Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Linear Mixed Effects Models

Peter Hoff Duke STA 610

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Model

Introduction

Fixed and random effects

Model fitting

Group-level characteristics

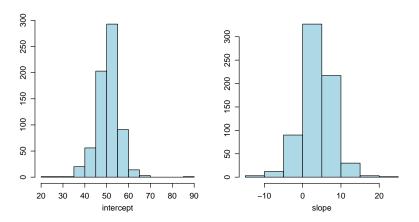
General LME Model

Model fitting 00000000 Group-level characteristics 0000000 General LME Mode 00000000

Heterogeneity of $\hat{oldsymbol{eta}}_j$'s for the NELS data

 $\hat{\beta}_j = (\mathbf{X}_j^T \mathbf{X}_j)^{-1} \mathbf{X}_j^T \mathbf{y}_j$

hist(BETA.OLS[,1]) hist(BETA.OLS[,2])

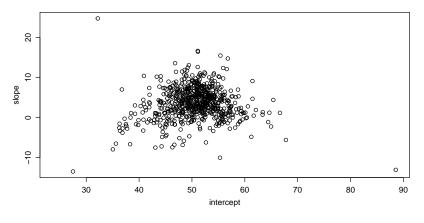


Model fitting

Group-level characteristics 0000000 General LME Mode 00000000

Heterogeneity of $\hat{\beta}_i$'s

plot(BETA.OLS)

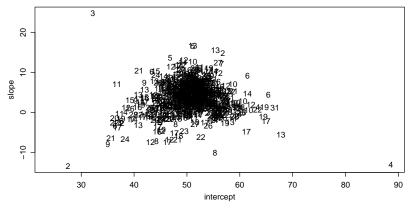


 $\mathsf{Var}[\hat{\boldsymbol{\beta}}_j] = \sigma^2 (\mathbf{X}_j^T \mathbf{X}_j)^{-1}$

Fixed and random effects 00000000 Model fitting 00000000

Group-level characteristics 0000000 General LME Model 00000000

Heterogeneity as a function of sample size



 $\mathsf{Var}[\hat{\boldsymbol{\beta}}_j] = \sigma^2 (\mathbf{X}_j^{\mathsf{T}} \mathbf{X}_j)^{-1}$

Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Modeling heterogeneity

In the hierarchical normal model:

 $\begin{aligned} \mathbf{y}_{i,j} &= \theta_j + \epsilon_{i,j}, \\ \{\epsilon_{i,j}\} &\sim \text{i.i.d normal}(\mu_j, \sigma^2), \\ \theta_1, \dots, \theta_m &\sim \text{i.i.d. normal}(\mu, \tau^2). \end{aligned}$

What should we do for a hierarchical regression model?

 $\begin{aligned} \mathbf{y}_{i,j} &= \boldsymbol{\beta}_j^T \mathbf{x}_{i,j} + \epsilon_{i,j}, \\ \{\epsilon_{i,j}\} &\sim \text{i.i.d. normal}(\mathbf{0}, \sigma^2), \\ \boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_m &\sim \text{i.i.d. } \boldsymbol{P}. \end{aligned}$

Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics

General LME Model

Modeling heterogeneity

In the hierarchical normal model:

 $y_{i,j} = \theta_j + \epsilon_{i,j},$ $\{\epsilon_{i,j}\} \sim \text{i.i.d normal}(\mu_j, \sigma^2),$ $\theta_1, \dots, \theta_m \sim \text{i.i.d. normal}(\mu, \tau^2).$

What should we do for a hierarchical regression model?

 $y_{i,j} = \beta_j^T \mathbf{x}_{i,j} + \epsilon_{i,j},$ $\{\epsilon_{i,j}\} \sim \text{i.i.d. normal}(0, \sigma^2),$ $\beta_1, \dots, \beta_m \sim \text{i.i.d. } P.$

Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Modeling heterogeneity

In the hierarchical normal model:

 $y_{i,j} = \theta_j + \epsilon_{i,j},$ $\{\epsilon_{i,j}\} \sim \text{i.i.d normal}(\mu_j, \sigma^2),$ $\theta_1, \dots, \theta_m \sim \text{i.i.d. normal}(\mu, \tau^2).$

What should we do for a hierarchical regression model?

 $y_{i,j} = \beta_j^T \mathbf{x}_{i,j} + \epsilon_{i,j},$ $\{\epsilon_{i,j}\} \sim \text{i.i.d. normal}(0, \sigma^2),$ $\beta_1, \dots, \beta_m \sim \text{i.i.d. } P.$

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Model

Modeling heterogeneity

In the hierarchical normal model:

 $\begin{aligned} y_{i,j} &= \theta_j + \epsilon_{i,j}, \\ \{\epsilon_{i,j}\} &\sim \text{i.i.d normal}(\mu_j, \sigma^2), \\ \theta_1, \dots, \theta_m &\sim \text{i.i.d. normal}(\mu, \tau^2). \end{aligned}$

What should we do for a hierarchical regression model? $y_{ij} = \beta_j^T \mathbf{x}_{ij} + \epsilon_{ij},$ $\{\epsilon_{ij}\} \sim \text{i.i.d. normal}(0, \sigma^2),$ $\beta_1, \dots, \beta_m \sim \text{i.i.d. } P.$

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Model

Modeling heterogeneity

In the hierarchical normal model:

 $y_{i,j} = \theta_j + \epsilon_{i,j},$ $\{\epsilon_{i,j}\} \sim \text{i.i.d normal}(\mu_j, \sigma^2),$ $\theta_1, \dots, \theta_m \sim \text{i.i.d. normal}(\mu, \tau^2).$

What should we do for a hierarchical regression model?

 $\mathbf{y}_{i,j} = \boldsymbol{\beta}_j^T \mathbf{x}_{i,j} + \epsilon_{i,j},$ $\{\epsilon_{i,j}\} \sim \text{i.i.d. normal}(0, \sigma^2),$ $\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_m \sim \text{i.i.d. } P.$

Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Modeling heterogeneity

In the hierarchical normal model:

 $y_{i,j} = \theta_j + \epsilon_{i,j},$ $\{\epsilon_{i,j}\} \sim \text{i.i.d normal}(\mu_j, \sigma^2),$ $\theta_1, \dots, \theta_m \sim \text{i.i.d. normal}(\mu, \tau^2).$

What should we do for a hierarchical regression model?

 $y_{i,j} = \beta_j^T \mathbf{x}_{i,j} + \epsilon_{i,j},$ $\{\epsilon_{i,j}\} \sim \text{i.i.d. normal}(0, \sigma^2),$ $\beta_1, \dots, \beta_m \sim \text{i.i.d. } P.$ What should P be?

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Model

Modeling heterogeneity

In the hierarchical normal model:

$$y_{i,j} = \theta_j + \epsilon_{i,j},$$

$$\{\epsilon_{i,j}\} \sim \text{i.i.d normal}(\mu_j, \sigma^2),$$

$$\theta_1, \dots, \theta_m \sim \text{i.i.d. normal}(\mu, \tau^2).$$

What should we do for a hierarchical regression model?

$$y_{i,j} = \boldsymbol{\beta}_j^T \mathbf{x}_{i,j} + \epsilon_{i,j},$$

$$\{\epsilon_{i,j}\} \sim \text{i.i.d. normal}(0, \sigma^2),$$

$$\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_m \sim \text{i.i.d. } P.$$

Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Modeling heterogeneity

In the hierarchical normal model:

$$y_{i,j} = \theta_j + \epsilon_{i,j},$$

$$\{\epsilon_{i,j}\} \sim \text{i.i.d normal}(\mu_j, \sigma^2),$$

$$\theta_1, \dots, \theta_m \sim \text{i.i.d. normal}(\mu, \tau^2).$$

What should we do for a hierarchical regression model?

$$y_{i,j} = \boldsymbol{\beta}_j^T \mathbf{x}_{i,j} + \epsilon_{i,j},$$

$$\{\epsilon_{i,j}\} \sim \text{i.i.d. normal}(0, \sigma^2),$$

$$\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_m \sim \text{i.i.d. } P.$$

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Model

Modeling heterogeneity

In the hierarchical normal model:

$$y_{i,j} = \theta_j + \epsilon_{i,j},$$

$$\{\epsilon_{i,j}\} \sim \text{i.i.d normal}(\mu_j, \sigma^2),$$

$$\theta_1, \dots, \theta_m \sim \text{i.i.d. normal}(\mu, \tau^2).$$

What should we do for a hierarchical regression model?

$$y_{i,j} = \boldsymbol{\beta}_j^T \mathbf{x}_{i,j} + \epsilon_{i,j},$$

$$\{\epsilon_{i,j}\} \sim \text{i.i.d. normal}(0, \sigma^2),$$

$$\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_m \sim \text{i.i.d. } P.$$

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

HLM

MVN model for across-group heterogeneity:

 $\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_m \sim \mathsf{i.i.d.}$ multivariate normal $(\boldsymbol{\beta}, \Psi)$

The parameters in this model include

- $oldsymbol{eta}$, an across-group mean regression vector
- Ψ , a covariance matrix describing the variability of the β_i 's around β .

