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Different amounts of information

y[g=="LACQUIPARLE"]

## [1] 6.036210 6.383751

y[g=="WASHINGTON"]

## [1] 5.933906 5.653191 4.412045 5.484196 6.112774 5.139915 5.437089 5.484196
## [9] 4.648416 4.269652 3.834061 4.497065 3.668259 3.834061 4.104487 3.473607
## [17] 4.162503 5.161298 4.162503 4.810531 3.473607 5.893950 5.280842 5.751848
## [25] 4.269652 5.499419 4.950219 5.387661 5.202746 4.537062 5.981707 4.497065
## [33] 4.366735 5.161298 4.923785 6.206521 4.682979 5.072896 4.950219 4.217459
## [41] 4.043070 4.217459 3.908367 5.499419 6.626603 5.404409

Linear shrinkage estimator: θ̂j = (1− wj)ȳj + wjc

• What should c be?

• What should wj depend on?
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Mean squared error

• Let θ be the subpopulation mean of a generic group;

• let θ̂ be an estimator of θ (a function of the data).

The mean squared error (MSE) of θ̂ is

MSE [θ̂|θ] = E[(θ̂ − θ)2|θ]

Bias-variance decomposition: Let m(θ) = E[θ̂|θ].

MSE [θ̂|θ] = E[(θ̂ −m +m − θ)2|θ]

= E[(θ̂ −m)2|θ] + 2E[(θ̂ −m)(m − θ)|θ] + E[(m − θ)2|θ]

= E[(θ̂ −m)2|θ] + (m − θ)2

= Var[θ̂|θ] + Bias2[θ̂|θ]
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Bias-variance tradeoff

In general,
MSE [θ̂|θ] = Var[θ̂|θ] + Bias(θ̂|θ)2

How well an estimator θ̂ does at estimating θ depends on variance and bias.

In general,

• estimators with low bias have have high variance (θ̂ = ȳ but small n);

• estimators with low variance have high bias (θ̂ = 5).

Minimizing MSE requires balancing bias and variance.
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Bias-variance tradeoff

θ
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Sample mean bias and variance

Let y1, . . . , yn be sample from a population with mean θ, variance σ2.

Sample mean estimator: Let θ̂ = ȳ

E[ȳ |θ] = θ

Bias[ȳ |θ] = 0

Var[ȳ |θ] = σ2/n

MSE [ȳ |θ] = Var[ȳ |θ] = σ2/n
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Linear shrinkage bias and variance

Linear shrinkage estimator: θ̂ = (1− w)ȳ + wc for some w ∈ [0, 1].

• w is the amount of shrinkage;

• c is the shrinkage point.

E[θ̂|θ] = (1− w)θ + wc = θ + w(c − θ)

Bias[θ̂|θ]2 = w 2(c − θ)2 ≥ 0

Var[θ̂|θ] = (1− w)2σ2/n ≤ σ2/n

MSE [θ̂|θ] = (1− w)2σ2/n + w 2(c − θ)2
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Mean squared error function

σ2/n = 1 c = 0
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Composite MSE

Consider a LSE for θ = (θ1, . . . , θm) where θ̂j = (1− w)ȳj + wc

MSE [θ̂|θ] = E[||θ̂ − θ||2|θ]

=
∑
j

E[(θ̂j − θj)
2|θ]

=
σ2

n
m(1− w)2 + w 2

∑
j

(c − θj)
2

What should the values of w and c be?
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MSE [θ̂|θ] = E[||θ̂ − θ||2|θ]

=
∑
j

E[(θ̂j − θj)
2|θ]

=
σ2

n
m(1− w)2 + w 2

∑
j

(c − θj)
2

What should the values of w and c be?



Bias, variance and MSE Fixed groups perspective Random groups perspective Bayesian perspective

Oracle estimator

Using calculus you can show that MSE is optimized by

• c = µ =
∑

j θj/m;

• w = 1/τ2

n/σ2+1/τ2 , where

• τ 2 =
∑

j(θj − µ)2/m.

This gives the oracle estimator

θ̂j =
n/σ2

n/σ2 + 1/τ 2
ȳj +

1/τ 2

n/σ2 + 1/τ 2
µ.

This can also be written

θ̂j =
τ 2

σ2/n + τ 2
ȳj +

σ2/n

σ2/n + τ 2
µ.
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ȳj +

1/τ 2

n/σ2 + 1/τ 2
µ.

