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Different amounts of information
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4.104487 3.473607
5.280842 5.751848
5.981707 4.497065
4.950219 4.217459
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Linear shrinkage estimator: §; = (1 — w;)y; + wjc
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Linear shrinkage estimator: 6; = (1 — w;)y; + wjc

® What should ¢ be?
® What should w; depend on?
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Mean squared error

® Let 6 be the subpopulation mean of a generic group;
* let A be an estimator of 6 (a function of the data).

The mean squared error (MSE) of 0 is
MSE[|6] = E[( — 6)?|6]

Bayesian perspective
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Mean squared error

® Let 6 be the subpopulation mean of a generic group;
* let A be an estimator of 6 (a function of the data).

The mean squared error (MSE) of 0 is
MSE[|6] = E[( — 6)?|6]
Bias-variance decomposition: Let m(0) = E[A]6].
MSE[6|6] = E[(0 — m + m — 6)*|6]
= E[(0 — m)*|0] + 2E[(6 — m)(m — 0)[6] + E[(m — 6)*|¢]
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Mean squared error

® Let 6 be the subpopulation mean of a generic group;
* let A be an estimator of 6 (a function of the data).
The mean squared error (MSE) of 0 is
MSE[|6] = E[( — 6)?|6]
Bias-variance decomposition: Let m(0) = E[A]6].
MSE[6|6] = E[(0 — m + m — 6)*|6]
= E[(6 — m)?|0] + 2E[(§ — m)(m — 0)|6] + E[(m — 0)°|0]
= E[( — m)*|6] + (m — 0)?
= Var[4|6] + Bias’[9|6]
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Bias-variance tradeoff

In general, R R R
MSE[|6] = Var[0]6] + Bias(8]6)*



Bias, variance and MSE Fixed groups perspective Random groups perspective Bayesian perspective
000e0000 000000000000 00 0000000000000 0000 0000

Bias-variance tradeoff

In general,
MSE[|6] = Var[0]6] + Bias(8]6)*
How well an estimator § does at estimating 6 depends on variance and bias.

In general,

® estimators with low bias have have high variance (é =y but small n);
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Bias-variance tradeoff

In general, A ) R
MSE[|6] = Var[0]6] + Bias(8]6)*

How well an estimator § does at estimating 6 depends on variance and bias.

In general,
® estimators with low bias have have high variance (9 = y but small n);

® estimators with low variance have high bias (f = 5).
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Bias-variance tradeoff

In general, A ) A
MSE[|6] = Var[0]6] + Bias(8]6)*

How well an estimator § does at estimating 6 depends on variance and bias.

In general,
® estimators with low bias have have high variance (9 = y but small n);

* estimators with low variance have high bias (6 = 5).
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Bias-variance tradeoff

In general,
MSE[|6] = Var[0]6] + Bias(8]6)*
How well an estimator § does at estimating 6 depends on variance and bias.

In general,
® estimators with low bias have have high variance (9 = y but small n);

* estimators with low variance have high bias (6 = 5).

Minimizing MSE requires balancing bias and variance.
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Bias-variance tradeoff
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Sample mean bias and variance

Let y1,...,yn be sample from a population with mean 6, variance 2.

Sample mean estimator: Let § = v

E[yl6] = 6
Bias[y|0] = 0
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Sample mean bias and variance

Let y1,...,yn be sample from a population with mean 6, variance 2.

Sample mean estimator: Let § = v

E[yl6] = 6
Bias[y|0] = 0

Var[y|6] = o°/n

MSE[y|6] = Var[y|0] = ¢°/n
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Sample mean bias and variance

Let y1,...,yn be sample from a population with mean 6, variance 2.

Sample mean estimator: Let § = v

E[yl6] = 6
Bias[y|0] = 0

Var[y|6] = o°/n

MSE[y|6] = Var[y|0] = ¢°/n
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Linear shrinkage bias and variance

Linear shrinkage estimator: 6 = (1 — w)y + wc for some w € [0, 1].
® w is the amount of shrinkage;

® ¢ is the shrinkage point.