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

HLM

MVN model for across-group heterogeneity:

 $\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_m \sim \mathsf{i.i.d.}$ multivariate normal $(\boldsymbol{\beta}, \Psi)$

The parameters in this model include

- eta, an across-group mean regression vector
- Ψ , a covariance matrix describing the variability of the β_j 's around β .

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Model

Ad-hoc estimates

rough estimate of beta
apply(BETA.OLS,2,mean,na.rm=TRUE)

(Intercept) xj ## 50.618228 3.672483

This estimator of β is unbiased, but not efficient. Generally, we want to assign a lower weight to schools with less data.

rough estimate of Sigma_beta
cov(BETA.OLS,use="complete.obs")

This is a very rough estimate of $\Psi = Var[\beta_i]$:

- It ignores sample size differences;
- It ignores the variability of $\hat{\beta}_i$ around β_i .

 $Var[\hat{eta}_j$'s around \hat{eta}] pprox $Var[eta_j$'s around eta] + $Var[\hat{eta}_j$'s around eta_j 's] Sample covariance of \hat{eta}_j 's pprox Ψ + Estimation error

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Ad-hoc estimates

rough estimate of beta
apply(BETA.OLS,2,mean,na.rm=TRUE)

(Intercept) xj ## 50.618228 3.672483

This estimator of β is unbiased, but not efficient.

Generally, we want to assign a lower weight to schools with less data.

rough estimate of Sigma_beta
cov(BETA.OLS,use="complete.obs")

This is a very rough estimate of $\Psi = Var[\beta_i]$:

- It ignores sample size differences;
- It ignores the variability of $\hat{\beta}_i$ around β_i .

 $\operatorname{Var}[\hat{eta}_j]$'s around \hat{eta}] pprox $\operatorname{Var}[eta_j]$'s around eta] + $\operatorname{Var}[\hat{eta}_j]$'s around eta_j 's] Sample covariance of \hat{eta}_j 's pprox Ψ + Estimation error

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Ad-hoc estimates

rough estimate of beta
apply(BETA.OLS,2,mean,na.rm=TRUE)

(Intercept) xj ## 50.618228 3.672483

This estimator of β is unbiased, but not efficient. Generally, we want to assign a lower weight to schools with less data.

rough estimate of Sigma_beta
cov(BETA.OLS,use="complete.obs")
(Intercept) xj
(Intercept) 26.795851 1.001585
xj 1.001585 15.818939

This is a very rough estimate of $\Psi = Var[\beta_i]$:

- It ignores sample size differences;
- It ignores the variability of $\hat{\beta}_i$ around β_i .

 $\operatorname{Var}[\hat{eta}_j]$'s around \hat{eta}] pprox $\operatorname{Var}[eta_j]$'s around eta] + $\operatorname{Var}[\hat{eta}_j]$'s around eta_j 's] Sample covariance of \hat{eta}_j 's pprox Ψ + Estimation error

Model fitting

Group-level characteristics 0000000 General LME Model

Ad-hoc estimates

rough estimate of beta
apply(BETA.OLS,2,mean,na.rm=TRUE)

(Intercept) xj ## 50.618228 3.672483

This estimator of β is unbiased, but not efficient. Generally, we want to assign a lower weight to schools with less data.

rough estimate of Sigma_beta
cov(BETA.OLS,use="complete.obs")
(Intercept) xj
(Intercept) 26.795851 1.001585
xj 1.001585 15.818939

This is a very rough estimate of $\Psi = Var[\beta_i]$:

- It ignores sample size differences;
- It ignores the variability of $\hat{\beta}_i$ around β_i .

 $\operatorname{Var}[\hat{\beta}_{j}]$'s around $\hat{\beta}] \approx \operatorname{Var}[\beta_{j}]$'s around $\beta] + \operatorname{Var}[\hat{\beta}_{j}]$'s around β_{j} 's] Sample covariance of $\hat{\beta}_{j}$'s $\approx \Psi +$ Estimation error

Model fitting

Group-level characteristics 0000000 General LME Model

Ad-hoc estimates

rough estimate of beta
apply(BETA.OLS,2,mean,na.rm=TRUE)

(Intercept) xj ## 50.618228 3.672483

This estimator of β is unbiased, but not efficient. Generally, we want to assign a lower weight to schools with less data.

<pre>## rough estimate of Sigma_beta cov(BETA.OLS,use="complete.obs")</pre>						
##	(Teterset)	(Intercept) 26.795851	xj			
## ##	(Intercept)		15.818939			
##	хJ	1.001565	12.010939			

This is a very rough estimate of $\Psi = Var[\beta_i]$:

- It ignores sample size differences;
- It ignores the variability of $\hat{\beta}_i$ around β_i .

$$\begin{split} & \mathsf{Var}[\hat{\beta}_j\text{'s around } \hat{\beta} \] \approx \mathsf{Var}[\beta_j\text{'s around } \beta \] + \mathsf{Var}[\hat{\beta}_j\text{'s around } \beta_j\text{'s }] \\ & \mathsf{Sample covariance of } \hat{\beta}_j\text{'s} \approx \qquad \Psi \qquad + \qquad \mathsf{Estimation \ error} \end{split}$$

Model fitting

Group-level characteristics 0000000 General LME Model

Fixed and random effects

Recall the following:

$$heta_{j} \sim \textit{N}(\mu, \tau^{2}) \Leftrightarrow heta_{j} = \mu + \textit{a}_{j}, ~\textit{a}_{j} \sim \textit{N}(0, \tau^{2})$$

Analogously,

$$oldsymbol{eta}_j \sim \mathcal{N}(oldsymbol{eta}, \Psi) \Leftrightarrow oldsymbol{eta}_j = oldsymbol{eta} + oldsymbol{a}_j, \,\, oldsymbol{a}_j \sim \mathcal{N}(oldsymbol{0}, \Psi)$$

Therefore, our hierarchical model says that

$$\begin{aligned} \mathbf{y}_j &= \mathbf{X}_j \boldsymbol{\beta}_j + \boldsymbol{\epsilon}_j \\ &= \mathbf{X}_j (\boldsymbol{\beta} + \boldsymbol{a}_j) + \boldsymbol{\epsilon}_j \\ &= \mathbf{X}_j \boldsymbol{\beta} + \mathbf{X}_j \boldsymbol{a}_j + \boldsymbol{\epsilon}_j \end{aligned}$$

β is sometimes called a *fixed effect*, as it is fixed across all groups.

• a_i is sometimes called a random effect

"random" as it varies across groups, or

Fixed and random effects •0000000

Model fitting 00000000 Group-level characteristics 0000000 General LME Model 00000000

Fixed and random effects

Recall the following:

$$heta_j \sim N(\mu, \tau^2) \Leftrightarrow heta_j = \mu + a_j, \ a_j \sim N(0, \tau^2)$$

Analogously,

$$oldsymbol{eta}_j \sim \mathcal{N}(oldsymbol{eta}, \Psi) \Leftrightarrow oldsymbol{eta}_j = oldsymbol{eta} + oldsymbol{a}_j, \,\, oldsymbol{a}_j \sim \mathcal{N}(oldsymbol{0}, \Psi)$$

Therefore, our hierarchical model says that

$$\begin{aligned} \mathbf{y}_j &= \mathbf{X}_j \boldsymbol{\beta}_j + \boldsymbol{\epsilon}_j \\ &= \mathbf{X}_j (\boldsymbol{\beta} + \boldsymbol{a}_j) + \boldsymbol{\epsilon}_j \\ &= \mathbf{X}_j \boldsymbol{\beta} + \mathbf{X}_j \boldsymbol{a}_j + \boldsymbol{\epsilon}_j \end{aligned}$$

β is sometimes called a *fixed effect*, as it is fixed across all groups.

a_i is sometimes called a random effect

"random" as it varies across groups, or

Model fitting 00000000 Group-level characteristics 0000000 General LME Model 00000000

