Bayesian perspective 0000

Estimation of group effects

Peter Hoff Duke STA 610 Fixed groups perspective

Random groups perspective

Bayesian perspective

Bias, variance and MSE

Fixed groups perspective

Random groups perspective

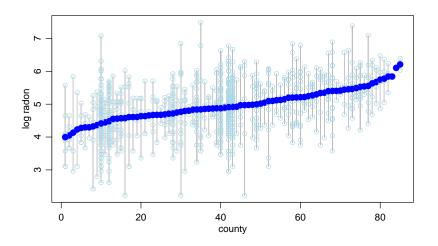
Bayesian perspective

Bias, variance and MSE •0000000

Random groups perspective

Bayesian perspective

MN radon data



Bayesian perspective 0000

Different amounts of information

```
y[g=="LACQUIPARLE"]
```

[1] 6.036210 6.383751

```
y[g=="WASHINGTON"]
```

[1] 5.933906 5.653191 4.412045 5.484196 6.112774 5.139915 5.437089 5.484196
[9] 4.648416 4.269652 3.834061 4.497065 3.668259 3.834061 4.104487 3.473607
[17] 4.162503 5.161298 4.162503 4.810531 3.473607 5.893950 5.280842 5.751848
[25] 4.269652 5.499419 4.950219 5.387661 5.202746 4.537062 5.981707 4.497065
[33] 4.366735 5.161298 4.923785 6.206521 4.682979 5.072896 4.950219 4.217459
[41] 4.043070 4.217459 3.908367 5.499419 6.626603 5.404409

Linear shrinkage estimator: $\widehat{ heta}_j = (1- w_j) ar{y}_j + w_j c$

- What should *c* be?
- What should *w_i* depend on?

Bayesian perspective 0000

Different amounts of information

y[g=="LACQUIPARLE"]

[1] 6.036210 6.383751

```
y[g=="WASHINGTON"]
```

[1] 5.933906 5.653191 4.412045 5.484196 6.112774 5.139915 5.437089 5.484196
[9] 4.648416 4.269652 3.834061 4.497065 3.668259 3.834061 4.104487 3.473607
[17] 4.162503 5.161298 4.162503 4.810531 3.473607 5.893950 5.280842 5.751848
[25] 4.269652 5.499419 4.950219 5.387661 5.202746 4.537062 5.981707 4.497065
[33] 4.366735 5.161298 4.923785 6.206521 4.682979 5.072896 4.950219 4.217459
[41] 4.043070 4.217459 3.908367 5.499419 6.626603 5.404409

Linear shrinkage estimator: $\hat{\theta}_j = (1 - w_j)\bar{y}_j + w_jc$

- What should *c* be?
- What should *w_i* depend on?

Bayesian perspective 0000

Different amounts of information

```
y[g=="LACQUIPARLE"]
```

```
## [1] 6.036210 6.383751
```

```
y[g=="WASHINGTON"]
```

[1] 5.933906 5.653191 4.412045 5.484196 6.112774 5.139915 5.437089 5.484196
[9] 4.648416 4.269652 3.834061 4.497065 3.668259 3.834061 4.104487 3.473607
[17] 4.162503 5.161298 4.162503 4.810531 3.473607 5.893950 5.280842 5.751848
[25] 4.269652 5.499419 4.950219 5.387661 5.202746 4.537062 5.981707 4.497065
[33] 4.366735 5.161298 4.923785 6.206521 4.682979 5.072896 4.950219 4.217459
[41] 4.043070 4.217459 3.908367 5.499419 6.626603 5.404409

Linear shrinkage estimator: $\hat{\theta}_j = (1 - w_j)\bar{y}_j + w_jc$

- What should c be?
- What should w_j depend on?

Bayesian perspective

Mean squared error

- Let θ be the subpopulation mean of a generic group;
- let $\hat{\theta}$ be an estimator of θ (a function of the data).

The mean squared error (MSE) of $\hat{\theta}$ is

 $MSE[\hat{\theta}|\theta] = E[(\hat{\theta} - \theta)^2|\theta]$

Bias-variance decomposition: Let $m(\theta) = E[\hat{\theta}|\theta]$.

$$MSE[\hat{\theta}|\theta] = E[(\hat{\theta} - m + m - \theta)^2|\theta]$$

= $E[(\hat{\theta} - m)^2|\theta] + 2E[(\hat{\theta} - m)(m - \theta)|\theta] + E[(m - \theta)^2|\theta]$
= $E[(\hat{\theta} - m)^2|\theta] + (m - \theta)^2$
= $Var[\hat{\theta}|\theta] + Bias^2[\hat{\theta}|\theta]$

Bayesian perspective

Mean squared error

- Let θ be the subpopulation mean of a generic group;
- let $\hat{\theta}$ be an estimator of θ (a function of the data).

The mean squared error (MSE) of $\hat{\theta}$ is

$$MSE[\hat{ heta}| heta] = \mathsf{E}[(\hat{ heta} - heta)^2| heta]$$

Bias-variance decomposition: Let $m(\theta) = \mathsf{E}[\hat{\theta}|\theta]$.

$$MSE[\hat{\theta}|\theta] = E[(\hat{\theta} - m + m - \theta)^2|\theta]$$

= $E[(\hat{\theta} - m)^2|\theta] + 2E[(\hat{\theta} - m)(m - \theta)|\theta] + E[(m - \theta)^2|\theta]$
= $E[(\hat{\theta} - m)^2|\theta] + (m - \theta)^2$
= $Var[\hat{\theta}|\theta] + Bias^2[\hat{\theta}|\theta]$

Bayesian perspective

Mean squared error

- Let θ be the subpopulation mean of a generic group;
- let $\hat{\theta}$ be an estimator of θ (a function of the data).

The mean squared error (MSE) of $\hat{\theta}$ is

$$MSE[\hat{ heta}| heta] = \mathsf{E}[(\hat{ heta} - heta)^2| heta]$$

Bias-variance decomposition: Let $m(\theta) = \mathsf{E}[\hat{\theta}|\theta]$.

$$\begin{aligned} \mathsf{MSE}[\hat{\theta}|\theta] &= \mathsf{E}[(\hat{\theta} - m + m - \theta)^2|\theta] \\ &= \mathsf{E}[(\hat{\theta} - m)^2|\theta] + 2\mathsf{E}[(\hat{\theta} - m)(m - \theta)|\theta] + \mathsf{E}[(m - \theta)^2|\theta] \\ &= \mathsf{E}[(\hat{\theta} - m)^2|\theta] + (m - \theta)^2 \\ &= \mathsf{Var}[\hat{\theta}|\theta] + \mathsf{Bias}^2[\hat{\theta}|\theta] \end{aligned}$$

Bayesian perspective

Mean squared error

- Let θ be the subpopulation mean of a generic group;
- let $\hat{\theta}$ be an estimator of θ (a function of the data).

The mean squared error (MSE) of $\hat{\theta}$ is

$$MSE[\hat{ heta}| heta] = \mathsf{E}[(\hat{ heta} - heta)^2| heta]$$

Bias-variance decomposition: Let $m(\theta) = \mathsf{E}[\hat{\theta}|\theta]$.

$$\begin{aligned} \mathsf{MSE}[\hat{\theta}|\theta] &= \mathsf{E}[(\hat{\theta} - m + m - \theta)^2|\theta] \\ &= \mathsf{E}[(\hat{\theta} - m)^2|\theta] + 2\mathsf{E}[(\hat{\theta} - m)(m - \theta)|\theta] + \mathsf{E}[(m - \theta)^2|\theta] \\ &= \mathsf{E}[(\hat{\theta} - m)^2|\theta] + (m - \theta)^2 \\ &= \mathsf{Var}[\hat{\theta}|\theta] + \mathsf{Bias}^2[\hat{\theta}|\theta] \end{aligned}$$

Fixed groups perspective

Random groups perspective

Bayesian perspective

Bias-variance tradeoff

In general,

$\textit{MSE}[\hat{\theta}|\theta] = \textit{Var}[\hat{\theta}|\theta] + \textit{Bias}(\hat{\theta}|\theta)^2$

How well an estimator $\hat{\theta}$ does at estimating θ depends on variance and bias. In general,

- estimators with low bias have have high variance $(\hat{ heta} = ar{y}$ but small n);
- estimators with low variance have high bias $(\hat{ heta}=5).$

Bayesian perspective

Bias-variance tradeoff

In general,

$$MSE[\hat{ heta}| heta] = Var[\hat{ heta}| heta] + Bias(\hat{ heta}| heta)^2$$

How well an estimator $\hat{\theta}$ does at estimating θ depends on variance and bias. In general,

- estimators with low bias have have high variance $(\hat{\theta} = \bar{y} \text{ but small } n)$;
- estimators with low variance have high bias $(\hat{\theta} = 5)$.

Bayesian perspective

Bias-variance tradeoff

In general,

$$\textit{MSE}[\hat{ heta}| heta] = \mathsf{Var}[\hat{ heta}| heta] + \mathsf{Bias}(\hat{ heta}| heta)^2$$

How well an estimator $\hat{\theta}$ does at estimating θ depends on variance and bias. In general,

- estimators with low bias have have high variance $(\hat{\theta} = \bar{y} \text{ but small } n)$;
- estimators with low variance have high bias $(\hat{\theta} = 5)$.

Bayesian perspective

Bias-variance tradeoff

In general,

$$\textit{MSE}[\hat{ heta}| heta] = \mathsf{Var}[\hat{ heta}| heta] + \mathsf{Bias}(\hat{ heta}| heta)^2$$

How well an estimator $\hat{\theta}$ does at estimating θ depends on variance and bias. In general,

- estimators with low bias have have high variance $(\hat{\theta} = \bar{y} \text{ but small } n)$;
- estimators with low variance have high bias $(\hat{\theta} = 5)$.

Bayesian perspective

Bias-variance tradeoff

In general,

$$\textit{MSE}[\hat{ heta}| heta] = \mathsf{Var}[\hat{ heta}| heta] + \mathsf{Bias}(\hat{ heta}| heta)^2$$

How well an estimator $\hat{\theta}$ does at estimating θ depends on variance and bias. In general,

- estimators with low bias have have high variance $(\hat{\theta} = \bar{y} \text{ but small } n)$;
- estimators with low variance have high bias $(\hat{\theta} = 5)$.

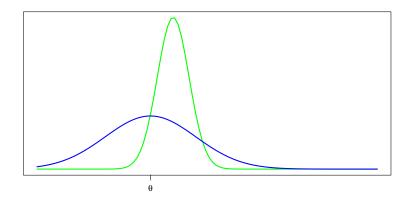
Bias, variance and MSE 00000000

Fixed groups perspective

Random groups perspective

Bayesian perspective 0000

Bias-variance tradeoff



Bayesian perspective 0000

Sample mean bias and variance

Let y_1, \ldots, y_n be sample from a population with mean θ , variance σ^2 .

Sample mean estimator: Let $\hat{\theta} = \bar{y}$

$$\mathsf{E}[\bar{y}|\theta] = \theta$$
$$\mathsf{Bias}[\bar{y}|\theta] = 0$$

 $\operatorname{Var}[\bar{y}|\theta] = \sigma^2/n$

 $MSE[\bar{y}|\theta] = Var[\bar{y}|\theta] = \sigma^2/n$

Bayesian perspective 0000

Sample mean bias and variance

Let y_1, \ldots, y_n be sample from a population with mean θ , variance σ^2 .