E[0]0] = (1 — w)0 + we = 0 + w(c — 0)
Bias[A|0]”> = w’(c —0)* >0

Var[d|0] = (1 — w)*c?/n < o*/n

MSE[|6] = (1 — w)’0®/n+ w’(c — 6)°
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Mean squared error function

o’/n=1 c=0

MSE
2
1
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Composite MSE

Consider a LSE for 8 = (61, ...,0m) where ; = (1 — w)y; + we

MSE[0]6] = E[||6 — 6]*|6]
Z E[(0; — 6;)°|6]

J
2

%m(l w2+ w? Y (e )’

i

Bayesian perspective
0000



Bias, variance and MSE Fixed groups perspective Random groups perspective Bayesian perspective
00000000 900000000000 00 0000000000000 0000 0000

Composite MSE

Consider a LSE for 8 = (61, ...,0m) where ; = (1 — w)y; + we

MSE[0]6] = E[||6 — 6]*|6]
Z E[(0; — 6;)°|6]

J
2

%m(l w2+ w? Y (e )’

i

What should the values of w and ¢ be?
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Oracle estimator

Using calculus you can show that MSE is optimized by
©c=p=Y,0/m

1/7'2
[ ] ey A —
W= A where

o 7= 50— 1P /m.

Bayesian perspective
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Oracle estimator

Using calculus you can show that MSE is optimized by

cc=u=Y,0/m

1/7'2
[ ] ey A —
W= A where

o =30 — p)?/m.
This gives the oracle estimator

A n/o?

1/72

b = nj/o?+ 1/7'2le

+ nj/o?+1/72 H-

Bayesian perspective
0000
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Oracle estimator

Using calculus you can show that MSE is optimized by
©c=p=Y,0/m

1/7'2
[ ] ey A —
W= ot where

o =30 — p)?/m.
This gives the oracle estimator

b, — n/o? - 1/7°
I n/02—|—1/7'2yj n/02—|—1/7'2u'

This can also be written

~ 72 02/n

0 % .
! +orz/n—i—7'2‘u

02/n+7'2yj

Bayesian perspective
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Composite risk comparison

= (y1,..-,¥m), the vector of sample means;

°
D <
I

(él, e 9,,,), the vector of oracle estimates.
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Composite risk comparison

O I

= (y1,..-,¥m), the vector of sample means;
(

b, ..., 9,,,), the vector of oracle estimates.

2
M%Mﬂ:m%

2

2
M%WM:m%x(;ﬁ:;)<M%Mﬂ

Bayesian perspective
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Composite risk comparison

O I

(¥1,- -, ¥m), the vector of sample means;
(

.,6m), the vector of oracle estimates.

2
M%Mﬂ:m%

2 2
M%WM:m%x(;ﬁ:;)<M%Mﬂ

The oracle estimator is better than y in terms of composite risk .

Bayesian perspective
0000
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Group-level risk of oracle estimator

MSE[6;0] = (1 — w)’0”/n + w?(0; — p)*.

2.0

MSE

1\

1.0

0.0

4.0 4.5 5.0 55 6.0 6.5 7.0
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Summary

Composite risk
® ¥ is an unbiased estimator of 6;
* O is a biased estimator of 6, but has lower variance than §y.
e MSE[6]0] < MSE[y|6].
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Summary

Composite risk
® ¥ is an unbiased estimator of 6;
* O is a biased estimator of 6, but has lower variance than §y.
e MSE[6]0] < MSE[y|6].

Group-level risk
® ¥ is an unbiased estimator of #; for each j =1,..., m.
® {; is a biased estimator of 6}, but has lower variance than ;.
* MSE[0;|6] Z MSE[7|6] and you don’t know which!
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Practical considerations

Typically,
® 4,72, 02 are unknown;

® sample sizes may vary across groups.

In practice, people use the following adaptive shrinkage estimator:

A n;/&? 1/7° N
[/
! nj/oz—l—l/rzyj n/02+1/7'2'u

=

, 72,6 are obtained from the data (e.g. ANOVA or 1me4).

Bayesian perspective
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Practical considerations

Typically,
® L, 72,02 are unknown;
® sample sizes may vary across groups.
In practice, people use the following adaptive shrinkage estimator:
b = ; Anzj/JQ =Vt Ai/T2 ~ .
nj/62+1/% nj/62+1/%

e (1,72 6% are obtained from the data (e.g. ANOVA or 1me4).

® If nj = n, can obtain fi, #2562 so that 0is guaranteed better than y
(Stein).
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Practical considerations
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® L, 72,02 are unknown;
® sample sizes may vary across groups.
In practice, people use the following adaptive shrinkage estimator:
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e (1,72 6% are obtained from the data (e.g. ANOVA or 1me4).
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® Otherwise, for large m, 6 will be approximately optimal linear estimator
(under composite risk).
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Radon example

n.g<-c(table(g) )

plot(table(n.g))

15

10

table(n.g)

N
o - |||"I II | I | | |

IIIIIIIIIIIIII T T T T T T
1 6 12 23 32 46 63 105 116

ng
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Radon example

# county :;peiz,"ﬁ,f{,u radon means

ybar.g<-c(tapply(y,g,"mean"))