Fixed and random effects

Recall the following:

$$heta_{j} \sim \textit{N}(\mu, au^{2}) \Leftrightarrow heta_{j} = \mu + \textit{a}_{j}, ~\textit{a}_{j} \sim \textit{N}(0, au^{2})$$

Analogously,

$$oldsymbol{eta}_{j} \sim \mathcal{N}(oldsymbol{eta}, \Psi) \Leftrightarrow oldsymbol{eta}_{j} = oldsymbol{eta} + oldsymbol{a}_{j}, \ oldsymbol{a}_{j} \sim \mathcal{N}(oldsymbol{0}, \Psi)$$

Therefore, our hierarchical model says that

$$\begin{aligned} \mathbf{y}_j &= \mathbf{X}_j \boldsymbol{\beta}_j + \boldsymbol{\epsilon}_j \\ &= \mathbf{X}_j (\boldsymbol{\beta} + \boldsymbol{a}_j) + \boldsymbol{\epsilon}_j \\ &= \mathbf{X}_j \boldsymbol{\beta} + \mathbf{X}_j \boldsymbol{a}_j + \boldsymbol{\epsilon}_j \end{aligned}$$

β is sometimes called a *fixed effect*, as it is fixed across all groups.

a_i is sometimes called a random effect

"random" as it varies across groups, or

"random" if the groups were randomly sampled

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Fixed and random effects

Recall the following:

$$heta_{j} \sim \textit{N}(\mu, au^{2}) \Leftrightarrow heta_{j} = \mu + \textit{a}_{j}, ~\textit{a}_{j} \sim \textit{N}(0, au^{2})$$

Analogously,

$$oldsymbol{eta}_{j} \sim oldsymbol{\mathsf{N}}(oldsymbol{eta}, \Psi) \Leftrightarrow oldsymbol{eta}_{j} = oldsymbol{eta} + oldsymbol{a}_{j}, \ oldsymbol{a}_{j} \sim oldsymbol{\mathsf{N}}(oldsymbol{0}, \Psi)$$

Therefore, our hierarchical model says that

$$\begin{aligned} \mathbf{y}_j &= \mathbf{X}_j \boldsymbol{\beta}_j + \boldsymbol{\epsilon}_j \\ &= \mathbf{X}_j (\boldsymbol{\beta} + \boldsymbol{a}_j) + \boldsymbol{\epsilon}_j \\ &= \mathbf{X}_j \boldsymbol{\beta} + \mathbf{X}_j \boldsymbol{a}_j + \boldsymbol{\epsilon}_j \end{aligned}$$

• β is sometimes called a *fixed effect*, as it is fixed across all groups.

• *a_j* is sometimes called a *random effect*

"random" as it varies across groups, or "random" if the groups were randomly sample

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Fixed and random effects

Recall the following:

$$heta_{j} \sim \textit{N}(\mu, au^{2}) \Leftrightarrow heta_{j} = \mu + \textit{a}_{j}, \; \textit{a}_{j} \sim \textit{N}(0, au^{2})$$

Analogously,

$$oldsymbol{eta}_{j} \sim oldsymbol{\mathcal{N}}(oldsymbol{eta}, \Psi) \Leftrightarrow oldsymbol{eta}_{j} = oldsymbol{eta} + oldsymbol{a}_{j}, \ oldsymbol{a}_{j} \sim oldsymbol{\mathcal{N}}(oldsymbol{0}, \Psi)$$

Therefore, our hierarchical model says that

$$\begin{aligned} \mathbf{y}_j &= \mathbf{X}_j \boldsymbol{\beta}_j + \boldsymbol{\epsilon}_j \\ &= \mathbf{X}_j (\boldsymbol{\beta} + \boldsymbol{a}_j) + \boldsymbol{\epsilon}_j \\ &= \mathbf{X}_j \boldsymbol{\beta} + \mathbf{X}_j \boldsymbol{a}_j + \boldsymbol{\epsilon}_j \end{aligned}$$

• β is sometimes called a *fixed effect*, as it is fixed across all groups.

• **a**_j is sometimes called a random effect

"random" as it varies across groups, or "random" if the groups were randomly sampled

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Fixed and random effects

Recall the following:

$$heta_{j} \sim \textit{N}(\mu, au^{2}) \Leftrightarrow heta_{j} = \mu + \textit{a}_{j}, \; \textit{a}_{j} \sim \textit{N}(0, au^{2})$$

Analogously,

$$oldsymbol{eta}_{j} \sim oldsymbol{\mathsf{N}}(oldsymbol{eta}, \Psi) \Leftrightarrow oldsymbol{eta}_{j} = oldsymbol{eta} + oldsymbol{a}_{j}, \ oldsymbol{a}_{j} \sim oldsymbol{\mathsf{N}}(oldsymbol{0}, \Psi)$$

Therefore, our hierarchical model says that

$$\begin{aligned} \mathbf{y}_j &= \mathbf{X}_j \boldsymbol{\beta}_j + \boldsymbol{\epsilon}_j \\ &= \mathbf{X}_j (\boldsymbol{\beta} + \boldsymbol{a}_j) + \boldsymbol{\epsilon}_j \\ &= \mathbf{X}_j \boldsymbol{\beta} + \mathbf{X}_j \boldsymbol{a}_j + \boldsymbol{\epsilon}_j \end{aligned}$$

• β is sometimes called a *fixed effect*, as it is fixed across all groups.

• **a**_j is sometimes called a random effect

"random" as it varies across groups, or

"random" if the groups were randomly sampled.

Model fitting

Group-level characteristics 0000000 General LME Model

Fixed and random effects

Recall the following:

$$heta_{j} \sim \textit{N}(\mu, au^{2}) \Leftrightarrow heta_{j} = \mu + \textit{a}_{j}, \; \textit{a}_{j} \sim \textit{N}(0, au^{2})$$

Analogously,

$$oldsymbol{eta}_{j} \sim oldsymbol{\mathsf{N}}(oldsymbol{eta}, \Psi) \Leftrightarrow oldsymbol{eta}_{j} = oldsymbol{eta} + oldsymbol{a}_{j}, \ oldsymbol{a}_{j} \sim oldsymbol{\mathsf{N}}(oldsymbol{0}, \Psi)$$

Therefore, our hierarchical model says that

$$\begin{aligned} \mathbf{y}_j &= \mathbf{X}_j \boldsymbol{\beta}_j + \boldsymbol{\epsilon}_j \\ &= \mathbf{X}_j (\boldsymbol{\beta} + \boldsymbol{a}_j) + \boldsymbol{\epsilon}_j \\ &= \mathbf{X}_j \boldsymbol{\beta} + \mathbf{X}_j \boldsymbol{a}_j + \boldsymbol{\epsilon}_j \end{aligned}$$

• β is sometimes called a *fixed effect*, as it is fixed across all groups.

• **a**_i is sometimes called a random effect

"random" as it varies across groups, or "random" if the groups were randomly sampled.

Model fitting

Group-level characteristics 0000000 General LME Model

Fixed and random effects

Recall the following:

$$heta_{j} \sim \textit{N}(\mu, au^{2}) \Leftrightarrow heta_{j} = \mu + \textit{a}_{j}, \; \textit{a}_{j} \sim \textit{N}(0, au^{2})$$

Analogously,

$$oldsymbol{eta}_{j} \sim oldsymbol{\mathcal{N}}(oldsymbol{eta}, \Psi) \Leftrightarrow oldsymbol{eta}_{j} = oldsymbol{eta} + oldsymbol{a}_{j}, \ oldsymbol{a}_{j} \sim oldsymbol{\mathcal{N}}(oldsymbol{0}, \Psi)$$

Therefore, our hierarchical model says that

$$\begin{aligned} \mathbf{y}_j &= \mathbf{X}_j \boldsymbol{\beta}_j + \boldsymbol{\epsilon}_j \\ &= \mathbf{X}_j (\boldsymbol{\beta} + \boldsymbol{a}_j) + \boldsymbol{\epsilon}_j \\ &= \mathbf{X}_j \boldsymbol{\beta} + \mathbf{X}_j \boldsymbol{a}_j + \boldsymbol{\epsilon}_j \end{aligned}$$

• β is sometimes called a *fixed effect*, as it is fixed across all groups.

• **a**_i is sometimes called a random effect

"random" as it varies across groups, or

"random" if the groups were randomly sampled.