Sample mean estimator: Let $\hat{\theta} = \bar{y}$

$$\mathsf{E}[\bar{y}|\theta] = \theta$$
$$\mathsf{Bias}[\bar{y}|\theta] = 0$$

 $\mathsf{Var}[\bar{y}|\theta] = \sigma^2/n$

$$MSE[\bar{y}|\theta] = Var[\bar{y}|\theta] = \sigma^2/n$$

Bayesian perspective 0000

Sample mean bias and variance

Let y_1, \ldots, y_n be sample from a population with mean θ , variance σ^2 .

Sample mean estimator: Let $\hat{\theta} = \bar{y}$

$$\mathsf{E}[\bar{y}|\theta] = \theta$$
$$\mathsf{Bias}[\bar{y}|\theta] = 0$$

 $\mathsf{Var}[\bar{y}|\theta] = \sigma^2/n$

$$MSE[\bar{y}|\theta] = Var[\bar{y}|\theta] = \sigma^2/n$$

Fixed groups perspective

Random groups perspective

Bayesian perspective 0000

Linear shrinkage bias and variance

Linear shrinkage estimator: $\hat{\theta} = (1 - w)\bar{y} + wc$ for some $w \in [0, 1]$.

- w is the amount of shrinkage;
- c is the shrinkage point.

$$\mathsf{E}[\hat{ heta}| heta] = (1-w) heta + wc = heta + w(c- heta)$$
 $\mathsf{Bias}[\hat{ heta}| heta]^2 = w^2(c- heta)^2 \ge 0$

$$\operatorname{Var}[\hat{ heta}| heta] = (1-w)^2 \sigma^2/n \le \sigma^2/n$$

$$MSE[\hat{\theta}|\theta] = (1-w)^2 \sigma^2 / n + w^2 (c-\theta)^2$$

Bias, variance and MSE 0000000

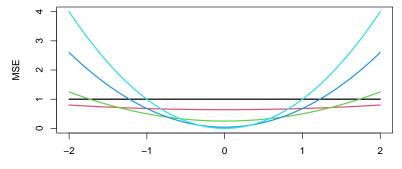
Fixed groups perspective

Random groups perspective

Bayesian perspective

Mean squared error function

 $\sigma^2/n=1$ c=0



θ

Bayesian perspective 0000

Composite MSE

Consider a LSE for $oldsymbol{ heta}=(heta_1,\ldots, heta_m)$ where $\hat{ heta}_j=(1-w)ar{y}_j+wc$

$$\begin{split} \mathsf{MSE}[\hat{\boldsymbol{\theta}}|\boldsymbol{\theta}] &= \mathsf{E}[||\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}||^2 |\boldsymbol{\theta}] \\ &= \sum_j \mathsf{E}[(\hat{\theta}_j - \theta_j)^2 |\boldsymbol{\theta}] \\ &= \frac{\sigma^2}{n} m(1 - w)^2 + w^2 \sum_j (c - \theta_j)^2 \end{split}$$

What should the values of w and c be?

Bayesian perspective 0000

Composite MSE

Consider a LSE for $oldsymbol{ heta}=(heta_1,\ldots, heta_m)$ where $\hat{ heta}_j=(1-w)ar{y}_j+wc$

$$\begin{split} \mathsf{MSE}[\hat{\boldsymbol{\theta}}|\boldsymbol{\theta}] &= \mathsf{E}[||\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}||^2 |\boldsymbol{\theta}] \\ &= \sum_j \mathsf{E}[(\hat{\theta}_j - \theta_j)^2 |\boldsymbol{\theta}] \\ &= \frac{\sigma^2}{n} m(1 - w)^2 + w^2 \sum_j (c - \theta_j)^2 \end{split}$$

What should the values of w and c be?

Oracle estimator

Using calculus you can show that MSE is optimized by

•
$$c = \mu = \sum_{j} \theta_{j}/m;$$

• $w = \frac{1/\tau^{2}}{n/\sigma^{2}+1/\tau^{2}},$ where
• $\tau^{2} = \sum_{j} (\theta_{j} - \mu)^{2}/m.$

This gives the oracle estimator

$$\hat{ heta}_j = rac{n/\sigma^2}{n/\sigma^2 + 1/\tau^2} ar{y}_j + rac{1/\tau^2}{n/\sigma^2 + 1/\tau^2} \mu.$$

This can also be written

$$\hat{\theta}_j = \frac{\tau^2}{\sigma^2/n + \tau^2} \bar{y}_j + \frac{\sigma^2/n}{\sigma^2/n + \tau^2} \mu.$$

Oracle estimator

Using calculus you can show that MSE is optimized by

• $c = \mu = \sum_{j} \theta_{j}/m;$ • $w = \frac{1/\tau^{2}}{n/\sigma^{2}+1/\tau^{2}},$ where • $\tau^{2} = \sum_{j} (\theta_{j} - \mu)^{2}/m.$

This gives the *oracle estimator*

$$\hat{ heta}_j = rac{n/\sigma^2}{n/\sigma^2 + 1/ au^2} ar{y}_j + rac{1/ au^2}{n/\sigma^2 + 1/ au^2} \mu.$$

This can also be written

$$\hat{\theta}_j = \frac{\tau^2}{\sigma^2/n + \tau^2} \bar{y}_j + \frac{\sigma^2/n}{\sigma^2/n + \tau^2} \mu.$$

Oracle estimator

Using calculus you can show that MSE is optimized by

• $c = \mu = \sum_{j} \theta_{j}/m;$ • $w = \frac{1/\tau^{2}}{n/\sigma^{2}+1/\tau^{2}},$ where • $\tau^{2} = \sum_{j} (\theta_{j} - \mu)^{2}/m.$

This gives the *oracle estimator*

$$\hat{ heta}_j = rac{n/\sigma^2}{n/\sigma^2 + 1/ au^2} ar{y}_j + rac{1/ au^2}{n/\sigma^2 + 1/ au^2} \mu.$$

This can also be written

$$\hat{ heta}_j = rac{ au^2}{\sigma^2/n + au^2} ar{y}_j + rac{\sigma^2/n}{\sigma^2/n + au^2} \mu.$$

Bayesian perspective 0000

Composite risk comparison

- $\bar{\mathbf{y}} = (\bar{y}_1, \dots, \bar{y}_m)$, the vector of sample means;
- $\hat{\boldsymbol{ heta}} = (\hat{ heta}_1, \dots, \hat{ heta}_m)$, the vector of oracle estimates.

$$MSE[\bar{\mathbf{y}}|\boldsymbol{\theta}] = m\frac{\sigma^2}{n}$$
$$MSE[\hat{\boldsymbol{\theta}}|\boldsymbol{\theta}] = m\frac{\sigma^2}{n} \times \left(\frac{\tau^2}{\sigma^2/n + \tau^2}\right) < MSE[\bar{\mathbf{y}}|\boldsymbol{\theta}].$$

The oracle estimator is better than $\bar{\mathbf{y}}$ in terms of composite risk .

Composite risk comparison

- $\mathbf{\bar{y}} = (\bar{y}_1, \dots, \bar{y}_m)$, the vector of sample means;
- $\hat{\boldsymbol{\theta}} = (\hat{ heta}_1, \dots, \hat{ heta}_m)$, the vector of oracle estimates.

$$MSE[\bar{\mathbf{y}}|\boldsymbol{\theta}] = m\frac{\sigma^2}{n}$$
$$MSE[\hat{\boldsymbol{\theta}}|\boldsymbol{\theta}] = m\frac{\sigma^2}{n} \times \left(\frac{\tau^2}{\sigma^2/n + \tau^2}\right) < MSE[\bar{\mathbf{y}}|\boldsymbol{\theta}].$$

The oracle estimator is better than $\bar{\mathbf{y}}$ in terms of composite risk .

Composite risk comparison

- $\mathbf{\bar{y}} = (\bar{y}_1, \dots, \bar{y}_m)$, the vector of sample means;
- $\hat{\boldsymbol{ heta}} = (\hat{ heta}_1, \dots, \hat{ heta}_m)$, the vector of oracle estimates.

$$MSE[\bar{\mathbf{y}}|\boldsymbol{\theta}] = m\frac{\sigma^2}{n}$$
$$MSE[\hat{\boldsymbol{\theta}}|\boldsymbol{\theta}] = m\frac{\sigma^2}{n} \times \left(\frac{\tau^2}{\sigma^2/n + \tau^2}\right) < MSE[\bar{\mathbf{y}}|\boldsymbol{\theta}].$$

The oracle estimator is better than $\bar{\mathbf{y}}$ in terms of composite risk .

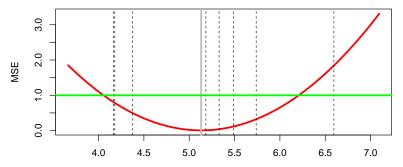
Bias, variance and MSE 00000000 Fixed groups perspective

Random groups perspective

Bayesian perspective

Group-level risk of oracle estimator

$$MSE[\hat{\theta}_j|\boldsymbol{\theta}] = (1-w)^2 \sigma^2/n + w^2(\theta_j - \mu)^2.$$



 θ_{j}

Bayesian perspective

Composite risk

- $\bar{\mathbf{y}}$ is an unbiased estimator of $\boldsymbol{\theta}$;
- $\hat{\theta}$ is a biased estimator of heta, but has lower variance than $ar{\mathbf{y}}$.
- $MSE[\hat{\boldsymbol{\theta}}|\boldsymbol{\theta}] \leq MSE[\bar{\mathbf{y}}|\boldsymbol{\theta}].$

Group-level risk

- \bar{y}_j is an unbiased estimator of θ_j for each $j = 1, \ldots, m$.
- $\hat{\theta}_j$ is a biased estimator of θ_j , but has lower variance than \bar{y}_j .
- $MSE[\hat{\theta}_j|\theta] \gtrsim MSE[\bar{y}_j|\theta]$ and you don't know which!

Bayesian perspective

Composite risk

- $\bar{\mathbf{y}}$ is an unbiased estimator of $\boldsymbol{\theta}$;
- $\hat{\theta}$ is a biased estimator of heta, but has lower variance than $ar{\mathbf{y}}$.
- $MSE[\hat{\boldsymbol{\theta}}|\boldsymbol{\theta}] \leq MSE[\bar{\mathbf{y}}|\boldsymbol{\theta}].$

Group-level risk

- \bar{y}_j is an unbiased estimator of θ_j for each $j = 1, \ldots, m$.
- $\hat{\theta}_j$ is a biased estimator of θ_j , but has lower variance than \bar{y}_j .
- $MSE[\hat{\theta}_j|\theta] \gtrsim MSE[\bar{y}_j|\theta]$ and you don't know which!

Bayesian perspective 0000

Practical considerations

Typically,

- μ, τ^2, σ^2 are unknown;
- sample sizes may vary across groups.

$$\hat{ heta}_j = rac{n_j/\hat{\sigma}^2}{n_j/\hat{\sigma}^2+1/\hat{ au}^2}ar{y}_j + rac{1/\hat{ au}^2}{n_j/\hat{\sigma}^2+1/\hat{ au}^2}\hat{\mu}$$

- $\hat{\mu}, \hat{\tau}^2, \hat{\sigma}^2$ are obtained from the data (e.g. ANOVA or lme4).
- If $n_j = n$, can obtain $\hat{\mu}, \hat{\tau}^2, \hat{\sigma}^2$ so that $\hat{\theta}$ is guaranteed better than $\bar{\mathbf{y}}$ (Stein).
- Otherwise, for large m, $\hat{\theta}$ will be approximately optimal linear estimator (under composite risk).

