-1} \sum a_j^2]$$

= $\sigma^2 + n \times E[\frac{1}{m-1} \sum a_j^2]$
= $\sigma^2 + n\tau^2.$

Estimation and inference

Estimation of τ^2 and ρ

The result suggests

$$\widehat{\sigma^2 + n\tau^2} = MSA.$$

How to estimate τ^2 ? Recall $E[MSW] = \sigma^2$, so we can use

This suggests

 $\widehat{n\tau^2} = MSA - MSW$ $\widehat{\tau}^2 = (MSA - MSW)/n.$

Comments:

- $\mathit{MSA}-\mathit{MSW}$ could be negative. If so, it is standard to set $\hat{ au}^2=0.$
- If sample sizes are unequal, the formula must be modified slightly:

 $\hat{\tau}^2 = (MSA - MSW)/\tilde{n}$

Estimation and inference

Estimation of τ^2 and ρ

The result suggests

$$\widehat{\sigma^2 + n\tau^2} = MSA.$$

How to estimate $\tau^2?$ Recall $\mathrm{E}[\mathit{MSW}]=\sigma^2$, so we can use

$$\hat{\sigma^2} = MSW.$$

This suggests

$$\widehat{n\tau^2} = MSA - MSW$$
$$\widehat{\tau}^2 = (MSA - MSW)/n.$$

Comments:

- $\mathit{MSA}-\mathit{MSW}$ could be negative. If so, it is standard to set $\hat{ au}^2=$ 0.
- If sample sizes are unequal, the formula must be modified slightly:

 $\hat{\tau}^2 = (MSA - MSW)/\tilde{n}$

Estimation and inference

Estimation of τ^2 and ρ

The result suggests

$$\widehat{\sigma^2 + n\tau^2} = MSA.$$

How to estimate τ^2 ? Recall $E[MSW] = \sigma^2$, so we can use

 $\hat{\sigma^2} = MSW.$

This suggests

$$\widehat{n\tau^2} = MSA - MSW$$
$$\widehat{\tau}^2 = (MSA - MSW)/n.$$

Comments:

- $\mathit{MSA}-\mathit{MSW}$ could be negative. If so, it is standard to set $\hat{ au}^2=0.$
- If sample sizes are unequal, the formula must be modified slightly:

 $\hat{\tau}^2 = (MSA - MSW)/\tilde{n}$

Estimation and inference

Estimation of τ^2 and ρ

The result suggests

$$\widehat{\sigma^2 + n\tau^2} = MSA.$$

How to estimate τ^2 ? Recall $E[MSW] = \sigma^2$, so we can use

 $\hat{\sigma^2} = MSW.$

This suggests

$$\widehat{n\tau^2} = MSA - MSW$$
$$\hat{\tau}^2 = (MSA - MSW)/n.$$

Comments:

- MSA MSW could be negative. If so, it is standard to set $\hat{\tau}^2 = 0$.
- If sample sizes are unequal, the formula must be modified slightly:

$$\hat{\tau}^2 = (MSA - MSW)/\tilde{n}$$

Estimation and inference

Estimation of τ^2 and ρ

The result suggests

$$\widehat{\sigma^2 + n\tau^2} = MSA.$$

How to estimate τ^2 ? Recall $E[MSW] = \sigma^2$, so we can use

 $\hat{\sigma^2} = MSW.$

This suggests

$$\widehat{n\tau^2} = MSA - MSW$$
$$\hat{\tau}^2 = (MSA - MSW)/n.$$

Comments:

- MSA MSW could be negative. If so, it is standard to set $\hat{\tau}^2 = 0$.
- If sample sizes are unequal, the formula must be modified slightly:

$$\hat{\tau}^2 = (MSA - MSW)/\tilde{n}$$

Estimation and inference

Estimation of τ^2 and ρ

The result suggests

$$\widehat{\sigma^2 + n\tau^2} = MSA.$$

How to estimate τ^2 ? Recall $E[MSW] = \sigma^2$, so we can use

 $\hat{\sigma^2} = MSW.$

This suggests

$$\widehat{n\tau^2} = MSA - MSW$$

 $\hat{\tau}^2 = (MSA - MSW)/n.$

Comments:

- MSA MSW could be negative. If so, it is standard to set $\hat{\tau}^2 = 0$.
- If sample sizes are unequal, the formula must be modified slightly:

$$\hat{\tau}^2 = (MSA - MSW)/\tilde{n}$$

Estimation and inference

Estimation of τ^2 and ρ

The result suggests

$$\widehat{\sigma^2 + n\tau^2} = MSA.$$

How to estimate τ^2 ? Recall $E[MSW] = \sigma^2$, so we can use

 $\hat{\sigma^2} = MSW.$

This suggests

$$\widehat{n\tau^2} = MSA - MSW$$

 $\hat{\tau}^2 = (MSA - MSW)/n.$

Comments:

- MSA MSW could be negative. If so, it is standard to set $\hat{\tau}^2 = 0$.
- If sample sizes are unequal, the formula must be modified slightly:

$$\hat{\tau}^2 = (MSA - MSW)/\tilde{n}$$

Hierarchical normal model

Estimation and inference

Unequal sample sizes

$$\hat{\tau}^2 = (MSA - MSW)/\tilde{n}$$

$$\tilde{n} = \bar{n} - rac{\text{sample variance}(n_1, \dots, n_m)}{m\bar{n}}$$

where $\bar{n} = \sum_j n_j / m$ = sample mean (n_1, \ldots, m_m) .