— o
o |o
2 -
0 _ —
—
w_l1o
; il
£ > | &
= 8o §° |
2 o 50 o o O o
°© o
© 7 0 |
< é o °
o
o - 249
T T T T T ] T T T T T T
40 45 50 55 6.0 65 0 20 40 60 80 100 120

ybar.g n.g
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MLEs

library(lme4)
fit.lme<-lmer (y~1+(1|g) ,REML=FALSE)
summary (fit.1lme)

## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: y ~ 1 + (1 | g)

##

## AIC BIC logLik deviance df.resid
## 2164.1 2178.5 -1079.0 2158.1 916
##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -3.6165 -0.6141 0.0292 0.6526 3.4932

##

## Random effects:

## Groups Name Variance Std.Dev.

# g (Intercept) 0.08804 0.2967

## Residual 0.57164 0.7560

## Number of obs: 919, groups: g, 85

##

## Fixed effects:

## Estimate Std. Error t value

## (Intercept) 4.94656 0.04664 106.1

Bayesian perspective
0000



Bias, variance and MSE Fixed groups perspective Random groups perspective Bayesian perspective
00000000 000000000e0000 O0000000000000000 0000

Parameter estimates

VarCorr (fit.1lme)

## Groups Name Std.Dev.
# g (Intercept) 0.29672
## Residual 0.75600

t2.mle<-as.numeric(VarCorr(fit.1lme)$g)
t2.mle

## [1] 0.08804027

sigma(fit.1lme)

## [1] 0.7559996
s2.mle<-sigma(fit.lme) "2

s2.mle

## [1] 0.5715354

fixef (fit.1lme)

## (Intercept)
## 4.946557

mu.mle<-fixef (fit.lme)



Bias, variance and MSE Fixed groups perspective Random groups perspective Bayesian perspective
00000000 0000000000 e000 0000000000000 0000 0000

Adaptive shrinkage estimates
Replace p, 02, 72 with estimates:

I‘lj/(’)"2

0; = wiy + (L= w)ia, Wherer:W~
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Adaptive shrinkage estimates

Replace p, 02, 72 with estimates:

0; = wig; + (1 — w))it , where w; =

nj/éiz
/62 +1/72

w.shrink<- (n.g/s2.mle) /(n.g/s2.mle + 1/t2.mle)

mu.shrink<-w.shrink*ybar.g + (1-w.shrink)*mu.mle

mu.

mle

## (Intercept)
4.946557

##

cbind(ybar.g, n.g, mu.shrink)[1:8,]

##
##
##
##
##
##
##
##
##

AITKIN
ANOKA
BECKER
BELTRAMI
BENTON
BIGSTONE
BLUEEARTH
BROWN

(300 I I AN NEF NS

ybar.g n.g mu.
4.697704
4.531757
4.860730
4.866904
4.
5
5
5

293832
479973
675008
793035
869503
128199
522876
244160

4
52
3
7
4
3
14
4

shrink

917180

.003968
.340299
.060018
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Shrinkage

topten<-order(ybar.g,decreasing=TRUE) [1:10]
cbind(ybar.g, n.g, mu.shrink) [topten,]

##
##
##
##
##
##
##
#
##
##
##

*H*

LACQUIPARLE
MURRAY
WILKIN
WATONWAN
NICOLLET
LINCOLN
KANDIYOHI
JACKSON
FREEBORN
NOBLES

ybar.g n.g mu.shrink

209980

6
6.104550
5.841654
5.841041
5.
5
5
5
5
5

777273

. 748294
.674289
.633758
.555495
.540083

2

WO PdPdWRE

5o
.101126
.066035
.229271
.263269
.252221
.224006
.245555
.300322
.134149

oo o oo

244122

Bayesian perspective
0000
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Shrinkage

o
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[}
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[=4
£
x
= @
E >
@ £
S |
S o
=
8 o Yo O
>
n | @
4o
T o

0 20 40 60 80 100 120
n.g
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Shrinkage estimates from 1me4

mu.shrink[1:10]

## AITKIN ANOKA BECKER BELTRAMI BENTON BIGSTONE BLUEEARTH BROWN
## 4.697704 4.531757 4.860730 4.866904 4.917180 5.003968 5.340299 5.060018
##  CARLTON CARVER
## 4.712463 4.958725

a.shrink<-ranef (fit.1lme) [[1]]1[,1]
mu.mle+a.shrink[1:10]

## [1] 4.697704 4.531757 4.860730 4.866904 4.917180 5.003968 5.340299 5.060018
## [9] 4.712463 4.958725
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Shrinkage estimates from 1me4

mu.shrink[1:10]