This can also be written

θ̂j =
τ 2

σ2/n + τ 2
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Composite risk comparison

• ȳ = (ȳ1, . . . , ȳm), the vector of sample means;

• θ̂ = (θ̂1, . . . , θ̂m), the vector of oracle estimates.

MSE [ȳ|θ] = m
σ2

n

MSE [θ̂|θ] = m
σ2

n
×

(
τ 2

σ2/n + τ 2

)
< MSE [ȳ|θ].

The oracle estimator is better than ȳ in terms of composite risk .
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Group-level risk of oracle estimator

MSE [θ̂j |θ] = (1− w)2σ2/n + w 2(θj − µ)2.
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Summary

Composite risk

• ȳ is an unbiased estimator of θ;

• θ̂ is a biased estimator of θ, but has lower variance than ȳ.

• MSE [θ̂|θ] ≤ MSE [ȳ|θ].

Group-level risk

• ȳj is an unbiased estimator of θj for each j = 1, . . . ,m.

• θ̂j is a biased estimator of θj , but has lower variance than ȳj .

• MSE [θ̂j |θ] ⋛ MSE [ȳj |θ] and you don’t know which!
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Practical considerations

Typically,

• µ, τ 2, σ2 are unknown;

• sample sizes may vary across groups.

In practice, people use the following adaptive shrinkage estimator:

θ̂j =
nj/σ̂

2

nj/σ̂2 + 1/τ̂ 2
ȳj +

1/τ̂ 2

nj/σ̂2 + 1/τ̂ 2
µ̂.

• µ̂, τ̂ 2, σ̂2 are obtained from the data (e.g. ANOVA or lme4).

• If nj = n, can obtain µ̂, τ̂ 2, σ̂2 so that θ̂ is guaranteed better than ȳ
(Stein).

• Otherwise, for large m, θ̂ will be approximately optimal linear estimator
(under composite risk).
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(Stein).

• Otherwise, for large m, θ̂ will be approximately optimal linear estimator
(under composite risk).



Bias, variance and MSE Fixed groups perspective Random groups perspective Bayesian perspective

Practical considerations

Typically,

• µ, τ 2, σ2 are unknown;

• sample sizes may vary across groups.

In practice, people use the following adaptive shrinkage estimator:

θ̂j =
nj/σ̂

2

nj/σ̂2 + 1/τ̂ 2
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Radon example

n.g<-c(table(g) )

plot(table(n.g))
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Radon example

# county specific radon means
ybar.g<-c(tapply(y,g,"mean"))

ybar.g
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MLEs

library(lme4)
fit.lme<-lmer(y~1+(1|g),REML=FALSE)
summary(fit.lme)

## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: y ~ 1 + (1 | g)
##
## AIC BIC logLik deviance df.resid
## 2164.1 2178.5 -1079.0 2158.1 916
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.6165 -0.6141 0.0292 0.6526 3.4932
##
## Random effects:
## Groups Name Variance Std.Dev.
## g (Intercept) 0.08804 0.2967
## Residual 0.57154 0.7560
## Number of obs: 919, groups: g, 85
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 4.94656 0.04664 106.1
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Parameter estimates

VarCorr(fit.lme)

## Groups Name Std.Dev.
## g (Intercept) 0.29672
## Residual 0.75600

t2.mle<-as.numeric(VarCorr(fit.lme)$g)

t2.mle

## [1] 0.08804027

sigma(fit.lme)

## [1] 0.7559996

s2.mle<-sigma(fit.lme)^2

s2.mle

## [1] 0.5715354

fixef(fit.lme)

## (Intercept)
## 4.946557

mu.mle<-fixef(fit.lme)
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Adaptive shrinkage estimates

Replace µ, σ2, τ 2 with estimates:

θ̂j = wj ȳj + (1− wj)µ̂ , where wj =
nj/σ̂

2

nj/σ̂2 + 1/τ̂ 2
.

w.shrink<- (n.g/s2.mle) /(n.g/s2.mle + 1/t2.mle)

mu.shrink<-w.shrink*ybar.g + (1-w.shrink)*mu.mle

mu.mle

## (Intercept)
## 4.946557

cbind(ybar.g, n.g, mu.shrink)[1:8,]