Model fitting

Group-level characteristics 0000000 General LME Model

Fixed and random effects

Recall the following:

$$heta_{j} \sim \textit{N}(\mu, au^{2}) \Leftrightarrow heta_{j} = \mu + \textit{a}_{j}, \; \textit{a}_{j} \sim \textit{N}(0, au^{2})$$

Analogously,

$$oldsymbol{eta}_{j} \sim oldsymbol{\mathsf{N}}(oldsymbol{eta}, \Psi) \Leftrightarrow oldsymbol{eta}_{j} = oldsymbol{eta} + oldsymbol{a}_{j}, \ oldsymbol{a}_{j} \sim oldsymbol{\mathsf{N}}(oldsymbol{0}, \Psi)$$

Therefore, our hierarchical model says that

$$\begin{aligned} \mathbf{y}_j &= \mathbf{X}_j \boldsymbol{\beta}_j + \boldsymbol{\epsilon}_j \\ &= \mathbf{X}_j (\boldsymbol{\beta} + \boldsymbol{a}_j) + \boldsymbol{\epsilon}_j \\ &= \mathbf{X}_j \boldsymbol{\beta} + \mathbf{X}_j \boldsymbol{a}_j + \boldsymbol{\epsilon}_j \end{aligned}$$

• β is sometimes called a *fixed effect*, as it is fixed across all groups.

• **a**_i is sometimes called a random effect

"random" as it varies across groups, or

"random" if the groups were randomly sampled.

Fixed and random effects 0000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

Recall the HNM:

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

$$Cov[y_{i_1,j}, y_{i_2,j}] = E[(y_{i,j} - \mu)(y_{i_2,j} - \mu)]$$

= E[(a_j + \epsilon_{i_1,j})(a_j + \epsilon_{i_2,j})]
= E[a_j^2] + 0 + 0 + 0
= \tau^2

Fixed and random effects 0000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

Recall the HNM:

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

$$Cov[y_{i_1,j}, y_{i_2,j}] = \mathsf{E}[(y_{i,j} - \mu)(y_{i_2,j} - \mu)]$$

= $\mathsf{E}[(a_j + \epsilon_{i_1,j})(a_j + \epsilon_{i_2,j})]$
= $\mathsf{E}[a_j^2] + 0 + 0 + 0$
= τ^2

Fixed and random effects 0000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

Recall the HNM:

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

$$Cov[y_{i_1,j}, y_{i_2,j}] = \mathsf{E}[(y_{i,j} - \mu)(y_{i_2,j} - \mu)]$$

= $\mathsf{E}[(a_j + \epsilon_{i_1,j})(a_j + \epsilon_{i_2,j})]$
= $\mathsf{E}[a_j^2] + 0 + 0 + 0$
= τ^2

Fixed and random effects 0000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

Recall the HNM:

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

$$Cov[y_{i_1,j}, y_{i_2,j}] = \mathsf{E}[(y_{i,j} - \mu)(y_{i_2,j} - \mu)] \\= \mathsf{E}[(a_j + \epsilon_{i_1,j})(a_j + \epsilon_{i_2,j})] \\= \mathsf{E}[a_j^2] + 0 + 0 + 0 \\= \tau^2$$

Fixed and random effects 0000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

Recall the HNM:

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

$$Cov[y_{i_1,j}, y_{i_2,j}] = \mathsf{E}[(y_{i,j} - \mu)(y_{i_2,j} - \mu)] \\= \mathsf{E}[(a_j + \epsilon_{i_1,j})(a_j + \epsilon_{i_2,j})] \\= \mathsf{E}[a_j^2] + 0 + 0 + 0 \\= \tau^2$$

Fixed and random effects 0000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

Recall the HNM:

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

$$Cov[y_{i_1,j}, y_{i_2,j}] = E[(y_{i,j} - \mu)(y_{i_2,j} - \mu)]$$

= E[(a_j + \epsilon_{i_1,j})(a_j + \epsilon_{i_2,j})]
= E[a_j^2] + 0 + 0 + 0
= \pi^2

Fixed and random effects 0000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

Recall the HNM:

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

What was the within-group covariance?

$$Cov[y_{i_1,j}, y_{i_2,j}] = E[(y_{i,j} - \mu)(y_{i_2,j} - \mu)]$$

= E[(a_j + \epsilon_{i_1,j})(a_j + \epsilon_{i_2,j})]
= E[a_j^2] + 0 + 0 + 0
= \pi^2

Fixed and random effects 0000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

Recall the HNM:

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

What was the within-group covariance?

$$Cov[y_{i_1,j}, y_{i_2,j}] = E[(y_{i,j} - \mu)(y_{i_2,j} - \mu)]$$

= E[(a_j + \epsilon_{i_1,j})(a_j + \epsilon_{i_2,j})]
= E[a_j^2] + 0 + 0 + 0
= \tau^2

Fixed and random effects 0000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

Recall the HNM:

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

What was the within-group covariance?

$$Cov[y_{i_1,j}, y_{i_2,j}] = E[(y_{i,j} - \mu)(y_{i_2,j} - \mu)]$$

= E[(a_j + \epsilon_{i_1,j})(a_j + \epsilon_{i_2,j})]
= E[a_j^2] + 0 + 0 + 0
= \tau^2

Fixed and random effects

Model fitting

Group-level characteristics 0000000 General LME Model

Within-group covariance, matrix form

We will need the within-group covariance matrix to compute the likelihood:

$$\mathbf{y}_{j} = \begin{pmatrix} y_{1,j} \\ \vdots \\ y_{n,j} \end{pmatrix} \quad \operatorname{Cov}[\mathbf{y}_{j}] = \begin{pmatrix} \operatorname{Var}[y_{1,j}] & \operatorname{Cov}[y_{1,j}, y_{2,j}] & \cdots & \operatorname{Cov}[y_{1,j}, y_{n,j}] \\ \operatorname{Cov}[y_{1,j}, y_{2,j}] & \operatorname{Var}[y_{2,j}] & \cdots & \operatorname{Cov}[y_{2,j}, y_{2,j}] \\ \vdots & & \vdots \\ \operatorname{Cov}[y_{1,j}, y_{n,j}] & \operatorname{Cov}[y_{2,j}, y_{n,j}] & \cdots & \operatorname{Var}[y_{n,j}] \end{pmatrix}$$

Our calculations have shown that for the HNM

$$\operatorname{Cov}[\mathbf{y}_j] = \begin{pmatrix} \sigma^2 + \tau^2 & \tau^2 & \cdots & \tau^2 \\ \vdots & & \vdots \\ \tau^2 & \tau^2 & \cdots & \sigma^2 + \tau^2 \end{pmatrix}$$

Fixed and random effects

Model fitting

Group-level characteristics 0000000 General LME Mode 00000000

Within-group covariance, matrix form

We will need the within-group covariance matrix to compute the likelihood:

$$\mathbf{y}_{j} = \begin{pmatrix} y_{1,j} \\ \vdots \\ y_{n,j} \end{pmatrix} \quad \operatorname{Cov}[\mathbf{y}_{j}] = \begin{pmatrix} \operatorname{Var}[y_{1,j}] & \operatorname{Cov}[y_{1,j}, y_{2,j}] & \cdots & \operatorname{Cov}[y_{1,j}, y_{n,j}] \\ \operatorname{Cov}[y_{1,j}, y_{2,j}] & \operatorname{Var}[y_{2,j}] & \cdots & \operatorname{Cov}[y_{2,j}, y_{2,j}] \\ \vdots & & \vdots \\ \operatorname{Cov}[y_{1,j}, y_{n,j}] & \operatorname{Cov}[y_{2,j}, y_{n,j}] & \cdots & \operatorname{Var}[y_{n,j}] \end{pmatrix}$$

Our calculations have shown that for the HNM

$$\mathsf{Cov}[\mathbf{y}_j] = \begin{pmatrix} \sigma^2 + \tau^2 & \tau^2 & \cdots & \tau^2 \\ \vdots & & \vdots \\ \tau^2 & \tau^2 & \cdots & \sigma^2 + \tau^2 \end{pmatrix}$$

Fixed and random effects 0000000

Model fitting

Group-level characteristics 0000000 General LME Model

Within-group covariance, matrix form

In general,

$$Cov[\mathbf{y}_j] = E[(\mathbf{y}_j - E[\mathbf{y}_j])(\mathbf{y}_j - E[\mathbf{y}_j])^T]$$

For the HLM,

$$\mathbf{y}_j - \mathsf{E}[\mathbf{y}_j] = \mathbf{y}_j - \mathbf{X}_j \boldsymbol{\beta} = \mathbf{X}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j,$$

SO

$$Cov[\mathbf{y}_j] = E[(\mathbf{X}_j \mathbf{a}_j + \epsilon_j)(\mathbf{X}_j \mathbf{a}_j + \epsilon_j)^T]$$