Bayesian perspective 0000

Practical considerations

Typically,

- μ, τ^2, σ^2 are unknown;
- sample sizes may vary across groups.

$$\hat{ heta}_j = rac{n_j/\hat{\sigma}^2}{n_j/\hat{\sigma}^2+1/\hat{ au}^2}ar{y}_j + rac{1/\hat{ au}^2}{n_j/\hat{\sigma}^2+1/\hat{ au}^2}\hat{\mu}$$

- $\hat{\mu}, \hat{\tau}^2, \hat{\sigma}^2$ are obtained from the data (e.g. ANOVA or lme4).
- If $n_j = n$, can obtain $\hat{\mu}, \hat{\tau}^2, \hat{\sigma}^2$ so that $\hat{\theta}$ is guaranteed better than $\bar{\mathbf{y}}$ (Stein).
- Otherwise, for large m, $\hat{\theta}$ will be approximately optimal linear estimator (under composite risk).

Bayesian perspective 0000

Practical considerations

Typically,

- μ, τ^2, σ^2 are unknown;
- sample sizes may vary across groups.

$$\hat{ heta}_j = rac{n_j/\hat{\sigma}^2}{n_j/\hat{\sigma}^2+1/\hat{ au}^2}ar{y}_j + rac{1/\hat{ au}^2}{n_j/\hat{\sigma}^2+1/\hat{ au}^2}\hat{\mu}$$

- $\hat{\mu}, \hat{\tau}^2, \hat{\sigma}^2$ are obtained from the data (e.g. ANOVA or lme4).
- If $n_j = n$, can obtain $\hat{\mu}, \hat{\tau}^2, \hat{\sigma}^2$ so that $\hat{\theta}$ is guaranteed better than $\bar{\mathbf{y}}$ (Stein).
- Otherwise, for large m, $\hat{\theta}$ will be approximately optimal linear estimator (under composite risk).

Bayesian perspective 0000

Practical considerations

Typically,

- μ, τ^2, σ^2 are unknown;
- sample sizes may vary across groups.

$$\hat{ heta}_j = rac{n_j/\hat{\sigma}^2}{n_j/\hat{\sigma}^2+1/\hat{ au}^2}ar{y}_j + rac{1/\hat{ au}^2}{n_j/\hat{\sigma}^2+1/\hat{ au}^2}\hat{\mu}$$

- $\hat{\mu}, \hat{\tau}^2, \hat{\sigma}^2$ are obtained from the data (e.g. ANOVA or lme4).
- If $n_j = n$, can obtain $\hat{\mu}, \hat{\tau}^2, \hat{\sigma}^2$ so that $\hat{\theta}$ is guaranteed better than $\bar{\mathbf{y}}$ (Stein).
- Otherwise, for large m, $\hat{\theta}$ will be approximately optimal linear estimator (under composite risk).

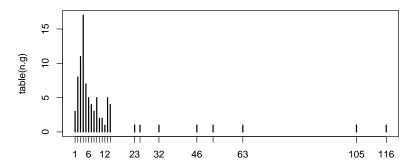
Random groups perspective

Bayesian perspective

Radon example

n.g<-c(table(g))</pre>

plot(table(n.g))



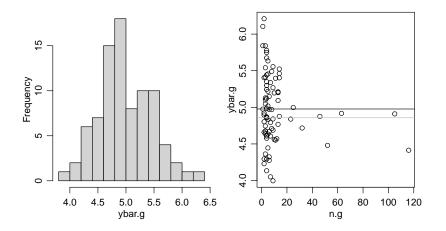
Bias, variance and MSE 00000000 Fixed groups perspective

Random groups perspective

Bayesian perspective

Radon example

county specific radon means
ybar.g<-c(tapply(y,g,"mean"))</pre>



Bayesian perspective 0000

MLEs

```
library(lme4)
fit.lme<-lmer(y~1+(1|g),REML=FALSE)</pre>
summary(fit.lme)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: y ~ 1 + (1 | g)
##
##
       AIC
               BIC logLik deviance df.resid
    2164.1 2178.5 -1079.0 2158.1
##
                                        916
##
## Scaled residuals:
##
      Min
              10 Median
                                   Max
                            30
## -3.6165 -0.6141 0.0292 0.6526 3.4932
##
## Bandom effects:
## Groups Name
                  Variance Std.Dev.
## g
      (Intercept) 0.08804 0.2967
## Residual
                      0.57154 0.7560
## Number of obs: 919, groups: g, 85
##
## Fixed effects:
##
             Estimate Std. Error t value
## (Intercept) 4.94656 0.04664 106.1
```

Random groups perspective

Bayesian perspective

Parameter estimates

```
VarCorr(fit.lme)
##
   Groups
             Name
                          Std.Dev.
##
             (Intercept) 0.29672
   g
## Residual
                          0.75600
t2.mle<-as.numeric(VarCorr(fit.lme)$g)</pre>
t2.mle
## [1] 0.08804027
sigma(fit.lme)
## [1] 0.7559996
s2.mle<-sigma(fit.lme)^2
s2.mle
## [1] 0.5715354
fixef(fit.lme)
## (Intercept)
##
      4.946557
mu.mle<-fixef(fit.lme)</pre>
```

Random groups perspective

Bayesian perspective

Adaptive shrinkage estimates

Replace μ, σ^2, τ^2 with estimates:

$$\hat{ heta}_j = extsf{w}_jar{y}_j + (1- extsf{w}_j)\hat{\mu} \;, extsf{ where } extsf{w}_j = rac{n_j/\hat{\sigma}^2}{n_j/\hat{\sigma}^2 + 1/\hat{\tau}^2}.$$

```
w.shrink<- (n.g/s2.mle) /(n.g/s2.mle + 1/t2.mle)
```

```
mu.shrink<-w.shrink*ybar.g + (1-w.shrink)*mu.mle</pre>
```

mu.mle

```
## (Intercept)
## 4.946557
```

```
cbind(ybar.g, n.g, mu.shrink)[1:8,]
```

Bayesian perspective

Adaptive shrinkage estimates

Replace μ, σ^2, τ^2 with estimates:

$$\hat{ heta}_j = extsf{w}_jar{y}_j + (1- extsf{w}_j)\hat{\mu} \;, extsf{ where } extsf{w}_j = rac{n_j/\hat{\sigma}^2}{n_j/\hat{\sigma}^2 + 1/\hat{\tau}^2}.$$

```
w.shrink<- (n.g/s2.mle) /(n.g/s2.mle + 1/t2.mle)
mu.shrink<-w.shrink*ybar.g + (1-w.shrink)*mu.mle</pre>
mu.mle
##
  (Intercept)
##
     4.946557
cbind(ybar.g, n.g, mu.shrink)[1:8,]
##
               ybar.g n.g mu.shrink
## AITKIN
             4.293832
                        4 4.697704
## ANOKA
             4.479973 52
                          4.531757
## BECKER
             4.675008
                        3 4.860730
## BELTRAMI 4,793035 7 4,866904
## BENTON
             4.869503
                        4 4.917180
## BIGSTONE
             5.128199
                        3 5.003968
## BLUEEARTH 5,522876
                       14
                           5.340299
## BROWN
             5.244160
                        4
                          5.060018
```

Bias, variance and MSE 00000000 Fixed groups perspective

Random groups perspective

Bayesian perspective

Shrinkage

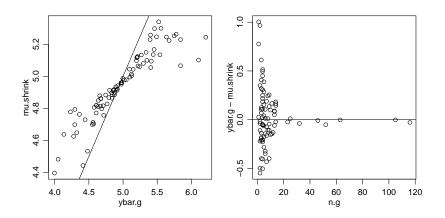
topten<-order(ybar.g,decreasing=TRUE)[1:10] cbind(ybar.g, n.g, mu.shrink)[topten,]</pre>

##		ybar.g	n.g	mu.shrink
##	LACQUIPARLE	6.209980	2	5.244122
##	MURRAY	6.104550	1	5.101126
##	WILKIN	5.841654	1	5.066035
##	WATONWAN	5.841041	3	5.229271
##	NICOLLET	5.777273	4	5.263269
##	LINCOLN	5.748294	4	5.252221
##	KANDIYOHI	5.674289	4	5.224006
##	JACKSON	5.633758	5	5.245555
##	FREEBORN	5.555495	9	5.300322
##	NOBLES	5.540083	3	5.134149

Random groups perspective

Bayesian perspective

Shrinkage



Bias, variance and MSE 00000000 Fixed groups perspective

Random groups perspective

Bayesian perspective 0000

Shrinkage estimates from 1me4

```
mu.shrink[1:10]
```

AITKIN ANOKA BECKER. BELTRAMI BENTON BIGSTONE BLUEEARTH BROWN ## 4.697704 4.531757 4.860730 4.866904 4.917180 5.003968 5.340299 5.060018 ## CARLTON CARVER 4.958725 ## 4.712463 a.shrink<-ranef(fit.lme)[[1]][.1]

```
mu.mle+a.shrink[1:10]
```

[1] 4.697704 4.531757 4.860730 4.866904 4.917180 5.003968 5.340299 5.060018
[9] 4.712463 4.958725

In lme4, ranef(fit.lme)[[k]][,1] refers to the

- 1th random effect for the
- kth grouping variable.

mu.shrink[1:10]

Fixed groups perspective 000000000000000

BROWN

Shrinkage estimates from 1me4

```
##
      AITKIN
                 ANOKA
                          BECKER.
                                   BELTRAMI
                                               BENTON
                                                        BIGSTONE BLUEEARTH
    4.697704
              4.531757
                         4.860730
                                   4.866904
                                             4.917180
                                                        5.003968 5.340299
                                                                             5.060018
##
##
     CARLTON
                CARVER
##
    4.712463
              4.958725
a.shrink<-ranef(fit.lme)[[1]][.1]
mu.mle+a.shrink[1:10]
    [1] 4.697704 4.531757 4.860730 4.866904 4.917180 5.003968 5.340299 5.060018
##
```

[9] 4.712463 4.958725

In lme4, ranef(fit.lme)[[k]][,1] refers to the

- Ith random effect for the
- kth grouping variable.

Bayesian perspective 0000

Hierarchical normal model

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

$$\{\epsilon_{1,1}, \dots, \epsilon_{n,1}\}, \dots, \{\epsilon_{1,m}, \dots, \epsilon_{n,m}\} \sim \text{i.i.d. normal}(0, \sigma^2)$$

$$a_1, \dots, a_m \sim \text{i.i.d. normal}(0, \tau^2)$$

Equivalently,

$$y_{i,j} = \theta_j + \epsilon_{i,j}$$

{ $\epsilon_{1,1}, \dots, \epsilon_{n,1}$ }, ..., { $\epsilon_{1,m}, \dots, \epsilon_{n,m}$ } ~ i.i.d. normal($0, \sigma^2$)
 $\theta_1, \dots, \theta_m \sim i.i.d.$ normal(μ, τ^2)

In this model, we think of

- the groups as being randomly selected from a larger set of possible groups,
- so the means are randomly selected from a set of possible means.
- This interpretation is *not appropriate* for the radon data!