## ybar.g n.g mu.shrink
## AITKIN 4.293832 4 4.697704
## ANOKA 4.479973 52 4.531757
## BECKER 4.675008 3 4.860730
## BELTRAMI 4.793035 7 4.866904
## BENTON 4.869503 4 4.917180
## BIGSTONE 5.128199 3 5.003968
## BLUEEARTH 5.522876 14 5.340299
## BROWN 5.244160 4 5.060018
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Shrinkage

topten<-order(ybar.g,decreasing=TRUE)[1:10]
cbind(ybar.g, n.g, mu.shrink)[topten,]

## ybar.g n.g mu.shrink
## LACQUIPARLE 6.209980 2 5.244122
## MURRAY 6.104550 1 5.101126
## WILKIN 5.841654 1 5.066035
## WATONWAN 5.841041 3 5.229271
## NICOLLET 5.777273 4 5.263269
## LINCOLN 5.748294 4 5.252221
## KANDIYOHI 5.674289 4 5.224006
## JACKSON 5.633758 5 5.245555
## FREEBORN 5.555495 9 5.300322
## NOBLES 5.540083 3 5.134149
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Shrinkage
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Shrinkage estimates from lme4

mu.shrink[1:10]

## AITKIN ANOKA BECKER BELTRAMI BENTON BIGSTONE BLUEEARTH BROWN
## 4.697704 4.531757 4.860730 4.866904 4.917180 5.003968 5.340299 5.060018
## CARLTON CARVER
## 4.712463 4.958725

a.shrink<-ranef(fit.lme)[[1]][,1]

mu.mle+a.shrink[1:10]

## [1] 4.697704 4.531757 4.860730 4.866904 4.917180 5.003968 5.340299 5.060018
## [9] 4.712463 4.958725

In lme4, ranef(fit.lme)[[k]][,l] refers to the

• lth random effect for the

• kth grouping variable.
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Hierarchical normal model

yi,j = µ+ aj + ϵi,j

{ϵ1,1, . . . , ϵn,1}, . . . , {ϵ1,m, . . . , ϵn,m} ∼ i.i.d. normal(0, σ2)

a1, . . . , am ∼ i.i.d. normal(0, τ 2)

Equivalently,

yi,j = θj + ϵi,j

{ϵ1,1, . . . , ϵn,1}, . . . , {ϵ1,m, . . . , ϵn,m} ∼ i.i.d. normal(0, σ2)

θ1, . . . , θm ∼ i.i.d. normal(µ, τ 2)

In this model, we think of

• the groups as being randomly selected from a larger set of possible groups,

• so the means are randomly selected from a set of possible means.

• This interpretation is not appropriate for the radon data!



Bias, variance and MSE Fixed groups perspective Random groups perspective Bayesian perspective

Hierarchical normal model

yi,j = µ+ aj + ϵi,j

{ϵ1,1, . . . , ϵn,1}, . . . , {ϵ1,m, . . . , ϵn,m} ∼ i.i.d. normal(0, σ2)

a1, . . . , am ∼ i.i.d. normal(0, τ 2)

Equivalently,

yi,j = θj + ϵi,j

{ϵ1,1, . . . , ϵn,1}, . . . , {ϵ1,m, . . . , ϵn,m} ∼ i.i.d. normal(0, σ2)

θ1, . . . , θm ∼ i.i.d. normal(µ, τ 2)

In this model, we think of

• the groups as being randomly selected from a larger set of possible groups,

• so the means are randomly selected from a set of possible means.

• This interpretation is not appropriate for the radon data!



Bias, variance and MSE Fixed groups perspective Random groups perspective Bayesian perspective

Hierarchical normal model

yi,j = µ+ aj + ϵi,j

{ϵ1,1, . . . , ϵn,1}, . . . , {ϵ1,m, . . . , ϵn,m} ∼ i.i.d. normal(0, σ2)

a1, . . . , am ∼ i.i.d. normal(0, τ 2)

Equivalently,

yi,j = θj + ϵi,j

{ϵ1,1, . . . , ϵn,1}, . . . , {ϵ1,m, . . . , ϵn,m} ∼ i.i.d. normal(0, σ2)

θ1, . . . , θm ∼ i.i.d. normal(µ, τ 2)

In this model, we think of

• the groups as being randomly selected from a larger set of possible groups,

• so the means are randomly selected from a set of possible means.

• This interpretation is not appropriate for the radon data!



Bias, variance and MSE Fixed groups perspective Random groups perspective Bayesian perspective

Unbiased predictors

Suppose you will sample a random group with subgroup mean θ, so

θ ∼ N(µ, τ 2)

ȳ |θ ∼ N(θ, σ2/n).