= E[(\mathbf{X}_j \mathbf{a}_j \mathbf{a}_j^T \mathbf{X}_j^T] + E[\epsilon_j \epsilon_j^T]
= \mathbf{X}_j \Psi \mathbf{X}_j^T + \sigma^2 \mathbf{I}

 $\mathsf{Cov}[y_{i1,j}, y_{i2,j}] = \mathbf{x}_{i1,j}^{\mathsf{T}} \Psi \mathbf{x}_{i2,j}$

Fixed and random effects 0000000

Model fitting

Group-level characteristics 0000000 General LME Model

Within-group covariance, matrix form

In general,

$$Cov[\mathbf{y}_j] = E[(\mathbf{y}_j - E[\mathbf{y}_j])(\mathbf{y}_j - E[\mathbf{y}_j])^T]$$

For the HLM,

$$\mathbf{y}_j - \mathsf{E}[\mathbf{y}_j] = \mathbf{y}_j - \mathbf{X}_j \boldsymbol{\beta} = \mathbf{X}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j,$$

SO

$$\begin{aligned} \mathsf{Cov}[\mathbf{y}_j] &= \mathsf{E}[(\mathbf{X}_j \mathbf{a}_j + \epsilon_j)(\mathbf{X}_j \mathbf{a}_j + \epsilon_j)^T] \\ &= \mathsf{E}[(\mathbf{X}_j \mathbf{a}_j \mathbf{a}_j^T \mathbf{X}_j^T] + \mathsf{E}[\epsilon_j \epsilon_j^T] \\ &= \mathbf{X}_j \Psi \mathbf{X}_j^T + \sigma^2 \mathbf{I} \end{aligned}$$

 $\mathsf{Cov}[y_{i1,j}, y_{i2,j}] = \mathbf{x}_{i1,j}^{\mathsf{T}} \Psi \mathbf{x}_{i2,j}$

Fixed and random effects 0000000

Model fitting

Group-level characteristics 0000000 General LME Mode 00000000

Within-group covariance, matrix form

In general,

$$Cov[\mathbf{y}_j] = E[(\mathbf{y}_j - E[\mathbf{y}_j])(\mathbf{y}_j - E[\mathbf{y}_j])^T]$$

For the HLM,

$$\mathbf{y}_j - \mathsf{E}[\mathbf{y}_j] = \mathbf{y}_j - \mathbf{X}_j \boldsymbol{\beta} = \mathbf{X}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j,$$

so

$$Cov[\mathbf{y}_j] = E[(\mathbf{X}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j)(\mathbf{X}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j)^T]$$

= E[(\mathbf{X}_j \mathbf{a}_j \mathbf{a}_j^T \mathbf{X}_j^T] + E[\boldsymbol{\epsilon}_j \boldsymbol{\epsilon}_j^T]
= \mathbf{X}_j \Psi \mathbf{X}_j^T + \sigma^2 \mathbf{I}

 $\mathsf{Cov}[y_{i1,j}, y_{i2,j}] = \mathbf{x}_{i1,j}^T \Psi \mathbf{x}_{i2,j}$

Fixed and random effects 0000000

Model fitting

Group-level characteristics 0000000 General LME Mode 00000000

Within-group covariance, matrix form

In general,

$$Cov[\mathbf{y}_j] = E[(\mathbf{y}_j - E[\mathbf{y}_j])(\mathbf{y}_j - E[\mathbf{y}_j])^T]$$

For the HLM,

$$\mathbf{y}_j - \mathsf{E}[\mathbf{y}_j] = \mathbf{y}_j - \mathbf{X}_j \boldsymbol{\beta} = \mathbf{X}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j,$$

so

$$Cov[\mathbf{y}_j] = E[(\mathbf{X}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j)(\mathbf{X}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j)^T]$$

= E[(\mathbf{X}_j \mathbf{a}_j \mathbf{a}_j^T \mathbf{X}_j^T] + E[\boldsymbol{\epsilon}_j \boldsymbol{\epsilon}_j^T]
= \mathbf{X}_j \Psi \mathbf{X}_j^T + \sigma^2 \mathbf{I}

 $\mathsf{Cov}[y_{i1,j}, y_{i2,j}] = \mathbf{x}_{i1,j}^T \Psi \mathbf{x}_{i2,j}$

Fixed and random effects 0000000

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance, matrix form

In general,

$$Cov[\mathbf{y}_j] = E[(\mathbf{y}_j - E[\mathbf{y}_j])(\mathbf{y}_j - E[\mathbf{y}_j])^T]$$

For the HLM,

$$\mathbf{y}_j - \mathsf{E}[\mathbf{y}_j] = \mathbf{y}_j - \mathbf{X}_j \boldsymbol{\beta} = \mathbf{X}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j,$$

$$Cov[\mathbf{y}_j] = E[(\mathbf{X}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j)(\mathbf{X}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j)^T]$$

= E[(\mathbf{X}_j \mathbf{a}_j \mathbf{a}_j^T \mathbf{X}_j^T] + E[\boldsymbol{\epsilon}_j \boldsymbol{\epsilon}_j^T]
= \mathbf{X}_j \mathbf{V} \mathbf{X}_j^T + \sigma^2 I

$$\operatorname{Cov}[y_{i1,j}, y_{i2,j}] = \mathbf{x}_{i1,j}^{T} \Psi \mathbf{x}_{i2,j}$$

Fixed and random effects 0000000

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance, matrix form

In general,

$$Cov[\mathbf{y}_j] = E[(\mathbf{y}_j - E[\mathbf{y}_j])(\mathbf{y}_j - E[\mathbf{y}_j])^T]$$

For the HLM,

$$\mathbf{y}_j - \mathsf{E}[\mathbf{y}_j] = \mathbf{y}_j - \mathbf{X}_j \boldsymbol{\beta} = \mathbf{X}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j,$$

$$Cov[\mathbf{y}_j] = E[(\mathbf{X}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j)(\mathbf{X}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j)^T]$$

= E[(\mathbf{X}_j \mathbf{a}_j \mathbf{a}_j^T \mathbf{X}_j^T] + E[\boldsymbol{\epsilon}_j \boldsymbol{\epsilon}_j^T]
= \mathbf{X}_j \mathbf{V} \mathbf{X}_j^T + \sigma^2 I

$$\operatorname{Cov}[y_{i1,j}, y_{i2,j}] = \mathbf{x}_{i1,j}^{T} \Psi \mathbf{x}_{i2,j}$$

Fixed and random effects 0000000

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance, matrix form

In general,

$$Cov[\mathbf{y}_j] = E[(\mathbf{y}_j - E[\mathbf{y}_j])(\mathbf{y}_j - E[\mathbf{y}_j])^T]$$

For the HLM,

$$\mathbf{y}_j - \mathsf{E}[\mathbf{y}_j] = \mathbf{y}_j - \mathbf{X}_j \boldsymbol{\beta} = \mathbf{X}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j,$$

$$Cov[\mathbf{y}_j] = E[(\mathbf{X}_j \mathbf{a}_j + \epsilon_j)(\mathbf{X}_j \mathbf{a}_j + \epsilon_j)^T]$$

= E[(\mathbf{X}_j \mathbf{a}_j \mathbf{a}_j^T \mathbf{X}_j^T] + E[\epsilon_j \epsilon_j^T]
= \mathbf{X}_j \mathbf{V} \mathbf{X}_j^T + \sigma^2 \mathbf{I}

$$\operatorname{Cov}[y_{i1,j}, y_{i2,j}] = \mathbf{x}_{i1,j}^{T} \Psi \mathbf{x}_{i2,j}$$

Fixed and random effects 0000000

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance, matrix form

In general,

$$Cov[\mathbf{y}_j] = E[(\mathbf{y}_j - E[\mathbf{y}_j])(\mathbf{y}_j - E[\mathbf{y}_j])^T]$$

For the HLM,

$$\mathbf{y}_j - \mathsf{E}[\mathbf{y}_j] = \mathbf{y}_j - \mathbf{X}_j \boldsymbol{\beta} = \mathbf{X}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j,$$

$$Cov[\mathbf{y}_j] = E[(\mathbf{X}_j \mathbf{a}_j + \epsilon_j)(\mathbf{X}_j \mathbf{a}_j + \epsilon_j)^T]$$

= E[(\mathbf{X}_j \mathbf{a}_j \mathbf{a}_j^T \mathbf{X}_j^T] + E[\epsilon_j \epsilon_j^T]
= \mathbf{X}_j \mathbf{V} \mathbf{X}_j^T + \sigma^2 \mathbf{I}

$$\operatorname{Cov}[y_{i1,j}, y_{i2,j}] = \mathbf{x}_{i1,j}^T \Psi \mathbf{x}_{i2,j}$$