Bayesian perspective

Hierarchical normal model

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

$$\{\epsilon_{1,1}, \dots, \epsilon_{n,1}\}, \dots, \{\epsilon_{1,m}, \dots, \epsilon_{n,m}\} \sim \text{i.i.d. normal}(0, \sigma^2)$$

$$a_1, \dots, a_m \sim \text{i.i.d. normal}(0, \tau^2)$$

Equivalently,

$$y_{i,j} = \theta_j + \epsilon_{i,j}$$

{ $\epsilon_{1,1}, \dots, \epsilon_{n,1}$ }, ..., { $\epsilon_{1,m}, \dots, \epsilon_{n,m}$ } ~ i.i.d. normal(0, σ^2)
 $\theta_1, \dots, \theta_m \sim i.i.d.$ normal(μ, τ^2)

In this model, we think of

- the groups as being randomly selected from a larger set of possible groups,
- so the means are randomly selected from a set of possible means.
- This interpretation is *not appropriate* for the radon data!

Bayesian perspective

Hierarchical normal model

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

$$\{\epsilon_{1,1}, \dots, \epsilon_{n,1}\}, \dots, \{\epsilon_{1,m}, \dots, \epsilon_{n,m}\} \sim \text{i.i.d. normal}(0, \sigma^2)$$

$$a_1, \dots, a_m \sim \text{i.i.d. normal}(0, \tau^2)$$

Equivalently,

$$y_{i,j} = \theta_j + \epsilon_{i,j}$$

{ $\epsilon_{1,1}, \dots, \epsilon_{n,1}$ }, ..., { $\epsilon_{1,m}, \dots, \epsilon_{n,m}$ } ~ i.i.d. normal(0, σ^2)
 $\theta_1, \dots, \theta_m$ ~ i.i.d. normal(μ, τ^2)

In this model, we think of

- the groups as being randomly selected from a larger set of possible groups,
- so the means are randomly selected from a set of possible means.
- This interpretation is *not appropriate* for the radon data!

Bayesian perspective

Unbiased predictors

Suppose you will sample a random group with subgroup mean θ , so

 $egin{aligned} & heta \sim \mathcal{N}(\mu, au^2) \ & ar{y} | heta \sim \mathcal{N}(heta, \sigma^2/n). \end{aligned}$

How should you plan on estimating θ ? Consider estimators $\tilde{\theta}$ that are unbiased "on average:"

$$\mathsf{E}[ilde{ heta} - heta] = \int_{ heta} \left(\int_{y} (\hat{ heta} - heta) \mathsf{p}(y| heta) \, d heta
ight) \, \mathsf{p}(heta|\mu, au^2) \, d heta$$

- Such estimators are sometimes called "unbiased predictors";
- They might not be unbiased for most values of θ !

Bias, variance and MSE 00000000 Fixed groups perspective

Bayesian perspective

Unbiased predictors

$$\bar{y} = \sum y_i/n$$
$$\hat{\theta} = \frac{\tau^2}{\sigma^2/n + \tau^2} \bar{y} + \frac{\sigma^2/n}{\sigma^2/n + \tau^2} \mu.$$

Exercises:

- 1. Show that \bar{y} is an unbiased predictor;
- 2. Show that $\hat{\theta}$ is an unbiased predictor.
- 3. Identify some other unbiased predictors.

Random groups perspective

Bayesian perspective

Best unbiased prediction

Result 1: (Best unbiased predictor). Let $\tilde{\theta}$ be any unbiased predictor, meaning $E[\tilde{\theta} - \theta] = 0$ where the expectation is averaging over *both* y and θ . Then

$$\mathsf{E}[(\hat{\theta} - \theta)^2] \le \mathsf{E}[(\tilde{\theta} - \theta)^2]$$

where the expectation is over *both* y and θ .

Best linear unbiased predictor

A similar result holds even if the data are not normal. Suppose

- $\mathsf{E}[\bar{y}|\theta] = \theta$, $\mathsf{Var}[\bar{y}|\theta] = \sigma^2/n$.
- $\mathsf{E}[\theta] = \mu$, $\mathsf{Var}[\theta] = \tau^2$.

Result 2: (Best linear unbiased predictor). Let $\tilde{\theta}$ be any linear unbiased predictor, meaning

• $\tilde{\theta} = a\bar{y} + b$ for some fixed *a* and *b*;

• $E[\tilde{\theta} - \theta] = 0$ where the expectation is averaging over *both* y and θ . Then

$$\mathsf{E}[(\hat{\theta} - \theta)^2] \le \mathsf{E}[(\tilde{\theta} - \theta)^2]$$

where the expectation is over *both* y and θ .

Best linear unbiased predictor

A similar result holds even if the data are not normal. Suppose

- $\mathsf{E}[\bar{y}|\theta] = \theta$, $\mathsf{Var}[\bar{y}|\theta] = \sigma^2/n$.
- $\mathsf{E}[\theta] = \mu$, $\mathsf{Var}[\theta] = \tau^2$.

Result 2: (Best linear unbiased predictor). Let $\tilde{\theta}$ be any linear unbiased predictor, meaning

- $\tilde{\theta} = a\bar{y} + b$ for some fixed *a* and *b*;
- $E[\tilde{\theta} \theta] = 0$ where the expectation is averaging over *both* y and θ . Then

$$\mathsf{E}[(\hat{ heta} - heta)^2] \le \mathsf{E}[(\tilde{ heta} - heta)^2]$$

where the expectation is over *both* y and θ .

Bayesian perspective 0000

BLUPs

The $\hat{\theta}_j$'s are often called the *best unbiased linear predictors* (*BLUPs*).

This is confusing, as we have discussed how these estimators are biased:

$$\mathbb{E}[\hat{ heta}_j| heta_j] = \mathbb{E}[war{y}_j + (1-w)\mu| heta_j] \ = w heta_j + (1-w)\mu
eq heta_j$$

 $\hat{\theta}_j$ is conditionally biased.

The "U" in BLUP refers to bias only in an unconditional sense:

$$\begin{split} \mathsf{E}[\hat{\theta}_j] &= \mathsf{E}[\mathsf{E}[\hat{\theta}_j | \theta_j]] \\ &= \mathsf{E}[w\theta_j + (1-w)\mu] \\ &= w\mu + (1-w)\mu = \mu. \end{split}$$

Bayesian perspective 0000

BLUPs

The $\hat{\theta}_j$'s are often called the *best unbiased linear predictors* (*BLUPs*).

This is confusing, as we have discussed how these estimators are biased:

$$\mathsf{E}[\hat{ heta}_j| heta_j] = \mathsf{E}[war{y}_j + (1-w)\mu| heta_j] \ = w heta_j + (1-w)\mu
eq heta_j$$

 $\hat{\theta}_j$ is conditionally biased.

The "U" in BLUP refers to bias only in an unconditional sense:

$$\begin{split} \mathsf{E}[\hat{\theta}_j] &= \mathsf{E}[\mathsf{E}[\hat{\theta}_j | \theta_j]] \\ &= \mathsf{E}[w\theta_j + (1-w)\mu] \\ &= w\mu + (1-w)\mu = \mu. \end{split}$$

Bayesian perspective 0000

BLUPs

The $\hat{\theta}_j$'s are often called the *best unbiased linear predictors* (*BLUPs*).

This is confusing, as we have discussed how these estimators are biased:

$$\mathsf{E}[\hat{ heta}_j| heta_j] = \mathsf{E}[war{y}_j + (1-w)\mu| heta_j] \ = w heta_j + (1-w)\mu
eq heta_j$$

$\hat{\theta}_j$ is conditionally biased.

The "U" in BLUP refers to bias only in an unconditional sense:

$$\begin{split} \mathsf{E}[\hat{\theta}_j] &= \mathsf{E}[\mathsf{E}[\hat{\theta}_j | \theta_j]] \\ &= \mathsf{E}[w\theta_j + (1-w)\mu] \\ &= w\mu + (1-w)\mu = \mu. \end{split}$$

Bayesian perspective 0000

BLUPs

The $\hat{\theta}_j$'s are often called the *best unbiased linear predictors* (*BLUPs*).

This is confusing, as we have discussed how these estimators are biased:

$$\mathsf{E}[\hat{ heta}_j| heta_j] = \mathsf{E}[war{y}_j + (1-w)\mu| heta_j] \ = w heta_j + (1-w)\mu
eq heta_j$$

 $\hat{\theta}_j$ is conditionally biased.

The "U" in BLUP refers to bias only in an unconditional sense:

$$\begin{split} \mathsf{E}[\hat{\theta}_j] &= \mathsf{E}[\mathsf{E}[\hat{\theta}_j|\theta_j]] \\ &= \mathsf{E}[w\theta_j + (1-w)\mu] \\ &= w\mu + (1-w)\mu = \mu. \end{split}$$

Bayesian perspective 0000

BLUPs

The $\hat{\theta}_j$'s are often called the *best unbiased linear predictors* (*BLUPs*).

This is confusing, as we have discussed how these estimators are biased:

$$\mathsf{E}[\hat{ heta}_j| heta_j] = \mathsf{E}[war{y}_j + (1-w)\mu| heta_j] \ = w heta_j + (1-w)\mu
eq heta_j$$

 $\hat{\theta}_j$ is conditionally biased.

The "U" in BLUP refers to bias only in an unconditional sense:

$$\begin{split} \mathsf{E}[\hat{\theta}_j] &= \mathsf{E}[\mathsf{E}[\hat{\theta}_j|\theta_j]] \\ &= \mathsf{E}[w\theta_j + (1-w)\mu] \\ &= w\mu + (1-w)\mu = \mu. \end{split}$$

F G θ_G D Е G school В С Α н θ_B θ_{C} θ_{D} θ_{F} θ_H θ_1 θ_{I} θ_A mean

Study design:

- sample *m* schools at random from the population of schools.
- sample *n* students at random from each of the *m* schools.

What is the expectation of θ_1 , \bar{y}_1 , $\hat{\theta}_1$?

$$E[\theta_1] = \theta_A \times Pr(\text{unit } 1 = A) + \dots + \theta_J \times Pr(\text{unit } 1 = J)$$
$$= \theta_A \frac{1}{10} + \dots + \theta_J \frac{1}{10} = \mu$$

Study design:

- sample *m* schools at random from the population of schools.
- sample *n* students at random from each of the *m* schools.

What is the expectation of θ_1 , \bar{y}_1 , $\hat{\theta}_1$?

$$E[\theta_1] = \theta_A \times Pr(\text{unit } 1 = A) + \dots + \theta_J \times Pr(\text{unit } 1 = J)$$
$$= \theta_A \frac{1}{10} + \dots + \theta_J \frac{1}{10} = \mu$$

Study design:

- sample *m* schools at random from the population of schools.
- sample *n* students at random from each of the *m* schools.

What is the expectation of θ_1 , \bar{y}_1 , $\hat{\theta}_1$?

$$E[\theta_1] = \theta_A \times Pr(\text{unit } 1 = A) + \dots + \theta_J \times Pr(\text{unit } 1 = J)$$
$$= \theta_A \frac{1}{10} + \dots + \theta_J \frac{1}{10} = \mu$$

Study design:

- sample *m* schools at random from the population of schools.
- sample *n* students at random from each of the *m* schools.

What is the expectation of θ_1 , \bar{y}_1 , $\hat{\theta}_1$?

$$E[\theta_1] = \theta_A \times Pr(\text{unit } 1 = A) + \dots + \theta_J \times Pr(\text{unit } 1 = J)$$
$$= \theta_A \frac{1}{10} + \dots + \theta_J \frac{1}{10} = \mu$$

Study design:

- sample *m* schools at random from the population of schools.
- sample *n* students at random from each of the *m* schools.