## AITKIN ANOKA BECKER BELTRAMI BENTON BIGSTONE BLUEEARTH BROWN
## 4.697704 4.531757 4.860730 4.866904 4.917180 5.003968 5.340299 5.060018
##  CARLTON CARVER
## 4.712463 4.958725

a.shrink<-ranef (fit.1lme) [[11]1[,1]
mu.mle+a.shrink[1:10]
## [1] 4.697704 4.531757 4.860730 4.866904 4.917180 5.003968 5.340299 5.060018
## [9] 4.712463 4.958725
In 1me4, ranef (fit.1lme) [[k]][,1] refers to the
® 1th random effect for the
® kth grouping variable.
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Hierarchical normal model

Yij=p+aitei
{€11,- €1}, s {€tm, - €nm} ~ iid. normal(0,c?)

. 2
ai,...,am ~ i.i.d. normal(0, 7%)
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Hierarchical normal model

Yij=p+aitei
{e11,.- €1}, {€1.ms- .. €nm} ~ i.i.d. normal(0, o?)

. 2
ai,...,am ~ i.i.d. normal(0, 7%)

Equivalently,

Yij =i +€ij
{e11,.. . €n1}, s {€Lm ., €nm} ~ iid. normal(0,o°)

01,...,0m

2

i.i.d. normal(y, 7°)
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Hierarchical normal model

Yij=p+ajteij

{e11,--y€nitso o, {€1,my .., €nm} ~iid. normal(O,az)
ai,...,am~ iid. normal(0,7?)
Equivalently,
Yij =i +€ij
{11, s€n1ty- oy {€L,my. - s €nm} ~iid. normaI(O,Uz)
01,...,0m ~iid. normal(y, 7—2)

In this model, we think of
® the groups as being randomly selected from a larger set of possible groups,
® so the means are randomly selected from a set of possible means.

® This interpretation is not appropriate for the radon data!
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Unbiased predictors

Suppose you will sample a random group with subgroup mean 6, so
0~ N(u, %)
716 ~ N(6,0°/n).

How should you plan on estimating 87 Consider estimators § that are unbiased
“on average:”

eli-o- [ ( [ =010 ) plol )

® Such estimators are sometimes called “unbiased predictors”;

® They might not be unbiased for most values of 6!
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Unbiased predictors

T 7t a?/n
02/n+7'2y az/n—&—rzu'

Exercises:
1. Show that y is an unbiased predictor;
2. Show that 6 is an unbiased predictor.
3. ldentify some other unbiased predictors.
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Best unbiased prediction

Result 1: (Best unbiased predictor). Let 0 be any unbiased predictor, meaning
E[6 — 0] = 0 where the expectation is averaging over both y and 6. Then

E[(0 - 0)°] < E[(0 - 6)°]

where the expectation is over both y and 6.
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Best linear unbiased predictor

A similar result holds even if the data are not normal. Suppose
® E[y|6] = 0, Var[y|d] = o2/n.
® E[0] = p, Var[d] = 2.

Bayesian perspective
0000
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Best linear unbiased predictor

A similar result holds even if the data are not normal. Suppose
® E[y|6] = 0, Var[y|d] = o2/n.
® E[0] = p, Var[d] = 2.

Result 2: (Best linear unbiased predictor). Let 6 be any linear unbiased
predictor, meaning

® § = ay + b for some fixed a and b;
® E[f — 0] = 0 where the expectation is averaging over both y and 6.
Then . B
E[(6 — 6)°] < E[(6 — 6)°]

where the expectation is over both y and 6.
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BLUPs

The ;s are often called the best unbiased linear predictors (BLUPs) .
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BLUPs

The 6;'s are often called the best unbiased linear predictors (BLUPs) .
This is confusing, as we have discussed how these estimators are biased:

E[9)16] = Elwg; + (1 — w)ul6)]
wb; + (1 — W) # 6
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BLUPs

The 6;'s are often called the best unbiased linear predictors (BLUPs) .
This is confusing, as we have discussed how these estimators are biased:

E[9)16] = Elwg; + (1 — w)ul6)]
wb; + (1 — W) # 6

0; is conditionally biased.
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BLUPs

perspective

The 6;'s are often called the best unbiased linear predictors (BLUPs) .