Fixed and random effects 00000000

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Dependence and conditional independence

Thus $p(\mathbf{y}_j|\boldsymbol{\beta}, \boldsymbol{\Psi}, \sigma^2)$, unconditional on \mathbf{a}_j , is

 $\mathbf{y}_j \sim \text{multivariate normal}(\mathbf{X}_j \boldsymbol{\beta}, \mathbf{X}_j \boldsymbol{\Psi} \mathbf{X}_j^T + \sigma^2 \mathbf{I}).$

On the other hand, conditional on a_j ,

 $\mathbf{y}_j \sim \text{multivariate normal}(\mathbf{X}_j \boldsymbol{\beta} + \mathbf{X}_j \mathbf{a}_j, \sigma^2 \mathbf{I}).$

Fixed and random effects 00000000

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Dependence and conditional independence

Thus $p(\mathbf{y}_j | \boldsymbol{\beta}, \boldsymbol{\Psi}, \sigma^2)$, unconditional on \mathbf{a}_j , is

$\mathbf{y}_j \sim \text{multivariate normal}(\mathbf{X}_j \boldsymbol{\beta}, \mathbf{X}_j \boldsymbol{\Psi} \mathbf{X}_j^T + \sigma^2 \mathbf{I}).$

On the other hand, conditional on a_j ,

 $\mathbf{y}_j \sim \text{multivariate normal}(\mathbf{X}_j \boldsymbol{\beta} + \mathbf{X}_j \mathbf{a}_j, \sigma^2 \mathbf{I}).$

Fixed and random effects 00000000

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Dependence and conditional independence

Thus $p(\mathbf{y}_j|\boldsymbol{\beta}, \boldsymbol{\Psi}, \sigma^2)$, unconditional on \mathbf{a}_j , is

 $\mathbf{y}_j \sim \text{multivariate normal}(\mathbf{X}_j \boldsymbol{\beta}, \mathbf{X}_j \boldsymbol{\Psi} \mathbf{X}_j^T + \sigma^2 \mathbf{I}).$

On the other hand, conditional on \mathbf{a}_j ,

 $\mathbf{y}_j \sim \text{multivariate normal}(\mathbf{X}_j \boldsymbol{\beta} + \mathbf{X}_j \mathbf{a}_j, \sigma^2 \mathbf{I}).$

Fixed and random effects 00000000

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Dependence and conditional independence

Marginal dependence: If I don't know β_j (or \mathbf{a}_j), then knowing $y_{i_1,j}$ gives me a bit of information about β_j , which in turn gives me information about $y_{i_2,j}$, and so the observations are dependent: My information about $y_{i_2,j}$ depends on the value of $y_{i_1,j}$ if I don't know β_j .

Conditional independence: If I know β_j , then knowing $y_{i_1,j}$ doesn't give me any information about $y_{i_2,j}$, and so they are independent. My information about $y_{i_2,j}$ does not depend on the value of $y_{i_1,j}$ if I know β_j .

Note: Within-group covariance can be positive or negative, depending on X_j .

Fixed and random effects 00000000

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Dependence and conditional independence

Marginal dependence: If I don't know β_j (or \mathbf{a}_j), then knowing $y_{i_1,j}$ gives me a bit of information about β_j , which in turn gives me information about $y_{i_2,j}$, and so the observations are dependent: My information about $y_{i_2,j}$ depends on the value of $y_{i_1,j}$ if I don't know β_j .

Conditional independence: If I know β_j , then knowing $y_{i_1,j}$ doesn't give me any information about $y_{i_2,j}$, and so they are independent. My information about $y_{i_2,j}$ does not depend on the value of $y_{i_1,j}$ if I know β_j .

Note: Within-group covariance can be positive or negative, depending on X_j .

Fixed and random effects 00000000

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Dependence and conditional independence

Marginal dependence: If I don't know β_j (or \mathbf{a}_j), then knowing $y_{i_1,j}$ gives me a bit of information about β_j , which in turn gives me information about $y_{i_2,j}$, and so the observations are dependent: My information about $y_{i_2,j}$ depends on the value of $y_{i_1,j}$ if I don't know β_j .

Conditional independence: If I know β_j , then knowing $y_{i_1,j}$ doesn't give me any information about $y_{i_2,j}$, and so they are independent. My information about $y_{i_2,j}$ does not depend on the value of $y_{i_1,j}$ if I know β_j .

Note: Within-group covariance can be positive or negative, depending on X_j .

Fixed and random effects

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

Consider the case that $\mathbf{x}_{i,j} = \{1, x_{i,j}\}$ and $\boldsymbol{\beta}_j = \{\beta_{0,j}, \beta_{1,j}\}$.

• \mathbf{X}_j is $n_j \times 2$

• $\mathbf{X}_{j} \Psi \mathbf{X}_{j}^{T} + \sigma^{2} I$ is $n_{j} \times n_{j}$, the within-group covariance.

$$\begin{aligned} \mathsf{Cov}[y_{1,j}, y_{2,j}] &= \mathbf{x}_{1,j}^{\mathsf{T}} \Psi \mathbf{x}_{2,j} \\ &= \Psi_{1,1} + \Psi_{1,2} (\mathbf{x}_{1,j} + \mathbf{x}_{2,j}) + \Psi_{2,2} \mathbf{x}_{1,j} \mathbf{x}_{2,j} \\ &= \mathsf{Var}[\beta_{0,j}] + \mathsf{Var}[\beta_{1,j}] \mathbf{x}_{1,j} \mathbf{x}_{2,j} + \mathsf{Cov}[\beta_{0,j}, \beta_{1,j}] (\mathbf{x}_{1,j} + \mathbf{x}_{2,j}) \end{aligned}$$

- Intercept variance positivly correlates the observations within a group.
- Slope variance can lead to positive or negative correlation, depending on how close x_{1,j} and x_{2,j} are.

Fixed and random effects 00000000

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

Consider the case that $\mathbf{x}_{i,j} = \{1, x_{i,j}\}$ and $\boldsymbol{\beta}_j = \{\beta_{0,j}, \beta_{1,j}\}.$

• \mathbf{X}_j is $n_j \times 2$

• $\mathbf{X}_{j} \Psi \mathbf{X}_{j}^{T} + \sigma^{2} I$ is $n_{j} \times n_{j}$, the within-group covariance.

$$\begin{aligned} \mathsf{Cov}[y_{1,j}, y_{2,j}] &= \mathbf{x}_{1,j}^{\mathsf{T}} \Psi \mathbf{x}_{2,j} \\ &= \Psi_{1,1} + \Psi_{1,2} (\mathbf{x}_{1,j} + \mathbf{x}_{2,j}) + \Psi_{2,2} \mathbf{x}_{1,j} \mathbf{x}_{2,j} \\ &= \mathsf{Var}[\beta_{0,j}] + \mathsf{Var}[\beta_{1,j}] \mathbf{x}_{1,j} \mathbf{x}_{2,j} + \mathsf{Cov}[\beta_{0,j}, \beta_{1,j}] (\mathbf{x}_{1,j} + \mathbf{x}_{2,j}) \end{aligned}$$

- Intercept variance positivly correlates the observations within a group.
- Slope variance can lead to positive or negative correlation, depending on how close x_{1,j} and x_{2,j} are.

Fixed and random effects 00000000

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

- \mathbf{X}_j is $n_j \times 2$
- $\mathbf{X}_{j} \Psi \mathbf{X}_{j}^{T} + \sigma^{2} \mathbf{I}$ is $n_{j} \times n_{j}$, the within-group covariance.

$$\begin{aligned} \mathsf{Cov}[y_{1,j}, y_{2,j}] &= \mathbf{x}_{1,j}^{\mathsf{T}} \Psi \mathbf{x}_{2,j} \\ &= \Psi_{1,1} + \Psi_{1,2} (x_{1,j} + x_{2,j}) + \Psi_{2,2} x_{1,j} x_{2,j} \\ &= \mathsf{Var}[\beta_{0,j}] + \mathsf{Var}[\beta_{1,j}] x_{1,j} x_{2,j} + \mathsf{Cov}[\beta_{0,j}, \beta_{1,j}] (x_{1,j} + x_{2,j}) \end{aligned}$$

- Intercept variance positivly correlates the observations within a group.
- Slope variance can lead to positive or negative correlation, depending on how close x_{1,j} and x_{2,j} are.