How should you plan on estimating θ? Consider estimators θ̃ that are unbiased
“on average:”

E[θ̃ − θ] =

∫
θ

(∫
y

(θ̂ − θ)p(y |θ) dθ
)

p(θ|µ, τ 2) dθ

• Such estimators are sometimes called “unbiased predictors”;

• They might not be unbiased for most values of θ!
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Unbiased predictors

ȳ =
∑

yi/n

θ̂ =
τ 2

σ2/n + τ 2
ȳ +

σ2/n

σ2/n + τ 2
µ.

Exercises:

1. Show that ȳ is an unbiased predictor;

2. Show that θ̂ is an unbiased predictor.

3. Identify some other unbiased predictors.
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Best unbiased prediction

Result 1: (Best unbiased predictor). Let θ̃ be any unbiased predictor, meaning
E[θ̃ − θ] = 0 where the expectation is averaging over both y and θ. Then

E[(θ̂ − θ)2] ≤ E[(θ̃ − θ)2]

where the expectation is over both y and θ.
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Best linear unbiased predictor

A similar result holds even if the data are not normal. Suppose

• E[ȳ |θ] = θ, Var[ȳ |θ] = σ2/n.

• E[θ] = µ, Var[θ] = τ 2.

Result 2: (Best linear unbiased predictor). Let θ̃ be any linear unbiased
predictor, meaning

• θ̃ = aȳ + b for some fixed a and b;

• E[θ̃ − θ] = 0 where the expectation is averaging over both y and θ.

Then
E[(θ̂ − θ)2] ≤ E[(θ̃ − θ)2]

where the expectation is over both y and θ.
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BLUPs

The θ̂j ’s are often called the best unbiased linear predictors (BLUPs) .

This is confusing, as we have discussed how these estimators are biased:

E[θ̂j |θj ] = E[wȳj + (1− w)µ|θj ]
= wθj + (1− w)µ ̸= θj

θ̂j is conditionally biased.

The “U” in BLUP refers to bias only in an unconditional sense:

E[θ̂j ] = E[E[θ̂j |θj ]]
= E[wθj + (1− w)µ]

= wµ+ (1− w)µ = µ.

Since E[θ̂j ] = E[θj ] = µ unconditionally, people might say θ̂j is “unbiased.”
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Understanding conditional and unconditional expectation

school A B C D E F G H I J
mean θA θB θC θD θE θF θG θH θI θJ

Let µ = (θA + · · · θJ)/10.

Study design:

• sample m schools at random from the population of schools.

• sample n students at random from each of the m schools.

What is the expectation of θ1, ȳ1, θ̂1?

Expectation of θ1 : Since each school A through J has equal probability of
being selected as unit 1:

E[θ1] = θA × Pr(unit 1 =A) + · · ·+ θJ × Pr(unit 1=J)

= θA
1
10

+ · · ·+ θJ
1
10

= µ
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Expectation of θ1 : Since each school A through J has equal probability of
being selected as unit 1:

E[θ1] = θA × Pr(unit 1 =A) + · · ·+ θJ × Pr(unit 1=J)

= θA
1
10

+ · · ·+ θJ
1
10

= µ



Bias, variance and MSE Fixed groups perspective Random groups perspective Bayesian perspective

Understanding conditional and unconditional expectation

school A B C D E F G H I J
mean θA θB θC θD θE θF θG θH θI θJ

Let µ = (θA + · · · θJ)/10.

Study design:

• sample m schools at random from the population of schools.

• sample n students at random from each of the m schools.

What is the expectation of θ1, ȳ1, θ̂1?
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Understanding conditional expectation

E[ȳ1 − θ1|unit 1 = D ] = E[ȳD − θD ] = θD − θD = 0

E[θ̂1 − θ1|unit 1 = D] = E[(1− w)ȳD + wµ− θD ]

= (1− w)θD + wµ− θD = w(µ− θD) ̸= 0

Conditionally on unit 1=D,

• ȳ1 = ȳD is unbiased for θD ,

• θ̂1 = θ̂D is biased for θD .

In English, if your first sampled school is school D, then

• ȳ1 = ȳD and ȳD is unbiased for θD

• θ̂1 = θ̂D and θ̂D is biased for θD .
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E[θ̂1 − θ1|unit 1 = D] = E[(1− w)ȳD + wµ− θD ]
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E[ȳ1 − θ1|unit 1 = D ] = E[ȳD − θD ] = θD − θD = 0
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• θ̂1 = θ̂D is biased for θD .