This is confusing, as we have discussed how these estimators are biased:

E[0)16;] = E[wy; + (1 — w)ul6)]

wb; + (1 — W) # 6

éj is conditionally biased.
The “U” in BLUP refers to bias only in an unconditional sense:
E[0)] = E[E[016,]]
= E[wl; + (1 — w)y]
=wp+(1=w)u=p



ince and MSE Fixed Random groups perspective Bayesian perspective

000008000000 00000

BLUPs

The 6;'s are often called the best unbiased linear predictors (BLUPs) .
This is confusing, as we have discussed how these estimators are biased:

E[9)16] = Elwg; + (1 — w)ul6)]
wb; + (1 — W) # 6

éj is conditionally biased.
The “U” in BLUP refers to bias only in an unconditional sense:
E[0)] = E[E[016,]]
= E[wl; + (1 — w)y]
=wp+(1=w)u=p

Since E[0;] = E[6;] = p unconditionally, people might say 6; is “unbiased.”
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Understanding conditional and unconditional expectation

school \ A B C D E F G H | J
mean ‘ 9,4 03 Qc 9D 05 9;: 0(; 9/—/ 0/ 91
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Understanding conditional and unconditional expectation

school \ A B C D E F G H | J
mean ‘ 9,4 03 Qc GD 05 9;: 0(; 9/—/ 0/ 91

Let p = (9A+"'9J)/10-




Bias, variance and MSE Fixed groups perspective Random groups perspective Bayesian perspective
00000000 000000000000 00 000000800000 00000 0000

Understanding conditional and unconditional expectation

schoo |A B C D E F G H I J
mean ‘ QA 03 QC 9D 95 9F 0(; 9/—[ 01 9]

Let p = (QA + - -~91)/10.
Study design:

® sample m schools at random from the population of schools.

® sample n students at random from each of the m schools.
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Understanding conditional and unconditional expectation

schoo |A B C D E F G H I J
mean ‘ QA 03 QC 90 95 9F 0(; 9/—[ 01 9]

Let p = (QA + - -~91)/10.
Study design:

® sample m schools at random from the population of schools.

® sample n students at random from each of the m schools.

What is the expectation of 01, yi, 6,7
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Understanding conditional and unconditional expectation

schoo |A B C D E F G H I J
mean ‘ QA 03 QC 9D 95 9F 9(; 9/—[ 01 9]

Let p = (QA + - -~91)/10.
Study design:

® sample m schools at random from the population of schools.
® sample n students at random from each of the m schools.
What is the expectation of 01, yi, 6,7

Expectation of 0; : Since each school A through J has equal probability of
being selected as unit 1:
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Understanding conditional and unconditional expectation

schoo |A B C D E F G H I J
mean ‘ QA 03 QC 9D 95 9F 9(; 9/—[ 01 9]

Let p = (QA + - -~91)/10.
Study design:

® sample m schools at random from the population of schools.
® sample n students at random from each of the m schools.
What is the expectation of 01, yi, 6,7

Expectation of 0; : Since each school A through J has equal probability of
being selected as unit 1:

E[61] = 64 % Pr(unit 1 =A) + --- + 6, x Pr(unit 1=J)
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Understanding conditional and unconditional expectation

schoo |A B C D E F G H I J
mean ‘ QA 03 QC 9D 95 9F 9(; 9/—[ 01 9]

Let p = (QA + - -~91)/10.
Study design:

® sample m schools at random from the population of schools.
® sample n students at random from each of the m schools.
What is the expectation of 01, yi, 6,7

Expectation of 0; : Since each school A through J has equal probability of
being selected as unit 1:

E[61] = 64 % Pr(unit 1 =A) + --- + 6, x Pr(unit 1=J)
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perspective

Understanding conditional and unconditional expectation

schoo |A B C D E F G H I J
mean ‘ QA 03 QC 9D 95 9F 9(; 9/—[ 01 9]

Let p = (QA + - -~91)/10.
Study design:

® sample m schools at random from the population of schools.
® sample n students at random from each of the m schools.
What is the expectation of 01, yi, 6,7

Expectation of 0; : Since each school A through J has equal probability of
being selected as unit 1:

E[61] = 64 % Pr(unit 1 =A) + --- + 6, x Pr(unit 1=J)
S Oak e OE —
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perspective

Understanding conditional and unconditional expectation

schoo |A B C D E F G H I J
mean ‘ QA 03 QC 9D 95 9F 9(; 9/—[ 01 9]

Let p = (QA + - -~91)/10.
Study design:

® sample m schools at random from the population of schools.
® sample n students at random from each of the m schools.
What is the expectation of 01, yi, 6,7

Expectation of 0; : Since each school A through J has equal probability of
being selected as unit 1:

E[61] = 64 % Pr(unit 1 =A) + --- + 6, x Pr(unit 1=J)
S Oak e OE —
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Understanding conditional expectation
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E[y1 —O1|lunit 1 =D ] =E[yp —6p] =6p —6p =0
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Understanding conditional expectation

E[y1 —O1|lunit 1 =D ] =E[yp —6p] =6p —6p =0
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Understanding conditional expectation