Hierarchical normal model

Estimation and inference

Estimation of τ^2 and ρ

It is common to use a "plug-in" estimate of ρ :

$$\hat{
ho}=\widehat{rac{ au^2}{ au^2+\sigma^2}}=rac{\hat{ au}^2}{\hat{ au}^2+\hat{\sigma}^2}.$$

A standard error for ρ (with which we can get a CI) is

$$se(\hat{\rho}) = (1 - \hat{\rho}) \times (1 + (n - 1)\hat{\rho}) \sqrt{\frac{2}{n(n - 1)(m - 1)}}$$

Estimation and inference

Estimation of τ^2 and ρ

It is common to use a "plug-in" estimate of ρ :

$$\hat{\rho} = \frac{\widehat{\tau^2}}{\tau^2 + \sigma^2} = \frac{\hat{\tau}^2}{\hat{\tau}^2 + \hat{\sigma}^2}.$$

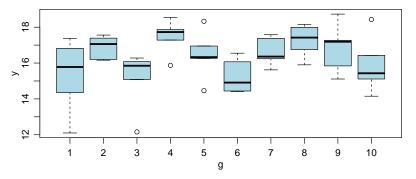
A standard error for ρ (with which we can get a CI) is

$${
m se}(\hat{
ho}) = (1-\hat{
ho}) imes (1+(n-1)\hat{
ho}) \sqrt{rac{2}{n(n-1)(m-1)}}$$