Fixed and random effects

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

- \mathbf{X}_j is $n_j \times 2$
- $\mathbf{X}_{j} \Psi \mathbf{X}_{j}^{T} + \sigma^{2} \mathbf{I}$ is $n_{j} \times n_{j}$, the within-group covariance.

$$\begin{aligned} \mathsf{Cov}[y_{1,j}, y_{2,j}] &= \mathbf{x}_{1,j}^{\mathsf{T}} \Psi \mathbf{x}_{2,j} \\ &= \Psi_{1,1} + \Psi_{1,2} (x_{1,j} + x_{2,j}) + \Psi_{2,2} x_{1,j} x_{2,j} \\ &= \operatorname{Var}[\beta_{0,j}] + \operatorname{Var}[\beta_{1,j}] x_{1,j} x_{2,j} + \operatorname{Cov}[\beta_{0,j}, \beta_{1,j}] (x_{1,j} + x_{2,j}) \end{aligned}$$

- Intercept variance positivly correlates the observations within a group.
- Slope variance can lead to positive or negative correlation, depending on how close x_{1,j} and x_{2,j} are.

Fixed and random effects

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

- \mathbf{X}_j is $n_j \times 2$
- $\mathbf{X}_{j} \Psi \mathbf{X}_{j}^{T} + \sigma^{2} \mathbf{I}$ is $n_{j} \times n_{j}$, the within-group covariance.

$$\begin{aligned} \mathsf{Cov}[y_{1,j}, y_{2,j}] &= \mathbf{x}_{1,j}^{\mathsf{T}} \Psi \mathbf{x}_{2,j} \\ &= \Psi_{1,1} + \Psi_{1,2} (x_{1,j} + x_{2,j}) + \Psi_{2,2} x_{1,j} x_{2,j} \\ &= \operatorname{Var}[\beta_{0,j}] + \operatorname{Var}[\beta_{1,j}] x_{1,j} x_{2,j} + \operatorname{Cov}[\beta_{0,j}, \beta_{1,j}] (x_{1,j} + x_{2,j}) \end{aligned}$$

- Intercept variance positivly correlates the observations within a group.
- Slope variance can lead to positive or negative correlation, depending on how close x_{1,j} and x_{2,j} are.

Fixed and random effects

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

- \mathbf{X}_j is $n_j \times 2$
- $\mathbf{X}_{j} \Psi \mathbf{X}_{j}^{T} + \sigma^{2} \mathbf{I}$ is $n_{j} \times n_{j}$, the within-group covariance.

$$\begin{aligned} \mathsf{Cov}[y_{1,j}, y_{2,j}] &= \mathbf{x}_{1,j}^{T} \Psi \mathbf{x}_{2,j} \\ &= \Psi_{1,1} + \Psi_{1,2} (x_{1,j} + x_{2,j}) + \Psi_{2,2} x_{1,j} x_{2,j} \\ &= \operatorname{Var}[\beta_{0,j}] + \operatorname{Var}[\beta_{1,j}] x_{1,j} x_{2,j} + \operatorname{Cov}[\beta_{0,j}, \beta_{1,j}] (x_{1,j} + x_{2,j}) \end{aligned}$$

- Intercept variance positivly correlates the observations within a group.
- Slope variance can lead to positive or negative correlation, depending on how close x_{1,j} and x_{2,j} are.

Fixed and random effects

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

Consider the case that $\mathbf{x}_{i,j} = \{1, x_{i,j}\}$ and $\boldsymbol{\beta}_j = \{\beta_{0,j}, \beta_{1,j}\}.$

• \mathbf{X}_j is $n_j \times 2$

• $\mathbf{X}_{j} \Psi \mathbf{X}_{j}^{T} + \sigma^{2} \mathbf{I}$ is $n_{j} \times n_{j}$, the within-group covariance.

$$\begin{aligned} \mathsf{Cov}[y_{1,j}, y_{2,j}] &= \mathbf{x}_{1,j}^{\mathcal{T}} \Psi \mathbf{x}_{2,j} \\ &= \Psi_{1,1} + \Psi_{1,2} (\mathbf{x}_{1,j} + \mathbf{x}_{2,j}) + \Psi_{2,2} \mathbf{x}_{1,j} \mathbf{x}_{2,j} \\ &= \operatorname{Var}[\beta_{0,j}] + \operatorname{Var}[\beta_{1,j}] \mathbf{x}_{1,j} \mathbf{x}_{2,j} + \operatorname{Cov}[\beta_{0,j}, \beta_{1,j}] (\mathbf{x}_{1,j} + \mathbf{x}_{2,j}) \end{aligned}$$

- Intercept variance positivly correlates the observations within a group.
- Slope variance can lead to positive or negative correlation, depending on how close x_{1,j} and x_{2,j} are.

Fixed and random effects

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

Consider the case that $\mathbf{x}_{i,j} = \{1, x_{i,j}\}$ and $\boldsymbol{\beta}_j = \{\beta_{0,j}, \beta_{1,j}\}.$

• \mathbf{X}_j is $n_j \times 2$

• $\mathbf{X}_{j} \Psi \mathbf{X}_{j}^{T} + \sigma^{2} \mathbf{I}$ is $n_{j} \times n_{j}$, the within-group covariance.

$$\begin{aligned} \mathsf{Cov}[y_{1,j}, y_{2,j}] &= \mathbf{x}_{1,j}^{\mathcal{T}} \Psi \mathbf{x}_{2,j} \\ &= \Psi_{1,1} + \Psi_{1,2} (\mathbf{x}_{1,j} + \mathbf{x}_{2,j}) + \Psi_{2,2} \mathbf{x}_{1,j} \mathbf{x}_{2,j} \\ &= \operatorname{Var}[\beta_{0,j}] + \operatorname{Var}[\beta_{1,j}] \mathbf{x}_{1,j} \mathbf{x}_{2,j} + \operatorname{Cov}[\beta_{0,j}, \beta_{1,j}] (\mathbf{x}_{1,j} + \mathbf{x}_{2,j}) \end{aligned}$$

- Intercept variance positivly correlates the observations within a group.
- Slope variance can lead to positive or negative correlation, depending on how close x_{1,j} and x_{2,j} are.

Fixed and random effects

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

Consider the case that $\mathbf{x}_{i,j} = \{1, x_{i,j}\}$ and $\boldsymbol{\beta}_j = \{\beta_{0,j}, \beta_{1,j}\}.$

• \mathbf{X}_j is $n_j \times 2$

• $\mathbf{X}_{j} \Psi \mathbf{X}_{j}^{T} + \sigma^{2} \mathbf{I}$ is $n_{j} \times n_{j}$, the within-group covariance.

$$\begin{aligned} \mathsf{Cov}[y_{1,j}, y_{2,j}] &= \mathbf{x}_{1,j}^{\mathsf{T}} \Psi \mathbf{x}_{2,j} \\ &= \Psi_{1,1} + \Psi_{1,2} (\mathbf{x}_{1,j} + \mathbf{x}_{2,j}) + \Psi_{2,2} \mathbf{x}_{1,j} \mathbf{x}_{2,j} \\ &= \mathsf{Var}[\beta_{0,j}] + \mathsf{Var}[\beta_{1,j}] \mathbf{x}_{1,j} \mathbf{x}_{2,j} + \mathsf{Cov}[\beta_{0,j}, \beta_{1,j}] (\mathbf{x}_{1,j} + \mathbf{x}_{2,j}) \end{aligned}$$

Intercept variance positivly correlates the observations within a group.

 Slope variance can lead to positive or negative correlation, depending on how close x_{1,j} and x_{2,j} are.

Fixed and random effects

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

Consider the case that $\mathbf{x}_{i,j} = \{1, x_{i,j}\}$ and $\boldsymbol{\beta}_j = \{\beta_{0,j}, \beta_{1,j}\}$.

• \mathbf{X}_j is $n_j \times 2$

• $\mathbf{X}_{j} \Psi \mathbf{X}_{j}^{T} + \sigma^{2} I$ is $n_{j} \times n_{j}$, the within-group covariance.

$$\begin{aligned} \mathsf{Cov}[y_{1,j}, y_{2,j}] &= \mathbf{x}_{1,j}^{\mathsf{T}} \Psi \mathbf{x}_{2,j} \\ &= \Psi_{1,1} + \Psi_{1,2}(\mathbf{x}_{1,j} + \mathbf{x}_{2,j}) + \Psi_{2,2} \mathbf{x}_{1,j} \mathbf{x}_{2,j} \\ &= \mathsf{Var}[\beta_{0,j}] + \mathsf{Var}[\beta_{1,j}] \mathbf{x}_{1,j} \mathbf{x}_{2,j} + \mathsf{Cov}[\beta_{0,j}, \beta_{1,j}](\mathbf{x}_{1,j} + \mathbf{x}_{2,j}) \end{aligned}$$

- Intercept variance positivly correlates the observations within a group.
- Slope variance can lead to positive or negative correlation, depending on how close x_{1,j} and x_{2,j} are.