E[y1 —O1|lunit 1 =D ] =E[yp —6p] =6p —6p =0

E[f: — 61|unit 1 = D]

Bayesian perspective
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Understanding conditional expectation

E[y1 —O1|lunit 1 =D ] =E[yp —6p] =6p —6p =0

E[é1 — 91|unit 1= D] = E[(1 _ W)}7D + wu — ,9D]

Bayesian perspective
0000
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Understanding conditional expectation

E[y1 —O1|lunit 1 =D ] =E[yp —6p] =6p —6p =0

E[é1 — 91|unit 1= D] = E[(1 _ W)}7D + wu — ,9D]

Bayesian perspective
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Understanding conditional expectation

E[y1 —O1|lunit 1 =D ] =E[yp —6p] =6p —6p =0

E[é1 — 01]unit 1 = D] = E[(1 — w)¥p + wu — 6p]
=(1—-w)fp+wp—06p

Bayesian perspective
0000
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Understanding conditional expectation

E[y1 —O1|lunit 1 =D ] =E[yp —6p] =6p —6p =0

E[é1 — 01]unit 1 = D] = E[(1 — w)¥p + wu — 6p]
=(1—w)0p+wp —0p = w(p—0p)
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Understanding conditional expectation

E[y1 —O1|lunit 1 =D ] =E[yp —6p] =6p —6p =0

E[é1 — 01]unit 1 = D] = E[(1 — w)¥p + wu — 6p]
=(1—w)0p+wp—0p=w(pu—0p)#0
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Understanding conditional expectation

E[y1 —O1|lunit 1 =D ] =E[yp —6p] =6p —6p =0

E[é1 — 01]unit 1 = D] = E[(1 — w)¥p + wu — 6p]
=(1—w)0p+wp—0p=w(pu—0p)#0

Conditionally on unit 1=D,

® ¥ = yp is unbiased for Op,
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Understanding conditional expectation

E[j. —61|lunit 1 =D ] =E[yp —0p] =6p —0p =0

E[9A1 — 01]unit 1 = D] = E[(1 — w)¥p + wu — 6p]
= (1= w)fp +wp —Op = w(p—0b) #0

Conditionally on unit 1=D,
® ¥ = yp is unbiased for Op,

(] §1 = 9,3 is biased for 6p.
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Understanding conditional expectation

E[j. —61|lunit 1 =D ] =E[yp —0p] =6p —0p =0

E[f: — 61|unit 1 = D] = E[(1 — w)¥p + wpu — 0p]
= (1= w)fp +wp —Op = w(p—0b) #0

Conditionally on unit 1=D,
® ¥ = yp is unbiased for Op,

° §1 = 99 is biased for 6p.
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Understanding conditional expectation

E[j. —61|lunit 1 =D ] =E[yp —0p] =6p —0p =0

E[f: — 61|unit 1 = D] = E[(1 — w)¥p + wpu — 0p]

:(1—W)9D—|—W/.L—QD:W(/.L—GD)#0

Conditionally on unit 1=D,
® ¥ = yp is unbiased for Op,

° §1 = 99 is biased for 6p.

In English, if your first sampled school is school D, then

® i1 = yp and yp is unbiased for 6p

Bayesian perspective
0000
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Understanding conditional expectation

E[j. —61|lunit 1 =D ] =E[yp —0p] =6p —0p =0

E[f: — 61|unit 1 = D] = E[(1 — w)¥p + wpu — 0p]

=1-w)dp+wu—6p=w(up—0p)#0

Conditionally on unit 1=D,
® ¥ = yp is unbiased for Op,

° §1 = 99 is biased for 6p.

In English, if your first sampled school is school D, then
® y1 = yp and yp is unbiased for p

e O, = Op and Op is biased for Op.

Bayesian perspective
0000
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Understanding conditional expectation

E[j. —61|lunit 1 =D ] =E[yp —0p] =6p —0p =0

E[f: — 61|unit 1 = D] = E[(1 — w)¥p + wpu — 0p]

=1-w)dp+wu—6p=w(up—0p)#0

Conditionally on unit 1=D,
® ¥ = yp is unbiased for Op,

° §1 = 99 is biased for 6p.

In English, if your first sampled school is school D, then
® y1 = yp and yp is unbiased for p

e O, = Op and p is biased for Op.

Bayesian perspective
0000
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Understanding conditional expectation

E[j. —61|lunit 1 =D ] =E[yp —0p] =6p —0p =0

E[f: — 61|unit 1 = D] = E[(1 — w)¥p + wpu — 0p]

=1-w)dp+wu—6p=w(up—0p)#0

Conditionally on unit 1=D,
® ¥ = yp is unbiased for Op,

° §1 = 99 is biased for 6p.