What is the expectation of θ_1 , \bar{y}_1 , $\hat{\theta}_1$?

$$E[\theta_1] = \theta_A \times Pr(\text{unit } 1 = A) + \dots + \theta_J \times Pr(\text{unit } 1 = J)$$
$$= \theta_A \frac{1}{10} + \dots + \theta_J \frac{1}{10} = \mu$$

Study design:

- sample *m* schools at random from the population of schools.
- sample *n* students at random from each of the *m* schools.

What is the expectation of θ_1 , \bar{y}_1 , $\hat{\theta}_1$?

$$\mathsf{E}[\theta_1] = \theta_A \times \mathsf{Pr}(\mathsf{unit } 1 = \mathsf{A}) + \dots + \theta_J \times \mathsf{Pr}(\mathsf{unit } 1 = \mathsf{J})$$
$$= \theta_A \frac{1}{10} + \dots + \theta_J \frac{1}{10} = \mu$$

Study design:

- sample *m* schools at random from the population of schools.
- sample *n* students at random from each of the *m* schools.

What is the expectation of θ_1 , \bar{y}_1 , $\hat{\theta}_1$?

$$\mathsf{E}[\theta_1] = \theta_A \times \mathsf{Pr}(\mathsf{unit } 1 = \mathsf{A}) + \dots + \theta_J \times \mathsf{Pr}(\mathsf{unit } 1 = \mathsf{J})$$
$$= \theta_A \frac{1}{10} + \dots + \theta_J \frac{1}{10} = \mu$$

Study design:

- sample *m* schools at random from the population of schools.
- sample *n* students at random from each of the *m* schools.

What is the expectation of θ_1 , \bar{y}_1 , $\hat{\theta}_1$?

$$E[\theta_1] = \theta_A \times Pr(\text{unit } 1 = A) + \dots + \theta_J \times Pr(\text{unit } 1 = J)$$
$$= \theta_A \frac{1}{10} + \dots + \theta_J \frac{1}{10} = \mu$$

Study design:

- sample *m* schools at random from the population of schools.
- sample *n* students at random from each of the *m* schools.

What is the expectation of θ_1 , \bar{y}_1 , $\hat{\theta}_1$?

$$E[\theta_1] = \theta_A \times Pr(\text{unit } 1 = A) + \dots + \theta_J \times Pr(\text{unit } 1 = J)$$
$$= \theta_A \frac{1}{10} + \dots + \theta_J \frac{1}{10} = \mu$$

Bayesian perspective

Understanding conditional expectation

$$\mathsf{E}[\bar{y}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D} \] = \mathsf{E}[\bar{y}_D - \theta_D] = \theta_D - \theta_D = \mathsf{0}$$

$$\begin{split} \mathsf{E}[\hat{\theta}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D}] &= \mathsf{E}[(1 - w)\bar{y}_D + w\mu - \theta_D] \\ &= (1 - w)\theta_D + w\mu - \theta_D = w(\mu - \theta_D) \neq \mathsf{0} \end{split}$$

Conditionally on unit 1=D,

- $\bar{y}_1 = \bar{y}_D$ is unbiased for θ_D ,
- $\hat{\theta}_1 = \hat{\theta}_D$ is biased for θ_D .

- $\bar{y}_1 = \bar{y}_D$ and \bar{y}_D is unbiased for θ_D
- $\hat{\theta}_1 = \hat{\theta}_D$ and $\hat{\theta}_D$ is biased for θ_D .

Bayesian perspective

Understanding conditional expectation

$$\mathsf{E}[\bar{y}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D}] = \mathsf{E}[\bar{y}_D - \theta_D] = \theta_D - \theta_D = 0$$

$$\begin{split} \mathsf{E}[\hat{\theta}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D}] &= \mathsf{E}[(1 - w)\bar{y}_D + w\mu - \theta_D] \\ &= (1 - w)\theta_D + w\mu - \theta_D = w(\mu - \theta_D) \neq \mathsf{0} \end{split}$$

Conditionally on unit 1=D,

- $\bar{y}_1 = \bar{y}_D$ is unbiased for θ_D ,
- $\hat{\theta}_1 = \hat{\theta}_D$ is biased for θ_D .

- $\bar{y}_1 = \bar{y}_D$ and \bar{y}_D is unbiased for θ_D
- $\hat{\theta}_1 = \hat{\theta}_D$ and $\hat{\theta}_D$ is biased for θ_D .

 Bayesian perspective

Understanding conditional expectation

$\mathsf{E}[\bar{y}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D} \] = \mathsf{E}[\bar{y}_D - \theta_D] = \theta_D - \theta_D = \mathsf{0}$

$$\begin{split} \mathsf{E}[\hat{\theta}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D}] &= \mathsf{E}[(1 - w)\bar{y}_D + w\mu - \theta_D] \\ &= (1 - w)\theta_D + w\mu - \theta_D = w(\mu - \theta_D) \neq \mathsf{0} \end{split}$$

Conditionally on unit 1=D,

- $\bar{y}_1 = \bar{y}_D$ is unbiased for θ_D ,
- $\hat{\theta}_1 = \hat{\theta}_D$ is biased for θ_D .

- $\bar{y}_1 = \bar{y}_D$ and \bar{y}_D is unbiased for θ_D
- $\hat{\theta}_1 = \hat{\theta}_D$ and $\hat{\theta}_D$ is biased for θ_D .

 Bayesian perspective

Understanding conditional expectation

$\mathsf{E}[\bar{y}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D} \] = \mathsf{E}[\bar{y}_D - \theta_D] = \theta_D - \theta_D = \mathsf{0}$

$$\begin{split} \mathsf{E}[\hat{\theta}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D}] &= \mathsf{E}[(1 - w)\bar{y}_D + w\mu - \theta_D] \\ &= (1 - w)\theta_D + w\mu - \theta_D = w(\mu - \theta_D) \neq \mathsf{0} \end{split}$$

Conditionally on unit 1=D,

- $\bar{y}_1 = \bar{y}_D$ is unbiased for θ_D ,
- $\hat{\theta}_1 = \hat{\theta}_D$ is biased for θ_D .

- $\bar{y}_1 = \bar{y}_D$ and \bar{y}_D is unbiased for θ_D
- $\hat{\theta}_1 = \hat{\theta}_D$ and $\hat{\theta}_D$ is biased for θ_D .

 Bayesian perspective

Understanding conditional expectation

$\mathsf{E}[\bar{y}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D} \] = \mathsf{E}[\bar{y}_D - \theta_D] = \theta_D - \theta_D = \mathsf{0}$

$$\begin{split} \mathsf{E}[\hat{\theta}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D}] &= \mathsf{E}[(1 - w)\bar{y}_D + w\mu - \theta_D] \\ &= (1 - w)\theta_D + w\mu - \theta_D = w(\mu - \theta_D) \neq \mathsf{0} \end{split}$$

Conditionally on unit 1=D,

- $\bar{y}_1 = \bar{y}_D$ is unbiased for θ_D ,
- $\hat{\theta}_1 = \hat{\theta}_D$ is biased for θ_D .

- $\bar{y}_1 = \bar{y}_D$ and \bar{y}_D is unbiased for θ_D
- $\hat{\theta}_1 = \hat{\theta}_D$ and $\hat{\theta}_D$ is biased for θ_D .

Bayesian perspective

Understanding conditional expectation

$$\mathsf{E}[\bar{y}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D} \] = \mathsf{E}[\bar{y}_D - \theta_D] = \theta_D - \theta_D = \mathsf{0}$$

$$\begin{aligned} \mathsf{E}[\hat{\theta}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D}] &= \mathsf{E}[(1 - w)\bar{y}_D + w\mu - \theta_D] \\ &= (1 - w)\theta_D + w\mu - \theta_D = w(\mu - \theta_D) \neq \mathbf{0} \end{aligned}$$

Conditionally on unit 1=D,

- $\bar{y}_1 = \bar{y}_D$ is unbiased for θ_D ,
- $\hat{\theta}_1 = \hat{\theta}_D$ is biased for θ_D .

- $\bar{y}_1 = \bar{y}_D$ and \bar{y}_D is unbiased for θ_D
- $\hat{\theta}_1 = \hat{\theta}_D$ and $\hat{\theta}_D$ is biased for θ_D .

Bayesian perspective

Understanding conditional expectation

$$\mathsf{E}[\bar{y}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D} \] = \mathsf{E}[\bar{y}_D - \theta_D] = \theta_D - \theta_D = \mathsf{0}$$

$$\mathsf{E}[\hat{\theta}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D}] = \mathsf{E}[(\mathbf{1} - w)\bar{y}_D + w\mu - \theta_D] \\ = (1 - w)\theta_D + w\mu - \theta_D = w(\mu - \theta_D) \neq 0$$

Conditionally on unit 1=D,

- $\bar{y}_1 = \bar{y}_D$ is unbiased for θ_D ,
- $\hat{\theta}_1 = \hat{\theta}_D$ is biased for θ_D .

- $\bar{y}_1 = \bar{y}_D$ and \bar{y}_D is unbiased for θ_D
- $\hat{\theta}_1 = \hat{\theta}_D$ and $\hat{\theta}_D$ is biased for θ_D .

Bayesian perspective

Understanding conditional expectation

$$\mathsf{E}[\bar{y}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D} \] = \mathsf{E}[\bar{y}_D - \theta_D] = \theta_D - \theta_D = \mathsf{0}$$

$$\mathsf{E}[\hat{\theta}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D}] = \mathsf{E}[(\mathbf{1} - w)\bar{y}_D + w\mu - \theta_D] \\ = (1 - w)\theta_D + w\mu - \theta_D = w(\mu - \theta_D) \neq 0$$

Conditionally on unit 1=D,

- $\bar{y}_1 = \bar{y}_D$ is unbiased for θ_D ,
- $\hat{\theta}_1 = \hat{\theta}_D$ is biased for θ_D .

- $\bar{y}_1 = \bar{y}_D$ and \bar{y}_D is unbiased for θ_D
- $\hat{\theta}_1 = \hat{\theta}_D$ and $\hat{\theta}_D$ is biased for θ_D .

Bayesian perspective

Understanding conditional expectation

$$\mathsf{E}[\bar{y}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D} \] = \mathsf{E}[\bar{y}_D - \theta_D] = \theta_D - \theta_D = \mathsf{0}$$

$$\begin{split} \mathsf{E}[\hat{\theta}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D}] &= \mathsf{E}[(\mathbf{1} - w)\bar{y}_D + w\mu - \theta_D] \\ &= (\mathbf{1} - w)\theta_D + w\mu - \theta_D = w(\mu - \theta_D) \neq 0 \end{split}$$

Conditionally on unit 1=D,

- $\bar{y}_1 = \bar{y}_D$ is unbiased for θ_D ,
- $\hat{\theta}_1 = \hat{\theta}_D$ is biased for θ_D .

- $\bar{y}_1 = \bar{y}_D$ and \bar{y}_D is unbiased for θ_D
- $\hat{\theta}_1 = \hat{\theta}_D$ and $\hat{\theta}_D$ is biased for θ_D .