In English, if your first sampled school is school D, then

• ȳ1 = ȳD and ȳD is unbiased for θD

• θ̂1 = θ̂D and θ̂D is biased for θD .
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E[ȳ1 − θ1|unit 1 = D ] = E[ȳD − θD ] = θD − θD = 0
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E[ȳ1 − θ1|unit 1 = D ] = E[ȳD − θD ] = θD − θD = 0
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Understanding unconditional expectation

Before you sample the schools, unit 1 is equally likely to be school A, B, . . . , J.

E[θ̂1 − θ1] = E[θ̂A − θA] Pr(unit 1=A) + · · ·+ E[θ̂J − θJ ] Pr(unit 1=J)

= w(µ− θA)× 1
10

+ · · ·+ w(µ− θJ)× 1
10

= wµ− w(θA + · · ·+ θJ)
1
10

= wµ− wµ = 0.

This unconditional expectation, and the “U” in BLUP, refers to averaging
across the possibilities for the samples:

• θ̂j will be a biased estimator of the mean of whatever unit is picked jth.

• on average across studies, θ̂1, . . . , θ̂m will be unbiased.
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Practical considerations

As before,

• µ, τ 2, σ2 are unknown;

• sample sizes may vary across groups.

In practice, people use the following Empirical BLUP:

θ̂j =
nj/σ̂

2

nj/σ̂2 + 1/τ̂ 2
ȳj +

1/τ̂ 2

nj/σ̂2 + 1/τ̂ 2
θ̄,

where µ̂, τ̂ 2, σ̂2 are estimated from the data (ANOVA or lme4)

This is the same estimator as the adaptive shrinkage estimator.

• variabiliy in “random” θj ’s ≈ heterogeneity in “fixed” θj ’s.

• integration over θj ’s to get MSE ≈ summing over θj ’s to get composite
MSE.
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Simulation Example
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Expectation of estimators
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Bias squared, Variance and MSE
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Review of Bayesian inference

• Prior density: p(γ)

• Sampling density: p(y1, . . . , yn|γ)

The prior density describes where you think γ is, before having seen the data.

The sampling density describes where you think the data will be, for each
possible value of γ.

Bayes rule:

p(γ|y1, . . . , yn) =
p(γ)p(y1, . . . , yn|γ)∫

p(γ′)p(y1, . . . , yn|γ′) dγ′

∝ p(γ)p(y1, . . . , yn|γ)

The posterior density p(γ|y1, . . . , yn) describes where you think the γ is, after
having seen the data.
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Bayesian inference for a normal subpopulation

• Prior density: θ ∼ N(µ, τ 2)

• Sampling density: y1, . . . , yn|θ ∼ N(θ, σ2).

Bayes rule: θ|y1, . . . , yn is normal, with

E[θ|y1, . . . , yn] =
τ 2

σ2/n + τ 2
ȳ +

σ2/n

σ2/n + τ 2
µ

Var[θ|y1, . . . , yn] = 1/(n/σ2 + 1/τ 2)

Bayes estimator: Let θ̂ = E[θ|y1, . . . , yn]. Then

E[(θ̂ − θ)2|y1, . . . , yn] ≤ E[(θ̃ − θ)2|y1, . . . , yn]

for any estimator θ̃.
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Bayes interpretation

A Bayesian interpretation of θ̂:

• θj is some fixed quantity for group j ;

• θj ∼ N(µ, τ 2) describes prior info about θj ;

• θj ∼ N(θ̂j , 1/(nj/σ
2 + 1/τ 2)) describes posterior info about θj ;

• θ̂j is “where you think θj is”.

Practical considerations:

• µ, τ 2, σ2;

• estimate these parameters with a “fully Bayesian procedures”, or

• use plug-in estimates (Empirical Bayes), obtained from data (ANOVA,
lme4).

Again, the estimator is the same but the justification can be different.
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Summary

θ̂ = (θ̂1, . . . , θ̂m) may be evaluated

• with composite risk or group-level risk

• pre-experimentally or post-experimentally

Pre-experimentally

• θ̂ has lower composite risk than ȳ.

• θ̂j has lower risk that ȳj for most j , but higher risk for extreme j .

Post-experimentally

• θ̂j minimizes posterior risk - it is where you think θj is, if you believe the
model.
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