In English, if your first sampled school is school D, then
® y1 = yp and yp is unbiased for p

e O, = Op and p is biased for Op.

Bayesian perspective
0000
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Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, ..., J.

E[f, — 01] =
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Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, ..., J.

E[él — 6] = E[@AA — 04] Pr(unit 1=A) +
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Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, ..., J.

E[f1 — 01] = E[Oa — 04] Pr(unit 1=A) + --- +
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Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, ..., J.

E[f1 — 01] = E[Oa — 0,4] Pr(unit 1=A) + --- + E[8, — 0,] Pr(unit 1=J)
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Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, ..., J.

E[f1 — 01] = E[Oa — 0,4] Pr(unit 1=A) + --- + E[8, — 0,] Pr(unit 1=J)
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Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, ..., J.

E[f1 — 01] = E[Oa — 0,4] Pr(unit 1=A) + --- + E[8, — 0,] Pr(unit 1=J)
= w(p—0a) X 15+
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Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, ..., J.

E[f1 — 01] = E[Oa — 0,4] Pr(unit 1=A) + --- + E[8, — 0,] Pr(unit 1=J)
=w(p—0a) X 35+ -+
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Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, ..., J.

E[f1 — 01] = E[Oa — 0,4] Pr(unit 1=A) + --- + E[8, — 0,] Pr(unit 1=J)
= w(p—0a) X 55+ -+ w(p—0,) X 55
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Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, ..., J.

E[f1 — 01] = E[Oa — 0,4] Pr(unit 1=A) + --- + E[8, — 0,] Pr(unit 1=J)
w(p —0a) X 15+ -+ wl(p—0)) x 55
=wp—w(la+-+0))5
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Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, ..., J.

E[f1 — 01] = E[Oa — 0,4] Pr(unit 1=A) + --- + E[8, — 0,] Pr(unit 1=J)
= w(p—0a) X 55+ -+ w(p—0,) X 55
=wp—w(la+-+0))5
=wp —wp =0.
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Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, ..., J.

E[f1 — 01] = E[Oa — 0,4] Pr(unit 1=A) + --- + E[8, — 0,] Pr(unit 1=J)
= w(p—0a) X 55+ -+ w(p—0,) X 55
=wp—w(la+-+0))5
=wp —wp =0.

This unconditional expectation, and the “U" in BLUP, refers to averaging
across the possibilities for the samples:

° 93- will be a biased estimator of the mean of whatever unit is picked jth.
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Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, ..., J.

E[f — 61] = E[0a — 0] Pr(unit 1=A) + --- + E[0, — 6,] Pr(unit 1=J)
= w(p—0a) X 55+ -+ w(p—0,) X 55
=wp—w(la+-+0))5
=wp —wp =0.

This unconditional expectation, and the “U" in BLUP, refers to averaging
across the possibilities for the samples:

° éj will be a biased estimator of the mean of whatever unit is picked jth.

® on average across studies, 01, ..., 0, will be unbiased.
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Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, ..., J.

E[f — 61] = E[0a — 0] Pr(unit 1=A) + --- + E[0, — 6,] Pr(unit 1=J)
= w(p—0a) X 55+ -+ w(p—0,) X 55
=wp—w(la+-+0))5
=wp —wp =0.

This unconditional expectation, and the “U" in BLUP, refers to averaging
across the possibilities for the samples:

° éj will be a biased estimator of the mean of whatever unit is picked jth.

® on average across studies, 01, ..., 0, will be unbiased.
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Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, ..., J.

E[f — 61] = E[0a — 0] Pr(unit 1=A) + --- + E[0, — 6,] Pr(unit 1=J)
= w(p—0a) X 55+ -+ w(p—0,) X 55
=wp—w(la+-+0))5
=wp —wp =0.

This unconditional expectation, and the “U" in BLUP, refers to averaging
across the possibilities for the samples:

° éj will be a biased estimator of the mean of whatever unit is picked jth.

® on average across studies, 01, ..., 0, will be unbiased.
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Practical considerations

As before,
® 4,72, 0% are unknown;
® sample sizes may vary across groups.
In practice, people use the following Empirical BLUP:
s n/d’ - 1/7?
N = Y YE

f,

where [1,72, 52 are estimated from the data (ANOVA or 1me4)

Bayesian perspective
0000
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Practical considerations

As before,
® 4,72, 0% are unknown;
® sample sizes may vary across groups.
In practice, people use the following Empirical BLUP:
A2 ~2
A nj/& _ 1/7 ~
0 = ,,./Azj 2 Vit a2 =0,
/62 +1/7 nj/62+1/%

where [1,72, 52 are estimated from the data (ANOVA or 1me4)

This is the same estimator as the adaptive shrinkage estimator.
® variabiliy in “random” 6;'s &~ heterogeneity in “fixed" 6;'s.