Hierarchical normal model

Estimation and inference

Example: Wheat



```
anova(lm(y<sup>as.factor(g)))</sup>
```

```
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(g) 9 33.368 3.7076 2.0745 0.0555 .
## Residuals 40 71.488 1.7872
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Hierarchical normal model

Estimation and inference

Example: Wheat

fit<-anova(lm(y~as.factor(g)))</pre>

MSA<-fit[1,3]
MSW<-fit[2,3]</pre>

MSA

[1] 3.70759

MSW

[1] 1.787206

t2<-(MSA-MSW)/n

t2

1 ## 0.3840768

Hierarchical normal model

Estimation and inference

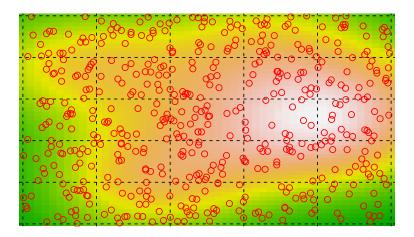
Example: Wheat

rho<-t2/(t2+MSW)
rho
1 ## 0.1768894
se.rho<- (1-rho)*(1+(n-1)*rho)*sqrt(2/(n*(n-1)*(m-1)))
rho + c(-2,2)*se.rho
[1] -0.1194179 0.4731966

Hierarchical normal model

Estimation and inference

Two-stage sampling



 $\mu = 2.1124814$

Ignoring across-group heterogeneity

Task: Construct a 95% CI for the population mean.

t-interval for SRS:

If y_1, \ldots, y_n is an iid sample with $E[y_i] = \mu$ and $Var[y_i] = \sigma^2$,

$$\mathsf{E}[\bar{y}] = \mu \ , \ \mathsf{Var}[\bar{y}] = \sigma^2/n.$$

By the central limit theorem,

$$ar{y} \sim N(\mu, \sigma^2/n) \ , \ rac{ar{y} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

As σ^2 is generally unknown, we use

$$rac{ar y-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \,\, ext{, where } s^2 = rac{1}{n-1}\sum(y_i-ar y)^2.$$

From this, we have

$$ar{y} \pm t_{n-1,.975} imes s/\sqrt{n}$$
 is a 95% Cl for μ .

Ignoring across-group heterogeneity

Task: Construct a 95% CI for the population mean.

t-interval for SRS:

If y_1, \ldots, y_n is an iid sample with $\mathsf{E}[y_i] = \mu$ and $\mathsf{Var}[y_i] = \sigma^2$,

$$\mathsf{E}[\bar{y}] = \mu \ , \ \mathsf{Var}[\bar{y}] = \sigma^2/n.$$

By the central limit theorem,

$$ar{y} \sim N(\mu, \sigma^2/n) \;,\; rac{ar{y}-\mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

As σ^2 is generally unknown, we use

$$rac{ar y-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \,\,$$
 , where $s^2=rac{1}{n-1}\sum(y_i-ar y)^2.$

From this, we have

$$\bar{y} \pm t_{n-1,.975} imes s/\sqrt{n}$$
 is a 95% CI for μ .

Ignoring across-group heterogeneity

Task: Construct a 95% CI for the population mean.

t-interval for SRS:

If y_1, \ldots, y_n is an iid sample with $\mathsf{E}[y_i] = \mu$ and $\mathsf{Var}[y_i] = \sigma^2$,

$$\mathsf{E}[\bar{y}] = \mu \ , \ \mathsf{Var}[\bar{y}] = \sigma^2/n.$$

By the central limit theorem,

$$\bar{y} \sim N(\mu, \sigma^2/n) , \ rac{\bar{y}-\mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

As σ^2 is generally unknown, we use

$$rac{ar y-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \,\, ext{, where } s^2 = rac{1}{n-1}\sum(y_i-ar y)^2$$

From this, we have

 $ar{y} \pm t_{n-1,.975} imes s/\sqrt{n}$ is a 95% CI for μ .

Ignoring across-group heterogeneity

Task: Construct a 95% CI for the population mean.

t-interval for SRS:

If y_1, \ldots, y_n is an iid sample with $\mathsf{E}[y_i] = \mu$ and $\mathsf{Var}[y_i] = \sigma^2$,

$$\mathsf{E}[\bar{y}] = \mu \ , \ \mathsf{Var}[\bar{y}] = \sigma^2/n.$$

By the central limit theorem,

$$ar{y} \sim N(\mu, \sigma^2/n) \ , \ rac{ar{y}-\mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

As σ^2 is generally unknown, we use

$$rac{ar y-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \,\, ext{, where } s^2 = rac{1}{n-1}\sum(y_i-ar y)^2.$$

From this, we have

 $ar{y} \pm t_{n-1,.975} imes s/\sqrt{n}$ is a 95% CI for μ

Ignoring across-group heterogeneity

Task: Construct a 95% CI for the population mean.

t-interval for SRS:

If y_1, \ldots, y_n is an iid sample with $\mathsf{E}[y_i] = \mu$ and $\mathsf{Var}[y_i] = \sigma^2$,

$$\mathsf{E}[\bar{y}] = \mu \ , \ \mathsf{Var}[\bar{y}] = \sigma^2/n.$$

By the central limit theorem,

$$ar{y} \sim N(\mu, \sigma^2/n) \ , \ rac{ar{y} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