Bayesian perspective

Understanding conditional expectation

$$\mathsf{E}[\bar{y}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D} \] = \mathsf{E}[\bar{y}_D - \theta_D] = \theta_D - \theta_D = \mathsf{0}$$

$$\begin{split} \mathsf{E}[\hat{\theta}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D}] &= \mathsf{E}[(\mathbf{1} - w)\bar{y}_D + w\mu - \theta_D] \\ &= (\mathbf{1} - w)\theta_D + w\mu - \theta_D = w(\mu - \theta_D) \neq 0 \end{split}$$

Conditionally on unit 1=D,

- $\bar{y}_1 = \bar{y}_D$ is unbiased for θ_D ,
- $\hat{\theta}_1 = \hat{\theta}_D$ is biased for θ_D .

- $\bar{y}_1 = \bar{y}_D$ and \bar{y}_D is unbiased for θ_D
- $\hat{\theta}_1 = \hat{\theta}_D$ and $\hat{\theta}_D$ is biased for θ_D .

Bayesian perspective

Understanding conditional expectation

$$\mathsf{E}[\bar{y}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D} \] = \mathsf{E}[\bar{y}_D - \theta_D] = \theta_D - \theta_D = \mathsf{0}$$

$$\begin{split} \mathsf{E}[\hat{\theta}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D}] &= \mathsf{E}[(1 - w)\bar{y}_D + w\mu - \theta_D] \\ &= (1 - w)\theta_D + w\mu - \theta_D = w(\mu - \theta_D) \neq \mathsf{0} \end{split}$$

Conditionally on unit 1=D,

- $\bar{y}_1 = \bar{y}_D$ is unbiased for θ_D ,
- $\hat{\theta}_1 = \hat{\theta}_D$ is biased for θ_D .

- $\bar{y}_1 = \bar{y}_D$ and \bar{y}_D is unbiased for θ_D
- $\hat{\theta}_1 = \hat{\theta}_D$ and $\hat{\theta}_D$ is biased for θ_D .

Bayesian perspective

Understanding conditional expectation

$$\mathsf{E}[\bar{y}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D} \] = \mathsf{E}[\bar{y}_D - \theta_D] = \theta_D - \theta_D = \mathsf{0}$$

$$\begin{split} \mathsf{E}[\hat{\theta}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D}] &= \mathsf{E}[(1 - w)\bar{y}_D + w\mu - \theta_D] \\ &= (1 - w)\theta_D + w\mu - \theta_D = w(\mu - \theta_D) \neq \mathsf{0} \end{split}$$

Conditionally on unit 1=D,

- $\bar{y}_1 = \bar{y}_D$ is unbiased for θ_D ,
- $\hat{\theta}_1 = \hat{\theta}_D$ is biased for θ_D .

- $\bar{y}_1 = \bar{y}_D$ and \bar{y}_D is unbiased for θ_D
- $\hat{\theta}_1 = \hat{\theta}_D$ and $\hat{\theta}_D$ is biased for θ_D .

Bayesian perspective

Understanding conditional expectation

$$\mathsf{E}[\bar{y}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D} \] = \mathsf{E}[\bar{y}_D - \theta_D] = \theta_D - \theta_D = \mathsf{0}$$

$$\begin{split} \mathsf{E}[\hat{\theta}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D}] &= \mathsf{E}[(1 - w)\bar{y}_D + w\mu - \theta_D] \\ &= (1 - w)\theta_D + w\mu - \theta_D = w(\mu - \theta_D) \neq \mathsf{0} \end{split}$$

Conditionally on unit 1=D,

- $\bar{y}_1 = \bar{y}_D$ is unbiased for θ_D ,
- $\hat{\theta}_1 = \hat{\theta}_D$ is biased for θ_D .

- $\bar{y}_1 = \bar{y}_D$ and \bar{y}_D is unbiased for θ_D
- $\hat{\theta}_1 = \hat{\theta}_D$ and $\hat{\theta}_D$ is biased for θ_D .

Bayesian perspective

Understanding conditional expectation

$$\mathsf{E}[\bar{y}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D} \] = \mathsf{E}[\bar{y}_D - \theta_D] = \theta_D - \theta_D = \mathsf{0}$$

$$\begin{split} \mathsf{E}[\hat{\theta}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D}] &= \mathsf{E}[(1 - w)\bar{y}_D + w\mu - \theta_D] \\ &= (1 - w)\theta_D + w\mu - \theta_D = w(\mu - \theta_D) \neq \mathsf{0} \end{split}$$

Conditionally on unit 1=D,

- $\bar{y}_1 = \bar{y}_D$ is unbiased for θ_D ,
- $\hat{\theta}_1 = \hat{\theta}_D$ is biased for θ_D .

- $\bar{y}_1 = \bar{y}_D$ and \bar{y}_D is unbiased for θ_D
- $\hat{\theta}_1 = \hat{\theta}_D$ and $\hat{\theta}_D$ is biased for θ_D .

 Bayesian perspective

Understanding conditional expectation

$$\mathsf{E}[\bar{y}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D} \] = \mathsf{E}[\bar{y}_D - \theta_D] = \theta_D - \theta_D = \mathsf{0}$$

$$\begin{split} \mathsf{E}[\hat{\theta}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D}] &= \mathsf{E}[(1 - w)\bar{y}_D + w\mu - \theta_D] \\ &= (1 - w)\theta_D + w\mu - \theta_D = w(\mu - \theta_D) \neq \mathsf{0} \end{split}$$

Conditionally on unit 1=D,

- $\bar{y}_1 = \bar{y}_D$ is unbiased for θ_D ,
- $\hat{\theta}_1 = \hat{\theta}_D$ is biased for θ_D .

- $\bar{y}_1 = \bar{y}_D$ and \bar{y}_D is unbiased for θ_D
- $\hat{\theta}_1 = \hat{\theta}_D$ and $\hat{\theta}_D$ is biased for θ_D .

 Bayesian perspective

Understanding conditional expectation

$$\mathsf{E}[\bar{y}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D} \] = \mathsf{E}[\bar{y}_D - \theta_D] = \theta_D - \theta_D = \mathsf{0}$$

$$\begin{split} \mathsf{E}[\hat{\theta}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D}] &= \mathsf{E}[(1 - w)\bar{y}_D + w\mu - \theta_D] \\ &= (1 - w)\theta_D + w\mu - \theta_D = w(\mu - \theta_D) \neq \mathsf{0} \end{split}$$

Conditionally on unit 1=D,

- $\bar{y}_1 = \bar{y}_D$ is unbiased for θ_D ,
- $\hat{\theta}_1 = \hat{\theta}_D$ is biased for θ_D .

- $\bar{y}_1 = \bar{y}_D$ and \bar{y}_D is unbiased for θ_D
- $\hat{\theta}_1 = \hat{\theta}_D$ and $\hat{\theta}_D$ is biased for θ_D .

 Bayesian perspective

Understanding conditional expectation

$$\mathsf{E}[\bar{y}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D} \] = \mathsf{E}[\bar{y}_D - \theta_D] = \theta_D - \theta_D = \mathsf{0}$$

$$\begin{split} \mathsf{E}[\hat{\theta}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D}] &= \mathsf{E}[(1 - w)\bar{y}_D + w\mu - \theta_D] \\ &= (1 - w)\theta_D + w\mu - \theta_D = w(\mu - \theta_D) \neq \mathsf{0} \end{split}$$

Conditionally on unit 1=D,

- $\bar{y}_1 = \bar{y}_D$ is unbiased for θ_D ,
- $\hat{\theta}_1 = \hat{\theta}_D$ is biased for θ_D .

- $\bar{y}_1 = \bar{y}_D$ and \bar{y}_D is unbiased for θ_D
- $\hat{\theta}_1 = \hat{\theta}_D$ and $\hat{\theta}_D$ is biased for θ_D .

 Bayesian perspective

Understanding conditional expectation

$$\mathsf{E}[\bar{y}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D} \] = \mathsf{E}[\bar{y}_D - \theta_D] = \theta_D - \theta_D = \mathsf{0}$$

$$\begin{split} \mathsf{E}[\hat{\theta}_1 - \theta_1 | \mathsf{unit} \ \mathbf{1} = \mathsf{D}] &= \mathsf{E}[(1 - w)\bar{y}_D + w\mu - \theta_D] \\ &= (1 - w)\theta_D + w\mu - \theta_D = w(\mu - \theta_D) \neq \mathsf{0} \end{split}$$

Conditionally on unit 1=D,

- $\bar{y}_1 = \bar{y}_D$ is unbiased for θ_D ,
- $\hat{\theta}_1 = \hat{\theta}_D$ is biased for θ_D .

- $\bar{y}_1 = \bar{y}_D$ and \bar{y}_D is unbiased for θ_D
- $\hat{\theta}_1 = \hat{\theta}_D$ and $\hat{\theta}_D$ is biased for θ_D .

Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, \ldots , J.

$$\begin{aligned} \mathsf{E}[\hat{\theta}_{1} - \theta_{1}] &= \mathsf{E}[\hat{\theta}_{A} - \theta_{A}] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{A}) + \dots + \mathsf{E}[\hat{\theta}_{J} - \theta_{J}] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{J}) \\ &= w(\mu - \theta_{A}) \times \frac{1}{10} + \dots + w(\mu - \theta_{J}) \times \frac{1}{10} \\ &= w\mu - w(\theta_{A} + \dots + \theta_{J}) \frac{1}{10} \\ &= w\mu - w\mu = 0. \end{aligned}$$

- $\hat{\theta}_j$ will be a biased estimator of the mean of whatever unit is picked *j*th.
- on average across studies, $\hat{ heta}_1,\ldots,\hat{ heta}_m$ will be unbiased

 Bayesian perspective

Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, \ldots , J.

$$\begin{aligned} \mathsf{E}[\hat{\theta}_1 - \theta_1] &= \mathsf{E}[\hat{\theta}_A - \theta_A] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{A}) + \dots + \mathsf{E}[\hat{\theta}_J - \theta_J] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{J}) \\ &= w(\mu - \theta_A) \times \frac{1}{10} + \dots + w(\mu - \theta_J) \times \frac{1}{10} \\ &= w\mu - w(\theta_A + \dots + \theta_J) \frac{1}{10} \\ &= w\mu - w\mu = 0. \end{aligned}$$

- *θ*_j will be a biased estimator of the mean of whatever unit is picked jth.
- on average across studies, $\hat{ heta}_1,\ldots,\hat{ heta}_m$ will be unbiased

Random groups perspective

Bayesian perspective

Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, \ldots , J.

$$\begin{aligned} \mathsf{E}[\hat{\theta}_1 - \theta_1] &= \mathsf{E}[\hat{\theta}_A - \theta_A] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{A}) + \dots + \mathsf{E}[\hat{\theta}_J - \theta_J] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{J}) \\ &= w(\mu - \theta_A) \times \frac{1}{10} + \dots + w(\mu - \theta_J) \times \frac{1}{10} \\ &= w\mu - w(\theta_A + \dots + \theta_J) \frac{1}{10} \\ &= w\mu - w\mu = 0. \end{aligned}$$

- *θ*_j will be a biased estimator of the mean of whatever unit is picked jth.
- on average across studies, $\hat{ heta}_1,\ldots,\hat{ heta}_m$ will be unbiased

 Bayesian perspective

Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, \ldots , J.

$$\begin{aligned} \mathsf{E}[\hat{\theta}_1 - \theta_1] &= \mathsf{E}[\hat{\theta}_A - \theta_A] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{A}) + \dots + \mathsf{E}[\hat{\theta}_J - \theta_J] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{J}) \\ &= w(\mu - \theta_A) \times \frac{1}{10} + \dots + w(\mu - \theta_J) \times \frac{1}{10} \\ &= w\mu - w(\theta_A + \dots + \theta_J) \frac{1}{10} \\ &= w\mu - w\mu = 0. \end{aligned}$$