® integration over 6;'s to get MSE ~ summing over 6;'s to get composite
MSE.
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subpopulation
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Simulation Example
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Simulation Example
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Expectation of estimators

subpopulation
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Review of Bayesian inference

® Prior density: p(7)
® Sampling density: p(yi, ..., ¥a|7)

Bayesian perspective
@000
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Review of Bayesian inference

® Prior density: p(7)
® Sampling density: p(yi, ..., Yal7y)

The prior density describes where you think « is, before having seen the data.
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Review of Bayesian inference

® Prior density: p(7)
® Sampling density: p(yi, ..., Yal7y)

Bayesian perspective
@000

The prior density describes where you think « is, before having seen the data.

The sampling density describes where you think the data will be, for each

possible value of ~.
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Review of Bayesian inference

® Prior density: p(7)
® Sampling density: p(yi, ..., Yal7y)
The prior density describes where you think « is, before having seen the data.

The sampling density describes where you think the data will be, for each
possible value of ~.

Bayes rule:

_ p(V)P(y1, - - -, yaly)
ey By PSS ) pe
o< p(7)p(y1;-- -5 yal7)

The posterior density p(7y|yi,--.,yn) describes where you think the ~ is, after
having seen the data.
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Bayesian inference for a normal subpopulation

® Prior density: 6 ~ N(u,72)
® Sampling density: yi,...,ys|0 ~ N(0,5°).

Bayesian perspective
[e] lele)
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Bayesian inference for a normal subpopulation

® Prior density: 6 ~ N(u,72)
® Sampling density: yi,...,ys|0 ~ N(0,5°).
Bayes rule: O|y1,...,yn is normal, with

2 2
T _ c/n
By, ya] = 02/n+72y+ o /n+ 2!

Var[O|y1,...,ya] = 1/(n/c72 + 1/7'2)
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Bayesian inference for a normal subpopulation

® Prior density: 6 ~ N(u,72)
® Sampling density: yi,...,ys|0 ~ N(0,5°).
Bayes rule: O|y1,...,yn is normal, with

2 2
T _ c/n
By, ya] = 02/n+72y+ o /n+ 2!

Var[O|y1,...,ya] = 1/(n/c72 + 1/7'2)

Bayes estimator: Let = E[f|y1, ..., ya]. Then

EL(0 — 0)%Iy1, -yl < ELB — 001, -, yi]

for any estimator 6.
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Bayes interpretation

A Bayesian interpretation of 0:

® ¢; is some fixed quantity for group j;

Bayesian perspective
[e]e] e}
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Bayes interpretation

A Bayesian interpretation of 0:
® ¢; is some fixed quantity for group j;
® 0; ~ N(u,7?) describes prior info about 6;;
® 0 ~ N(6;,1/(nj/o® + 1/72)) describes posterior info about 6;;
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Bayes interpretation

A Bayesian interpretation of 0:
® ¢; is some fixed quantity for group j;
® 0; ~ N(u,7?) describes prior info about 6;;
® 0 ~ N(6;,1/(nj/o® + 1/72)) describes posterior info about 6;;

* @ is “where you think 6; is".
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Bayes interpretation

A Bayesian interpretation of 0:
® ¢; is some fixed quantity for group j;
® 0; ~ N(u,7?) describes prior info about 6;;
® 0 ~ N(6;,1/(nj/o® + 1/72)) describes posterior info about 6;;

* @ is “where you think 6; is".
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and MSE

Bayes interpretation

A Bayesian interpretation of 0:
® ¢; is some fixed quantity for group j;
® 0; ~ N(u,7?) describes prior info about 6;;
® 0 ~ N(6;,1/(nj/o® + 1/72)) describes posterior info about 6;;

* @ is “where you think 6; is".

Practical considerations:
* pu, 0%
® estimate these parameters with a “fully Bayesian procedures”, or

® use plug-in estimates (Empirical Bayes), obtained from data (ANOVA,
1me4).
Again, the estimator is the same but the justification can be different.
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Summary

0= (9\17 ce 9\,,,) may be evaluated
® with composite risk or group-level risk

® pre-experimentally or post-experimentally
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Summary

0= (@1, ce 9\,,,) may be evaluated
® with composite risk or group-level risk

® pre-experimentally or post-experimentally

Pre-experimentally

® O has lower composite risk than y.

° éj has lower risk that y; for most j, but higher risk for extreme j.
Post-experimentally

° HAJ- minimizes posterior risk - it is where you think 6; is, if you believe the
model.
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