As σ^2 is generally unknown, we use

$$rac{ar y-\mu}{s/\sqrt{n}} \stackrel{.}{\sim} t_{n-1}, \,\, ext{, where } s^2 = rac{1}{n-1}\sum(y_i-ar y)^2.$$

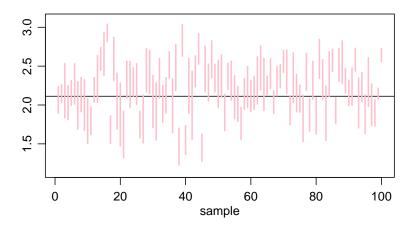
From this, we have

$$ar{y} \pm t_{n-1,.975} imes s/\sqrt{n}$$
 is a 95% CI for μ .

Hierarchical normal model

Estimation and inference

Ignoring across-group heterogeneity



Recall that an approximate 95% CI for μ is given by

 $\bar{y} \pm 2 \times se(\bar{y}),$

where $se(\bar{y})$ is an approximation to the standard deviation of \bar{y} .

How to find $se(\bar{y})$:

- 1. compute the variance v of \bar{y} based on the model;
- 2. find an estimate \hat{v} of v;
- 3. let se $(\bar{y}) = \sqrt{v}$.

Recall that an approximate 95% CI for μ is given by

 $\bar{y} \pm 2 \times se(\bar{y}),$

where $se(\bar{y})$ is an approximation to the standard deviation of \bar{y} .

How to find $se(\bar{y})$:

- 1. compute the variance v of \bar{y} based on the model;
- 2. find an estimate \hat{v} of v;
- 3. let $se(\bar{y}) = \sqrt{v}$.

Recall that an approximate 95% CI for μ is given by

 $\bar{y} \pm 2 \times se(\bar{y}),$

where $se(\bar{y})$ is an approximation to the standard deviation of \bar{y} .

How to find $se(\bar{y})$:

- 1. compute the variance v of \bar{y} based on the model;
- 2. find an estimate \hat{v} of v;
- 3. let $se(\bar{y}) = \sqrt{v}$.

Recall that an approximate 95% CI for μ is given by

 $\bar{y} \pm 2 \times se(\bar{y}),$

where $se(\bar{y})$ is an approximation to the standard deviation of \bar{y} .

How to find $se(\bar{y})$:

- 1. compute the variance v of \bar{y} based on the model;
- 2. find an estimate \hat{v} of v;
- 3. let $se(\bar{y}) = \sqrt{v}$.

Recall that an approximate 95% CI for μ is given by

 $\bar{y} \pm 2 \times se(\bar{y}),$

where $se(\bar{y})$ is an approximation to the standard deviation of \bar{y} .

How to find $se(\bar{y})$:

- 1. compute the variance v of \bar{y} based on the model;
- 2. find an estimate \hat{v} of v;
- 3. let se $(\bar{y}) = \sqrt{v}$.

Recall that an approximate 95% CI for μ is given by

 $\bar{y} \pm 2 \times se(\bar{y}),$

where $se(\bar{y})$ is an approximation to the standard deviation of \bar{y} .

How to find $se(\bar{y})$:

- 1. compute the variance v of \bar{y} based on the model;
- 2. find an estimate \hat{v} of v;
- 3. let $se(\bar{y}) = \sqrt{v}$.

Variance of the grand mean around population mean

$$Var[\bar{y}] = Var[\frac{1}{mn}\sum_{j}\sum_{i}y_{i,j}]$$
$$= Var[\frac{1}{m}\sum_{j}\frac{1}{n}\sum_{i}y_{i,j}]$$
$$= Var[\frac{1}{m}\sum_{j}\bar{y}_{j}]$$
$$= \frac{1}{m^{2}}Var[\sum_{j}\bar{y}_{j}]$$
$$= \frac{1}{m^{2}}\sum_{j}Var[\bar{y}_{j}]$$
$$= \frac{1}{m^{2}}mVar[\bar{y}_{1}]$$
$$= \frac{1}{m}Var[\bar{y}_{1}]$$

$$Var[\bar{y}] = Var[\frac{1}{mn}\sum_{j}\sum_{i}y_{i,j}]$$
$$= Var[\frac{1}{m}\sum_{j}\frac{1}{n}\sum_{i}y_{i,j}]$$
$$= Var[\frac{1}{m}\sum_{j}\bar{y}_{j}]$$
$$= \frac{1}{m^{2}}Var[\sum_{j}\bar{y}_{j}]$$
$$= \frac{1}{m^{2}}\sum_{j}Var[\bar{y}_{j}]$$
$$= \frac{1}{m^{2}}mVar[\bar{y}_{1}]$$
$$= \frac{1}{m}Var[\bar{y}_{1}]$$

$$Var[\bar{y}] = Var[\frac{1}{mn} \sum_{j} \sum_{i} y_{i,j}]$$
$$= Var[\frac{1}{m} \sum_{j} \frac{1}{n} \sum_{i} y_{i,j}]$$
$$= Var[\frac{1}{m} \sum_{j} \bar{y}_{j}]$$
$$= \frac{1}{m^{2}} Var[\sum_{j} \bar{y}_{j}]$$
$$= \frac{1}{m^{2}} \sum_{j} Var[\bar{y}_{j}]$$
$$= \frac{1}{m^{2}} mVar[\bar{y}_{1}]$$
$$= \frac{1}{m} Var[\bar{y}_{1}]$$

$$Var[\bar{y}] = Var[\frac{1}{mn} \sum_{j} \sum_{i} y_{i,j}]$$
$$= Var[\frac{1}{m} \sum_{j} \frac{1}{n} \sum_{i} y_{i,j}]$$
$$= Var[\frac{1}{m} \sum_{j} \bar{y}_{j}]$$
$$= \frac{1}{m^{2}} Var[\sum_{j} \bar{y}_{j}]$$
$$= \frac{1}{m^{2}} \sum_{j} Var[\bar{y}_{j}]$$
$$= \frac{1}{m^{2}} mVar[\bar{y}_{1}]$$
$$= \frac{1}{m} Var[\bar{y}_{1}]$$

$$Var[\bar{y}] = Var[\frac{1}{mn} \sum_{j} \sum_{i} y_{i,j}]$$
$$= Var[\frac{1}{m} \sum_{j} \frac{1}{n} \sum_{i} y_{i,j}]$$
$$= Var[\frac{1}{m} \sum_{j} \bar{y}_{j}]$$