- *θ*_j will be a biased estimator of the mean of whatever unit is picked jth.
- on average across studies, $\hat{ heta}_1,\ldots,\hat{ heta}_m$ will be unbiased

 Bayesian perspective

Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, \ldots , J.

$$\begin{aligned} \mathsf{E}[\hat{\theta}_1 - \theta_1] &= \mathsf{E}[\hat{\theta}_A - \theta_A] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{A}) + \dots + \mathsf{E}[\hat{\theta}_J - \theta_J] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{J}) \\ &= w(\mu - \theta_A) \times \frac{1}{10} + \dots + w(\mu - \theta_J) \times \frac{1}{10} \\ &= w\mu - w(\theta_A + \dots + \theta_J) \frac{1}{10} \\ &= w\mu - w\mu = 0. \end{aligned}$$

- *θ*_j will be a biased estimator of the mean of whatever unit is picked jth.
- on average across studies, $\hat{ heta}_1,\ldots,\hat{ heta}_m$ will be unbiased

 Bayesian perspective

Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, \ldots , J.

$$E[\hat{\theta}_1 - \theta_1] = E[\hat{\theta}_A - \theta_A] \operatorname{Pr}(\operatorname{unit} 1=A) + \dots + E[\hat{\theta}_J - \theta_J] \operatorname{Pr}(\operatorname{unit} 1=J)$$

= $w(\mu - \theta_A) \times \frac{1}{10} + \dots + w(\mu - \theta_J) \times \frac{1}{10}$
= $w\mu - w(\theta_A + \dots + \theta_J) \frac{1}{10}$
= $w\mu - w\mu = 0.$

- $\hat{\theta}_j$ will be a biased estimator of the mean of whatever unit is picked *j*th.
- on average across studies, $\hat{ heta}_1,\ldots,\hat{ heta}_m$ will be unbiased

Bayesian perspective

Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, ..., J.

$$\begin{aligned} \mathsf{E}[\hat{\theta}_1 - \theta_1] &= \mathsf{E}[\hat{\theta}_A - \theta_A] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{A}) + \dots + \mathsf{E}[\hat{\theta}_J - \theta_J] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{J}) \\ &= w(\mu - \theta_A) \times \frac{1}{10} + \dots + w(\mu - \theta_J) \times \frac{1}{10} \\ &= w\mu - w(\theta_A + \dots + \theta_J) \frac{1}{10} \\ &= w\mu - w\mu = 0. \end{aligned}$$

- $\hat{\theta}_j$ will be a biased estimator of the mean of whatever unit is picked *j*th.
- on average across studies, $\hat{ heta}_1,\ldots,\hat{ heta}_m$ will be unbiased

 Bayesian perspective

Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, \ldots , J.

$$E[\hat{\theta}_1 - \theta_1] = E[\hat{\theta}_A - \theta_A] \operatorname{Pr}(\operatorname{unit} 1=A) + \dots + E[\hat{\theta}_J - \theta_J] \operatorname{Pr}(\operatorname{unit} 1=J)$$

= $w(\mu - \theta_A) \times \frac{1}{10} + \dots + w(\mu - \theta_J) \times \frac{1}{10}$
= $w\mu - w(\theta_A + \dots + \theta_J) \frac{1}{10}$
= $w\mu - w\mu = 0.$

- *θ*_j will be a biased estimator of the mean of whatever unit is picked jth.
- on average across studies, $\hat{ heta}_1,\ldots,\hat{ heta}_m$ will be unbiased

 Bayesian perspective

Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, \ldots , J.

$$E[\hat{\theta}_1 - \theta_1] = E[\hat{\theta}_A - \theta_A] \operatorname{Pr}(\operatorname{unit} 1=A) + \dots + E[\hat{\theta}_J - \theta_J] \operatorname{Pr}(\operatorname{unit} 1=J)$$

= $w(\mu - \theta_A) \times \frac{1}{10} + \dots + w(\mu - \theta_J) \times \frac{1}{10}$
= $w\mu - w(\theta_A + \dots + \theta_J) \frac{1}{10}$
= $w\mu - w\mu = 0.$

- $\hat{\theta}_j$ will be a biased estimator of the mean of whatever unit is picked *j*th.
- on average across studies, $\hat{ heta}_1,\ldots,\hat{ heta}_m$ will be unbiased

 Bayesian perspective

Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, \ldots , J.

$$\begin{aligned} \mathsf{E}[\hat{\theta}_1 - \theta_1] &= \mathsf{E}[\hat{\theta}_A - \theta_A] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{A}) + \dots + \mathsf{E}[\hat{\theta}_J - \theta_J] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{J}) \\ &= w(\mu - \theta_A) \times \frac{1}{10} + \dots + w(\mu - \theta_J) \times \frac{1}{10} \\ &= w\mu - w(\theta_A + \dots + \theta_J) \frac{1}{10} \\ &= w\mu - w\mu = \mathsf{0}. \end{aligned}$$

- *θ*_j will be a biased estimator of the mean of whatever unit is picked jth.
- on average across studies, $\hat{ heta}_1,\ldots,\hat{ heta}_m$ will be unbiased

 Bayesian perspective

Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, \ldots , J.

$$\begin{aligned} \mathsf{E}[\hat{\theta}_1 - \theta_1] &= \mathsf{E}[\hat{\theta}_A - \theta_A] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{A}) + \dots + \mathsf{E}[\hat{\theta}_J - \theta_J] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{J}) \\ &= w(\mu - \theta_A) \times \frac{1}{10} + \dots + w(\mu - \theta_J) \times \frac{1}{10} \\ &= w\mu - w(\theta_A + \dots + \theta_J) \frac{1}{10} \\ &= w\mu - w\mu = \mathsf{0}. \end{aligned}$$

- $\hat{\theta}_j$ will be a biased estimator of the mean of whatever unit is picked *j*th.
- on average across studies, $\hat{\theta}_1, \ldots, \hat{\theta}_m$ will be unbiased.

 Bayesian perspective

Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, \ldots , J.

$$\begin{aligned} \mathsf{E}[\hat{\theta}_1 - \theta_1] &= \mathsf{E}[\hat{\theta}_A - \theta_A] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{A}) + \dots + \mathsf{E}[\hat{\theta}_J - \theta_J] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{J}) \\ &= w(\mu - \theta_A) \times \frac{1}{10} + \dots + w(\mu - \theta_J) \times \frac{1}{10} \\ &= w\mu - w(\theta_A + \dots + \theta_J) \frac{1}{10} \\ &= w\mu - w\mu = \mathsf{0}. \end{aligned}$$

- $\hat{\theta}_j$ will be a biased estimator of the mean of whatever unit is picked *j*th.
- on average across studies, $\hat{\theta}_1, \ldots, \hat{\theta}_m$ will be unbiased.

Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, \ldots , J.

$$\begin{aligned} \mathsf{E}[\hat{\theta}_1 - \theta_1] &= \mathsf{E}[\hat{\theta}_A - \theta_A] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{A}) + \dots + \mathsf{E}[\hat{\theta}_J - \theta_J] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{J}) \\ &= w(\mu - \theta_A) \times \frac{1}{10} + \dots + w(\mu - \theta_J) \times \frac{1}{10} \\ &= w\mu - w(\theta_A + \dots + \theta_J) \frac{1}{10} \\ &= w\mu - w\mu = \mathsf{0}. \end{aligned}$$

- $\hat{\theta}_j$ will be a biased estimator of the mean of whatever unit is picked *j*th.
- on average across studies, $\hat{\theta}_1, \ldots, \hat{\theta}_m$ will be unbiased.

Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, \ldots , J.

$$\begin{aligned} \mathsf{E}[\hat{\theta}_1 - \theta_1] &= \mathsf{E}[\hat{\theta}_A - \theta_A] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{A}) + \dots + \mathsf{E}[\hat{\theta}_J - \theta_J] \operatorname{Pr}(\operatorname{unit} 1 = \mathsf{J}) \\ &= w(\mu - \theta_A) \times \frac{1}{10} + \dots + w(\mu - \theta_J) \times \frac{1}{10} \\ &= w\mu - w(\theta_A + \dots + \theta_J) \frac{1}{10} \\ &= w\mu - w\mu = \mathsf{0}. \end{aligned}$$

- $\hat{\theta}_j$ will be a biased estimator of the mean of whatever unit is picked *j*th.
- on average across studies, $\hat{\theta}_1, \ldots, \hat{\theta}_m$ will be unbiased.

 Bayesian perspective 0000

Practical considerations

As before,

- μ, τ^2, σ^2 are unknown;
- sample sizes may vary across groups.

In practice, people use the following Empirical BLUP:

$$\hat{ heta}_j = rac{n_j/\hat{\sigma}^2}{n_j/\hat{\sigma}^2+1/\hat{ au}^2}ar{y}_j + rac{1/\hat{ au}^2}{n_j/\hat{\sigma}^2+1/\hat{ au}^2}ar{ heta},$$

where $\hat{\mu}, \hat{\tau}^2, \hat{\sigma}^2$ are estimated from the data (ANOVA or lme4)

This is the same estimator as the adaptive shrinkage estimator.

- variabiliy in "random" θ_j 's \approx heterogeneity in "fixed" θ_j 's.
- integration over θ_j 's to get MSE \approx summing over θ_j 's to get composite MSE.

 Bayesian perspective 0000

Practical considerations

As before,

- μ, τ^2, σ^2 are unknown;
- sample sizes may vary across groups.

In practice, people use the following Empirical BLUP:

$$\hat{ heta}_j = rac{n_j/\hat{\sigma}^2}{n_j/\hat{\sigma}^2+1/\hat{ au}^2}ar{y}_j + rac{1/\hat{ au}^2}{n_j/\hat{\sigma}^2+1/\hat{ au}^2}ar{ heta},$$

where $\hat{\mu}, \hat{\tau}^2, \hat{\sigma}^2$ are estimated from the data (ANOVA or lme4)

This is the same estimator as the adaptive shrinkage estimator.

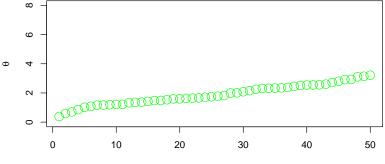
- variabiliy in "random" θ_j 's \approx heterogeneity in "fixed" θ_j 's.
- integration over θ_j 's to get MSE \approx summing over θ_j 's to get composite MSE.