$$= \frac{1}{m^{2}} Var[\sum_{j} \bar{y}_{j}]$$
$$= \frac{1}{m^{2}} \sum_{j} Var[\bar{y}_{j}]$$
$$= \frac{1}{m^{2}} mVar[\bar{y}_{1}]$$
$$= \frac{1}{m} Var[\bar{y}_{1}]$$

$$Var[\bar{y}] = Var[\frac{1}{mn} \sum_{j} \sum_{i} y_{i,j}]$$
$$= Var[\frac{1}{m} \sum_{j} \frac{1}{n} \sum_{i} y_{i,j}]$$
$$= Var[\frac{1}{m} \sum_{j} \bar{y}_{j}]$$
$$= \frac{1}{m^{2}} Var[\sum_{j} \bar{y}_{j}]$$
$$= \frac{1}{m^{2}} \sum_{j} Var[\bar{y}_{j}]$$
$$= \frac{1}{m^{2}} mVar[\bar{y}_{1}]$$
$$= \frac{1}{m} Var[\bar{y}_{1}]$$

$$Var[\bar{y}] = Var[\frac{1}{mn} \sum_{j} \sum_{i} y_{i,j}]$$
$$= Var[\frac{1}{m} \sum_{j} \frac{1}{n} \sum_{i} y_{i,j}]$$
$$= Var[\frac{1}{m} \sum_{j} \bar{y}_{j}]$$
$$= \frac{1}{m^{2}} Var[\sum_{j} \bar{y}_{j}]$$
$$= \frac{1}{m^{2}} \sum_{j} Var[\bar{y}_{j}]$$
$$= \frac{1}{m^{2}} mVar[\bar{y}_{1}]$$
$$= \frac{1}{m} Var[\bar{y}_{1}]$$

$$Var[\bar{y}] = Var[\frac{1}{mn} \sum_{j} \sum_{i} y_{i,j}]$$
$$= Var[\frac{1}{m} \sum_{j} \frac{1}{n} \sum_{i} y_{i,j}]$$
$$= Var[\frac{1}{m} \sum_{j} \bar{y}_{j}]$$
$$= \frac{1}{m^{2}} Var[\sum_{j} \bar{y}_{j}]$$
$$= \frac{1}{m^{2}} \sum_{j} Var[\bar{y}_{j}]$$
$$= \frac{1}{m^{2}} mVar[\bar{y}_{1}]$$
$$= \frac{1}{m} Var[\bar{y}_{1}]$$

What is $Var[\bar{y}_1]$? We've shown

$$\mathsf{Var}[y_{i,1}] = \sigma^2 + \tau^2,$$

but generally,

 $\mathsf{Var}[\bar{y}_1] \neq [\sigma^2 + \tau^2]/n.$

Quiz: What is the smallest that $Var[\bar{y}_1]$ could be for fixed σ^2 and *n*? Recall

$$\operatorname{Cor}[y_{i,1}, y_{i,2}] = \frac{\tau^2}{\tau^2 + \sigma^2}$$

Answer: When τ^2 is zero the within group samples are independent and so

 $\mathsf{Var}[\bar{y}_1] \geq \sigma^2/n$

What is $Var[\bar{y}_1]$? We've shown

$$\mathsf{Var}[y_{i,1}] = \sigma^2 + \tau^2,$$

but generally,

$$\operatorname{Var}[\bar{y}_1] \neq [\sigma^2 + \tau^2]/n.$$

Quiz: What is the smallest that $Var[\bar{y}_1]$ could be for fixed σ^2 and *n*? Recall

$$\operatorname{Cor}[y_{i,1}, y_{i,2}] = \frac{\tau^2}{\tau^2 + \sigma^2}$$

Answer: When τ^2 is zero the within group samples are independent and so

 $\mathsf{Var}[\bar{y}_1] \geq \sigma^2/n$

What is $Var[\bar{y}_1]$? We've shown

$$\mathsf{Var}[y_{i,1}] = \sigma^2 + \tau^2,$$

but generally,

$$\operatorname{Var}[\bar{y}_1] \neq [\sigma^2 + \tau^2]/n.$$

Quiz: What is the smallest that $Var[\bar{y}_1]$ could be for fixed σ^2 and *n*? Recall

$$\operatorname{Cor}[y_{i,1}, y_{i,2}] = \frac{\tau^2}{\tau^2 + \sigma^2}$$

Answer: When τ^2 is zero the within group samples are independent and so

$$\mathsf{Var}[\bar{y}_1] \geq \sigma^2/n$$

Quiz: what is the smallest that $Var[\bar{y}_1]$ could be for fixed σ^2 and τ^2 ?

Answer: Increasing *n* reduces variation of \bar{y}_1 around θ_1 , but across group heterogeneity remains:

or large $n, \bar{y}_1 \approx \theta_1$ $\operatorname{Var}[\theta_1] = \tau^2$ $\operatorname{Var}[\bar{y}_1] \ge \tau^2$

Quiz: what is the smallest that $Var[\bar{y}_1]$ could be for fixed σ^2 and τ^2 ?

Answer: Increasing *n* reduces variation of \bar{y}_1 around θ_1 , but across group heterogeneity remains:

for large $n, \bar{y}_1 \approx \theta_1$ $Var[\theta_1] = \tau^2$ $Var[\bar{y}_1] \ge \tau^2$

Let's compute ${\rm Var}[\bar{y}_1].$ For notational convenience, we'll drop the group index, and assume $\mu=0,$ so

$$\mathsf{E}[y_i] = 0 \ , \ \mathsf{E}[y_i^2] = \sigma^2 + \tau^2 \ , \ \mathsf{E}[y_i y_k] = \tau^2$$

In this case,

Va

$$\mathbf{r}[\mathbf{\bar{y}}] = \mathbf{E}[\mathbf{\bar{y}}^{2}]$$

$$= \mathbb{E}[\frac{1}{n^{2}}(\sum y_{i})^{2}]$$

$$= \frac{1}{n^{2}}\mathbb{E}[\sum y_{i}^{2} + \sum_{i \neq k} y_{i}y_{j}]$$

$$= \frac{1}{n^{2}}(n[\sigma^{2} + \tau^{2}] + n(n-1)\tau^{2}]$$

$$= \frac{\sigma^{2}}{n} + \frac{1}{n}\tau^{2} + \frac{n-1}{n}\tau^{2}$$

$$= \frac{\sigma^{2}}{n} + \tau^{2}$$

Let's compute ${\rm Var}[\bar{y}_1].$ For notational convenience, we'll drop the group index, and assume $\mu=0,$ so

$$\mathsf{E}[y_i] = 0 \ , \ \mathsf{E}[y_i^2] = \sigma^2 + \tau^2 \ , \ \mathsf{E}[y_i y_k] = \tau^2$$

In this case,

Va

$$\mathbf{r}[\bar{\mathbf{y}}] = \mathbf{E}[\bar{\mathbf{y}}^2]$$

$$= \mathbf{E}[\frac{1}{n^2}(\sum y_i)^2]$$

$$= \frac{1}{n^2}\mathbf{E}[\sum y_i^2 + \sum_{i \neq k} y_i y_j]$$

$$= \frac{1}{n^2}(n[\sigma^2 + \tau^2] + n(n-1)\tau^2)$$

$$= \frac{\sigma^2}{n} + \frac{1}{n}\tau^2 + \frac{n-1}{n}\tau^2$$

$$= \frac{\sigma^2}{n} + \tau^2$$

Let's compute ${\rm Var}[\bar{y}_1].$ For notational convenience, we'll drop the group index, and assume $\mu=0,$ so

$$\mathsf{E}[y_i] = 0 \ , \ \mathsf{E}[y_i^2] = \sigma^2 + \tau^2 \ , \ \mathsf{E}[y_i y_k] = \tau^2$$

In this case,

Va

$$\mathbf{r}[\bar{\mathbf{y}}] = \mathbf{E}[\bar{\mathbf{y}}^2]$$

$$= \mathbf{E}[\frac{1}{n^2}(\sum y_i)^2]$$

$$= \frac{1}{n^2}\mathbf{E}[\sum y_i^2 + \sum_{i \neq k} y_i y_j]$$

$$= \frac{1}{n^2}(n[\sigma^2 + \tau^2] + n(n-1)\tau^2)$$

$$= \frac{\sigma^2}{n} + \frac{1}{n}\tau^2 + \frac{n-1}{n}\tau^2$$

$$= \frac{\sigma^2}{n} + \tau^2$$

Let's compute ${\rm Var}[\bar{y}_1].$ For notational convenience, we'll drop the group index, and assume $\mu=0,$ so

$$\mathsf{E}[y_i] = 0 \ , \ \mathsf{E}[y_i^2] = \sigma^2 + \tau^2 \ , \ \mathsf{E}[y_i y_k] = \tau^2$$

In this case,

Va

$$r[\bar{y}] = E[\bar{y}^{2}]$$

$$= E[\frac{1}{n^{2}}(\sum y_{i})^{2}]$$

$$= \frac{1}{n^{2}}E[\sum y_{i}^{2} + \sum_{i \neq k} y_{i}y_{j}]$$

$$= \frac{1}{n^{2}}(n[\sigma^{2} + \tau^{2}] + n(n-1)\tau^{2})$$

$$= \frac{\sigma^{2}}{n} + \frac{1}{n}\tau^{2} + \frac{n-1}{n}\tau^{2}$$

$$= \frac{\sigma^{2}}{n} + \tau^{2}$$

Let's compute ${\rm Var}[\bar{y}_1].$ For notational convenience, we'll drop the group index, and assume $\mu=0,$ so

$$\mathsf{E}[y_i] = 0 \ , \ \mathsf{E}[y_i^2] = \sigma^2 + \tau^2 \ , \ \mathsf{E}[y_i y_k] = \tau^2$$

In this case,

$$Var[\bar{y}] = E[\bar{y}^{2}]$$

$$= E[\frac{1}{n^{2}}(\sum y_{i})^{2}]$$

$$= \frac{1}{n^{2}}E[\sum y_{i}^{2} + \sum_{i \neq k} y_{i}y_{j}]$$

$$= \frac{1}{n^{2}}(n[\sigma^{2} + \tau^{2}] + n(n-1)\tau^{2})$$

$$= \frac{\sigma^{2}}{n} + \frac{1}{n}\tau^{2} + \frac{n-1}{n}\tau^{2}$$

$$= \frac{\sigma^{2}}{n} + \tau^{2}$$

Let's compute ${\rm Var}[\bar{y}_1].$ For notational convenience, we'll drop the group index, and assume $\mu=0,$ so

$$\mathsf{E}[y_i] = 0 \ , \ \mathsf{E}[y_i^2] = \sigma^2 + \tau^2 \ , \ \mathsf{E}[y_i y_k] = \tau^2$$

In this case,

$$Var[\bar{y}] = E[\bar{y}^2]$$

$$= E[\frac{1}{n^2}(\sum y_i)^2]$$

$$= \frac{1}{n^2}E[\sum y_i^2 + \sum_{i \neq k} y_i y_j]$$

$$= \frac{1}{n^2}(n[\sigma^2 + \tau^2] + n(n-1)\tau^2)$$

$$= \frac{\sigma^2}{n} + \frac{1}{n}\tau^2 + \frac{n-1}{n}\tau^2$$

$$= \frac{\sigma^2}{n} + \tau^2$$

Let's compute ${\rm Var}[\bar{y}_1].$ For notational convenience, we'll drop the group index, and assume $\mu=0,$ so

$$\mathsf{E}[y_i] = 0 \ , \ \mathsf{E}[y_i^2] = \sigma^2 + \tau^2 \ , \ \mathsf{E}[y_i y_k] = \tau^2$$

In this case,

$$Var[\bar{y}] = E[\bar{y}^2]$$

$$= E[\frac{1}{n^2}(\sum y_i)^2]$$

$$= \frac{1}{n^2}E[\sum y_i^2 + \sum_{i \neq k} y_i y_j]$$

$$= \frac{1}{n^2}(n[\sigma^2 + \tau^2] + n(n-1)\tau^2)$$

$$= \frac{\sigma^2}{n} + \frac{1}{n}\tau^2 + \frac{n-1}{n}\tau^2$$

$$= \frac{\sigma^2}{n} + \tau^2$$

Estimation and inference

Variance of the sample grand mean

$$Var[\bar{y}_{\cdot\cdot}] = \frac{1}{m} Var[\bar{y}_j]$$
$$Var[\bar{y}_j] = \frac{1}{n} \sigma^2 + \tau^2$$

$$\mathsf{Var}[\bar{y}_{\cdot\cdot}] = \frac{1}{nm}\sigma^2 + \frac{1}{m}\tau^2$$

What happens as

- $n \to \infty$ and *m* stays fixed?
- $m \to \infty$ and *n* stays fixed?

Variance of the sample grand mean

$$Var[\bar{y}_{\cdot\cdot}] = \frac{1}{m} Var[\bar{y}_j]$$
$$Var[\bar{y}_j] = \frac{1}{n} \sigma^2 + \tau^2$$

$$\mathsf{Var}[\bar{y}_{\cdot\cdot}] = \frac{1}{nm}\sigma^2 + \frac{1}{m}\tau^2$$

What happens as

- $n \to \infty$ and *m* stays fixed?
- $m \to \infty$ and *n* stays fixed?

Variance of the sample grand mean