Fixed groups perspective

Random groups perspective

Bayesian perspective 0000

Simulation Example

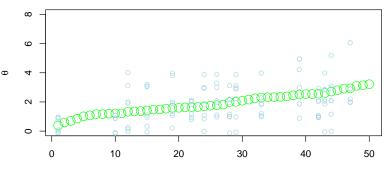


Fixed groups perspective

Random groups perspective

Bayesian perspective

Simulation Example

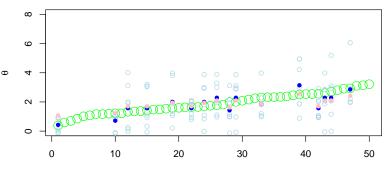


Fixed groups perspective

Random groups perspective

Bayesian perspective 0000

Simulation Example

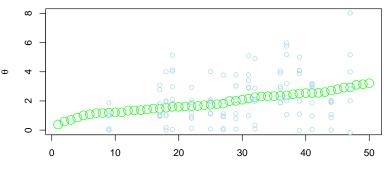


Fixed groups perspective

Random groups perspective

Bayesian perspective 0000

Simulation Example

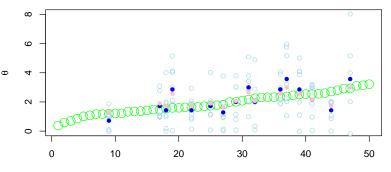


Fixed groups perspective

Random groups perspective

Bayesian perspective

Simulation Example



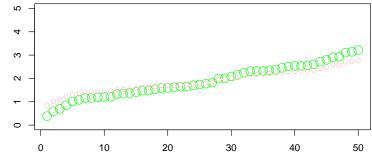
Φ

Fixed groups perspective

Random groups perspective

Bayesian perspective 0000

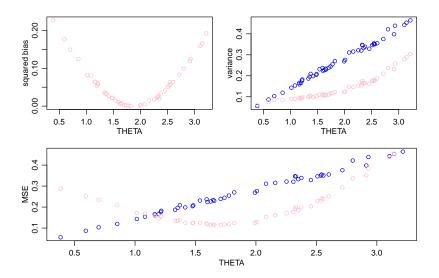
Expectation of estimators



Bias, variance and MSE 00000000 Fixed groups perspective

Bayesian perspective 0000

Bias squared, Variance and MSE



- Prior density: $p(\gamma)$
- Sampling density: $p(y_1, \ldots, y_n | \gamma)$

The prior density describes where you think γ is, before having seen the data.

The sampling density describes where you think the data will be, for each possible value of $\gamma.$

Bayes rule:

$$p(\gamma|y_1,\ldots,y_n) = \frac{p(\gamma)p(y_1,\ldots,y_n|\gamma)}{\int p(\gamma')p(y_1,\ldots,y_n|\gamma') d\gamma'}$$
$$\propto p(\gamma)p(y_1,\ldots,y_n|\gamma)$$

- Prior density: $p(\gamma)$
- Sampling density: $p(y_1, \ldots, y_n | \gamma)$

The prior density describes where you think γ is, before having seen the data.

The sampling density describes where you think the data will be, for each possible value of $\gamma.$

Bayes rule:

$$p(\gamma|y_1,\ldots,y_n) = \frac{p(\gamma)p(y_1,\ldots,y_n|\gamma)}{\int p(\gamma')p(y_1,\ldots,y_n|\gamma') d\gamma'}$$
$$\propto p(\gamma)p(y_1,\ldots,y_n|\gamma)$$

- Prior density: $p(\gamma)$
- Sampling density: $p(y_1, \ldots, y_n | \gamma)$

The prior density describes where you think γ is, before having seen the data.

The sampling density describes where you think the data will be, for each possible value of $\gamma.$

Bayes rule:

$$p(\gamma|y_1,\ldots,y_n) = \frac{p(\gamma)p(y_1,\ldots,y_n|\gamma)}{\int p(\gamma')p(y_1,\ldots,y_n|\gamma') d\gamma'}$$
$$\propto p(\gamma)p(y_1,\ldots,y_n|\gamma)$$

- Prior density: $p(\gamma)$
- Sampling density: $p(y_1, \ldots, y_n | \gamma)$

The prior density describes where you think γ is, before having seen the data.

The sampling density describes where you think the data will be, for each possible value of $\gamma.$

Bayes rule:

$$p(\gamma|y_1,\ldots,y_n) = \frac{p(\gamma)p(y_1,\ldots,y_n|\gamma)}{\int p(\gamma')p(y_1,\ldots,y_n|\gamma') d\gamma'}$$
$$\propto p(\gamma)p(y_1,\ldots,y_n|\gamma)$$

Bayesian inference for a normal subpopulation

- Prior density: $heta \sim N(\mu, \tau^2)$
- Sampling density: $y_1, \ldots, y_n | \theta \sim N(\theta, \sigma^2)$.

Bayes rule: $\theta|y_1, \ldots, y_n$ is normal, with

$$\mathsf{E}[\theta|y_1,\ldots,y_n] = \frac{\tau^2}{\sigma^2/n + \tau^2} \overline{y} + \frac{\sigma^2/n}{\sigma^2/n + \tau^2} \mu$$
$$\mathsf{Var}[\theta|y_1,\ldots,y_n] = 1/(n/\sigma^2 + 1/\tau^2)$$

Bayes estimator: Let $\hat{ heta} = \mathsf{E}[heta|y_1,\ldots,y_n]$. Then

 $\mathsf{E}[(\hat{\theta} - \theta)^2 | y_1, \dots, y_n] \le \mathsf{E}[(\tilde{\theta} - \theta)^2 | y_1, \dots, y_n]$

for any estimator $\tilde{\theta}$.

Bayesian inference for a normal subpopulation

- Prior density: $\theta \sim N(\mu, \tau^2)$
- Sampling density: $y_1, \ldots, y_n | \theta \sim N(\theta, \sigma^2)$.

Bayes rule: $\theta|y_1, \ldots, y_n$ is normal, with

$$\mathsf{E}[\theta|y_1,\ldots,y_n] = \frac{\tau^2}{\sigma^2/n + \tau^2} \bar{y} + \frac{\sigma^2/n}{\sigma^2/n + \tau^2} \mu$$
$$\mathsf{Var}[\theta|y_1,\ldots,y_n] = 1/(n/\sigma^2 + 1/\tau^2)$$

Bayes estimator: Let $\hat{ heta} = \mathsf{E}[heta|y_1,\ldots,y_n]$. Then

 $\mathsf{E}[(\hat{\theta} - \theta)^2 | y_1, \dots, y_n] \le \mathsf{E}[(\tilde{\theta} - \theta)^2 | y_1, \dots, y_n]$

for any estimator $\tilde{\theta}$.

Bayesian inference for a normal subpopulation

- Prior density: $\theta \sim N(\mu, \tau^2)$
- Sampling density: $y_1, \ldots, y_n | \theta \sim N(\theta, \sigma^2)$.

Bayes rule: $\theta|y_1, \ldots, y_n$ is normal, with

$$\mathsf{E}[\theta|y_1,\ldots,y_n] = \frac{\tau^2}{\sigma^2/n + \tau^2} \bar{y} + \frac{\sigma^2/n}{\sigma^2/n + \tau^2} \mu$$
$$\mathsf{Var}[\theta|y_1,\ldots,y_n] = 1/(n/\sigma^2 + 1/\tau^2)$$

Bayes estimator: Let $\hat{\theta} = \mathsf{E}[\theta|y_1, \dots, y_n]$. Then $\mathsf{E}[(\hat{\theta} - \theta)^2|y_1, \dots, y_n] \le \mathsf{E}[(\tilde{\theta} - \theta)^2|y_1, \dots, y_n]$ for any estimator $\tilde{\theta}$.

Bayesian perspective

Bayes interpretation

A Bayesian interpretation of $\hat{\theta}$:

- θ_j is some fixed quantity for group j;
- $\theta_j \sim N(\mu, \tau^2)$ describes prior info about θ_j ;
- $\theta_j \sim N(\hat{\theta}_j, 1/(n_j/\sigma^2 + 1/\tau^2))$ describes posterior info about θ_j ;
- $\hat{\theta}_j$ is "where you think θ_j is".

Practical considerations:

- $\mu, \tau^2, \sigma^2;$
- estimate these parameters with a "fully Bayesian procedures", or
- use plug-in estimates (Empirical Bayes), obtained from data (ANOVA, lme4).

Bayesian perspective

Bayes interpretation

A Bayesian interpretation of $\hat{\theta}:$

- *θ_j* is some fixed quantity for group *j*;
- $\theta_j \sim N(\mu, \tau^2)$ describes prior info about θ_j ;
- $\theta_j \sim N(\hat{\theta}_j, 1/(n_j/\sigma^2 + 1/\tau^2))$ describes posterior info about θ_j ;
- $\hat{\theta}_j$ is "where you think θ_j is".

Practical considerations:

- $\mu, \tau^2, \sigma^2;$
- estimate these parameters with a "fully Bayesian procedures", or
- use plug-in estimates (Empirical Bayes), obtained from data (ANOVA, lme4).

Bayesian perspective

Bayes interpretation

A Bayesian interpretation of $\hat{\theta}$:

- *θ_j* is some fixed quantity for group *j*;
- $\theta_j \sim N(\mu, \tau^2)$ describes prior info about θ_j ;
- $heta_j \sim N(\hat{ heta}_j, 1/(n_j/\sigma^2 + 1/\tau^2))$ describes posterior info about $heta_j$;
- $\hat{\theta}_j$ is "where you think θ_j is".

Practical considerations:

- $\mu, \tau^2, \sigma^2;$
- estimate these parameters with a "fully Bayesian procedures", or
- use plug-in estimates (Empirical Bayes), obtained from data (ANOVA, lme4).

Bayesian perspective

Bayes interpretation

A Bayesian interpretation of $\hat{\theta}$:

- *θ_j* is some fixed quantity for group *j*;
- $\theta_j \sim N(\mu, \tau^2)$ describes prior info about θ_j ;
- $heta_j \sim N(\hat{ heta}_j, 1/(n_j/\sigma^2 + 1/\tau^2))$ describes posterior info about $heta_j$;
- $\hat{\theta}_j$ is "where you think θ_j is".

Practical considerations:

- $\mu, \tau^2, \sigma^2;$
- estimate these parameters with a "fully Bayesian procedures", or
- use plug-in estimates (Empirical Bayes), obtained from data (ANOVA, lme4).

Bayesian perspective

Bayes interpretation

A Bayesian interpretation of $\hat{\theta}$:

- *θ_j* is some fixed quantity for group *j*;
- $\theta_j \sim N(\mu, \tau^2)$ describes prior info about θ_j ;
- $heta_j \sim N(\hat{ heta}_j, 1/(n_j/\sigma^2 + 1/\tau^2))$ describes posterior info about $heta_j$;
- $\hat{\theta}_j$ is "where you think θ_j is".

Practical considerations:

- $\mu, \tau^2, \sigma^2;$
- estimate these parameters with a "fully Bayesian procedures", or
- use plug-in estimates (Empirical Bayes), obtained from data (ANOVA, lme4).

Bayesian perspective

$\hat{oldsymbol{ heta}} = (\hat{ heta}_1, \dots, \hat{ heta}_m)$ may be evaluated

- with composite risk or group-level risk
- pre-experimentally or post-experimentally

Pre-experimentally

- $\hat{\theta}$ has lower composite risk than $\bar{\mathbf{y}}$.
- $\hat{\theta}_j$ has lower risk that \bar{y}_j for most j, but higher risk for extreme j.

Post-experimentally

• $\hat{\theta}_j$ minimizes posterior risk - it is where you think θ_j is, if you believe the model.

Bayesian perspective

$\hat{oldsymbol{ heta}} = (\hat{ heta}_1, \dots, \hat{ heta}_m)$ may be evaluated

- with composite risk or group-level risk
- pre-experimentally or post-experimentally

Pre-experimentally

- $\hat{\theta}$ has lower composite risk than $\bar{\mathbf{y}}$.
- $\hat{\theta}_j$ has lower risk that \bar{y}_j for most j, but higher risk for extreme j.

Post-experimentally

• $\hat{\theta}_j$ minimizes posterior risk - it is where you think θ_j is, if you believe the model.