$$Var[\bar{y}_{\cdot\cdot}] = \frac{1}{m} Var[\bar{y}_j]$$
$$Var[\bar{y}_j] = \frac{1}{n} \sigma^2 + \tau^2$$

$$\mathsf{Var}[\bar{y}_{\cdot\cdot}] = \frac{1}{nm}\sigma^2 + \frac{1}{m}\tau^2$$

What happens as

- $n \rightarrow \infty$ and *m* stays fixed?
- $m \to \infty$ and *n* stays fixed?

Estimation and inference

Variance of the sample grand mean

$$Var[\bar{y}_{\cdot\cdot}] = \frac{1}{m} Var[\bar{y}_j]$$
$$Var[\bar{y}_j] = \frac{1}{n} \sigma^2 + \tau^2$$

$$\mathsf{Var}[\bar{y}_{\cdot\cdot}] = \frac{1}{nm}\sigma^2 + \frac{1}{m}\tau^2$$

What happens as

- $n \rightarrow \infty$ and *m* stays fixed?
- $m \to \infty$ and *n* stays fixed?

Hierarchical normal model

Estimation and inference

Standard error and CI

$$\widehat{\mathsf{Var}}[\bar{y}_{\cdot\cdot}] = \frac{1}{nm}\hat{\sigma}^2 + \frac{1}{m}\tau^2$$

•
$$\hat{\sigma}^2 = MSW$$

•
$$\hat{\tau}^2 = (MSA - MSW)/n$$

$$\widehat{\operatorname{Var}}[\bar{y}_{\cdot\cdot}] = \frac{1}{mn}MSA$$

This should make sense, because previously we claimed

$$\mathsf{E}[MSA] = \sigma^2 + n \times \tau^2,$$

$$\mathsf{E}[\frac{1}{mn}MSA] = \frac{1}{mn}\sigma^2 + \frac{1}{m}\tau^2 = \mathsf{Var}[\bar{y}_{\cdot}]$$

Hierarchical normal model

Estimation and inference

Standard error and CI

$$\widehat{\mathsf{Var}}[\bar{y}_{\cdot\cdot}] = \frac{1}{nm}\hat{\sigma}^2 + \frac{1}{m}\tau^2$$

•
$$\hat{\sigma}^2 = MSW$$

• $\hat{\tau}^2 = (MSA - MSW)/n$

$$\widehat{\operatorname{Var}}[\overline{y}_{\cdot\cdot}] = \frac{1}{mn}MSA$$

This should make sense, because previously we claimed

$$\mathsf{E}[MSA] = \sigma^2 + \mathbf{n} \times \tau^2,$$

$$\mathsf{E}[\frac{1}{mn}MSA] = \frac{1}{mn}\sigma^2 + \frac{1}{m}\tau^2 = \mathsf{Var}[\bar{y}_{\cdot\cdot}]$$

Hierarchical normal model

Estimation and inference

Standard error and CI

$$\widehat{\mathsf{Var}}[\bar{y}_{\cdot\cdot}] = \frac{1}{nm}\hat{\sigma}^2 + \frac{1}{m}\tau^2$$

•
$$\hat{\sigma}^2 = MSW$$

•
$$\hat{\tau}^2 = (MSA - MSW)/n$$

$$\widehat{\operatorname{Var}}[\bar{y}_{\cdot\cdot}] = \frac{1}{mn}MSA$$

This should make sense, because previously we claimed

$$\mathsf{E}[MSA] = \sigma^2 + n \times \tau^2,$$

$$\mathsf{E}[\frac{1}{mn}MSA] = \frac{1}{mn}\sigma^2 + \frac{1}{m}\tau^2 = \mathsf{Var}[\bar{y}_{\cdots}]$$

Hierarchical normal model

Estimation and inference

Standard error and CI

$$\widehat{\mathsf{Var}}[\bar{y}_{\cdot\cdot}] = \frac{1}{nm}\hat{\sigma}^2 + \frac{1}{m}\tau^2$$

•
$$\hat{\sigma}^2 = MSW$$

•
$$\hat{\tau}^2 = (MSA - MSW)/n$$

$$\widehat{\mathsf{Var}}[\overline{y}_{\cdot\cdot}] = \frac{1}{mn}MSA$$

This should make sense, because previously we claimed

$$\mathsf{E}[MSA] = \sigma^2 + n \times \tau^2,$$

$$\mathsf{E}[\frac{1}{mn}MSA] = \frac{1}{mn}\sigma^2 + \frac{1}{m}\tau^2 = \mathsf{Var}[\bar{y}_{\cdot}]$$

Hierarchical normal model

Estimation and inference

Standard error and CI

$$\widehat{\mathsf{Var}}[\bar{y}_{\cdot\cdot}] = \frac{1}{nm}\hat{\sigma}^2 + \frac{1}{m}\tau^2$$

•
$$\hat{\sigma}^2 = MSW$$

•
$$\hat{\tau}^2 = (MSA - MSW)/n$$

$$\widehat{\mathsf{Var}}[\bar{y}_{\cdot\cdot}] = \frac{1}{mn}MSA$$

This should make sense, because previously we claimed

$$\mathsf{E}[MSA] = \sigma^2 + \mathbf{n} \times \tau^2,$$

$$\mathsf{E}[\frac{1}{mn}MSA] = \frac{1}{mn}\sigma^2 + \frac{1}{m}\tau^2 = \mathsf{Var}[\bar{y}_{\cdot}]$$

Hierarchical normal model

Estimation and inference

Standard error and CI

$$\widehat{\mathsf{Var}}[\bar{y}_{\cdot\cdot}] = \frac{1}{nm}\hat{\sigma}^2 + \frac{1}{m}\tau^2$$

•
$$\hat{\sigma}^2 = MSW$$

•
$$\hat{\tau}^2 = (MSA - MSW)/n$$

$$\widehat{\mathsf{Var}}[\bar{y}_{\cdot\cdot}] = \frac{1}{mn}MSA$$

This should make sense, because previously we claimed

$$\mathsf{E}[MSA] = \sigma^2 + \mathsf{n} \times \tau^2,$$

so

$$\mathsf{E}[\frac{1}{mn}MSA] = \frac{1}{mn}\sigma^2 + \frac{1}{m}\tau^2 = \mathsf{Var}[\bar{y}_{\cdot\cdot}]$$

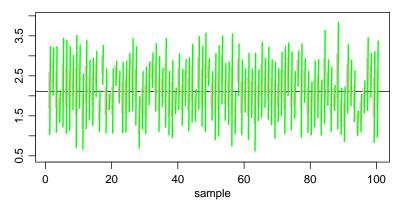
Confidence interval

```
\bar{y}_{..} \pm 2 \times \sqrt{MSA/mn}
```

```
round(y,2)
## [1] 0.55 0.56 0.48 0.85 0.81 2.76 2.71 2.47 2.43 2.43 2.68 2.52 2.97 2.92 2.60
## [16] 2.42 1.90 1.99 2.37 1.87
g
##
   [1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
anova(lm(y<sup>as.factor(g)))</sup>
## Analysis of Variance Table
##
## Response: v
##
                Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(g) 3 13.4751 4.4917 110.5 6.603e-11 ***
## Residuals 16 0.6504 0.0406
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MSA<-anova(lm(y~as.factor(g)))[1,3]
mean(y) + c(-2,2)*sqrt(MSA/(m*n))
## [1] 1.066935 2.962551
mean(y) + c(-2,2)*sqrt(var(y)/(m*n))
## [1] 1.629141 2.400345
```

Estimation and inference

Accounting for across-group heterogeneity



mean(CI.tss0[,1] < mu & mu < CI.tss0[,2])</pre>

[1] 0.729

mean(CI.tss1[,1] < mu & mu < CI.tss1[,2])</pre>

[1] 0.933

Summary

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$
 $Var[\epsilon_{i,j}] = \sigma^2$
 $Var[a_j] = \tau^2$

Variation around the group mean: $\theta_j = \mu + a_j$

- Var $[y_{i,j}|\theta_j] = \sigma^2$
- $\operatorname{Cov}[y_{i_1,j}, y_{i_2,j} | \theta_j] = 0$
- $Exp\bar{y}_j|\theta_j = \theta_j$, $Var[\bar{y}_j|\theta_j] = \sigma^2/n$

Variation around the grand mean:

- Var[$y_{i,j}|\mu$] = $\sigma^2 + \tau^2$
- $Cov[y_{i_1,j}, y_{i_2,j}|\mu] = \tau^2$

•
$$E[\bar{y}_{j}|\mu] = \mu$$
, $Var[\bar{y}_{j}|\mu] = \sigma^{2}/n + \tau^{2}$

• $E[\bar{y}_{..}|\mu] = \mu$, $Var[\bar{y}_{..}|\mu] = \sigma^2/(mn) + \tau^2/m$

Estimation and inference 0000000000000000000000

Summary

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$
 $Var[\epsilon_{i,j}] = \sigma^2$
 $Var[a_j] = \tau^2$

Variation around the group mean: $\theta_j = \mu + a_j$

- Var $[y_{i,j}|\theta_j] = \sigma^2$
- $\operatorname{Cov}[y_{i_1,j}, y_{i_2,j}|\theta_j] = 0$
- $Exp\bar{y}_j|\theta_j = \theta_j$, $Var[\bar{y}_j|\theta_j] = \sigma^2/n$

Variation around the grand mean:

- Var[$y_{i,j}|\mu$] = $\sigma^2 + \tau^2$
- $Cov[y_{i_1,j}, y_{i_2,j}|\mu] = \tau^2$

•
$$\mathsf{E}[\bar{y}_{j}|\mu] = \mu$$
, $\mathsf{Var}[\bar{y}_{j}|\mu] = \sigma^{2}/n + \tau^{2}$

• $\mathsf{E}[\bar{y}_{..}|\mu] = \mu$, $\mathsf{Var}[\bar{y}_{..}|\mu] = \sigma^2/(mn) + \tau^2/m$