Fixed and random effects 00000000

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

Consider the case that $\mathbf{x}_{i,j} = \{1, x_{i,j}\}$ and $\boldsymbol{\beta}_j = \{\beta_{0,j}, \beta_{1,j}\}$.

• \mathbf{X}_j is $n_j \times 2$

• $\mathbf{X}_{j} \Psi \mathbf{X}_{j}^{T} + \sigma^{2} I$ is $n_{j} \times n_{j}$, the within-group covariance.

$$\begin{aligned} \mathsf{Cov}[y_{1,j}, y_{2,j}] &= \mathbf{x}_{1,j}^{\mathsf{T}} \Psi \mathbf{x}_{2,j} \\ &= \Psi_{1,1} + \Psi_{1,2}(x_{1,j} + x_{2,j}) + \Psi_{2,2} x_{1,j} x_{2,j} \\ &= \mathsf{Var}[\beta_{0,j}] + \mathsf{Var}[\beta_{1,j}] x_{1,j} x_{2,j} + \mathsf{Cov}[\beta_{0,j}, \beta_{1,j}](x_{1,j} + x_{2,j}) \end{aligned}$$

• Intercept variance positivly correlates the observations within a group.

 Slope variance can lead to positive or negative correlation, depending on how close x_{1,j} and x_{2,j} are.

Fixed and random effects 00000000

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

Consider the case that $\mathbf{x}_{i,j} = \{1, x_{i,j}\}$ and $\boldsymbol{\beta}_j = \{\beta_{0,j}, \beta_{1,j}\}$.

• \mathbf{X}_j is $n_j \times 2$

• $\mathbf{X}_{j} \Psi \mathbf{X}_{j}^{T} + \sigma^{2} I$ is $n_{j} \times n_{j}$, the within-group covariance.

$$\begin{aligned} \mathsf{Cov}[y_{1,j}, y_{2,j}] &= \mathbf{x}_{1,j}^T \Psi \mathbf{x}_{2,j} \\ &= \Psi_{1,1} + \Psi_{1,2}(\mathbf{x}_{1,j} + \mathbf{x}_{2,j}) + \Psi_{2,2} \mathbf{x}_{1,j} \mathbf{x}_{2,j} \\ &= \mathsf{Var}[\beta_{0,j}] + \mathsf{Var}[\beta_{1,j}] \mathbf{x}_{1,j} \mathbf{x}_{2,j} + \mathsf{Cov}[\beta_{0,j}, \beta_{1,j}](\mathbf{x}_{1,j} + \mathbf{x}_{2,j}) \end{aligned}$$

- Intercept variance positivly correlates the observations within a group.
- Slope variance can lead to positive or negative correlation, depending on how close x_{1,j} and x_{2,j} are.

Fixed and random effects 00000000

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

Consider the case that $\mathbf{x}_{i,j} = \{1, x_{i,j}\}$ and $\boldsymbol{\beta}_j = \{\beta_{0,j}, \beta_{1,j}\}$.

• \mathbf{X}_j is $n_j \times 2$

• $\mathbf{X}_{j} \Psi \mathbf{X}_{j}^{T} + \sigma^{2} \mathbf{I}$ is $n_{j} \times n_{j}$, the within-group covariance.

$$\begin{aligned} \mathsf{Cov}[y_{1,j}, y_{2,j}] &= \mathbf{x}_{1,j}^T \Psi \mathbf{x}_{2,j} \\ &= \Psi_{1,1} + \Psi_{1,2}(\mathbf{x}_{1,j} + \mathbf{x}_{2,j}) + \Psi_{2,2} \mathbf{x}_{1,j} \mathbf{x}_{2,j} \\ &= \mathsf{Var}[\beta_{0,j}] + \mathsf{Var}[\beta_{1,j}] \mathbf{x}_{1,j} \mathbf{x}_{2,j} + \mathsf{Cov}[\beta_{0,j}, \beta_{1,j}](\mathbf{x}_{1,j} + \mathbf{x}_{2,j}) \end{aligned}$$

- Intercept variance positivly correlates the observations within a group.
- Slope variance can lead to positive or negative correlation, depending on how close x_{1,j} and x_{2,j} are.

Fixed and random effects 00000000

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Within-group covariance

Consider the case that $\mathbf{x}_{i,j} = \{1, x_{i,j}\}$ and $\boldsymbol{\beta}_j = \{\beta_{0,j}, \beta_{1,j}\}$.

• \mathbf{X}_j is $n_j \times 2$

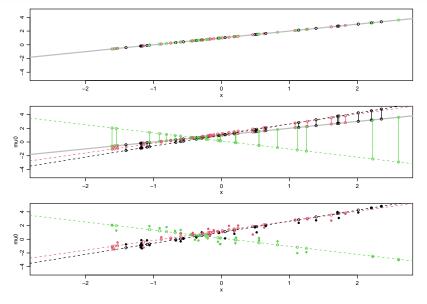
• $\mathbf{X}_{j} \Psi \mathbf{X}_{j}^{T} + \sigma^{2} \mathbf{I}$ is $n_{j} \times n_{j}$, the within-group covariance.

$$\begin{aligned} \mathsf{Cov}[y_{1,j}, y_{2,j}] &= \mathbf{x}_{1,j}^T \Psi \mathbf{x}_{2,j} \\ &= \Psi_{1,1} + \Psi_{1,2}(\mathbf{x}_{1,j} + \mathbf{x}_{2,j}) + \Psi_{2,2} \mathbf{x}_{1,j} \mathbf{x}_{2,j} \\ &= \mathsf{Var}[\beta_{0,j}] + \mathsf{Var}[\beta_{1,j}] \mathbf{x}_{1,j} \mathbf{x}_{2,j} + \mathsf{Cov}[\beta_{0,j}, \beta_{1,j}](\mathbf{x}_{1,j} + \mathbf{x}_{2,j}) \end{aligned}$$

- Intercept variance positivly correlates the observations within a group.
- Slope variance can lead to positive or negative correlation, depending on how close x_{1,j} and x_{2,j} are.

Model fitting 00000000 Group-level characteristics 0000000 General LME Mode 00000000

Sources of variation and correlation



Fixed and random effects

Model fitting •0000000 Group-level characteristics 0000000 General LME Model

Fitting a HLM

Assuming data are independent *across* groups, the likelihood at a value (β, Ψ, σ^2) can be computed as follows:

```
0. Set ll= 0.

1. Set ll= ll + ldmvnorm(y_1 , X_1\beta , X_1\Psi X_1 + \sigma^2 I).

2. Set ll= ll + ldmvnorm(y_2 , X_2\beta , X_2\Psi X_2 + \sigma^2 I).

:

m. Set ll= ll + ldmvnorm(y_1 , X_1\beta , X_2\Psi X_2 + \sigma^2 I).
```

We can then numerically optimize the likelihood to find the MLEs.

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Model

Fitting a HLM

Assuming data are independent *across* groups, the likelihood at a value (β, Ψ, σ^2) can be computed as follows:

0. Set 11= 0. 1. Set 11= 11 + ldmvnorm(y_1 , $X_1\beta$, $X_1\Psi X_1 + \sigma^2 I$). 2. Set 11= 11 + ldmvnorm(y_2 , $X_2\beta$, $X_2\Psi X_2 + \sigma^2 I$). : m. Set 11= 11 + ldmvnorm(y_m , $X_m\beta$, $X_m\Psi X_m + \sigma^2 I$).

We can then numerically optimize the likelihood to find the MLEs.

Model fitting

Group-level characteristics 0000000 General LME Model

Fitting a HLM

Assuming data are independent *across* groups, the likelihood at a value (β, Ψ, σ^2) can be computed as follows:

0. Set ll= 0. 1. Set ll= ll + ldmvnorm(\mathbf{y}_1 , $\mathbf{X}_1\beta$, $\mathbf{X}_1\Psi\mathbf{X}_1 + \sigma^2\mathbf{I}$). 2. Set ll= ll + ldmvnorm(\mathbf{y}_2 , $\mathbf{X}_2\beta$, $\mathbf{X}_2\Psi\mathbf{X}_2 + \sigma^2\mathbf{I}$). . m. Set ll= ll + ldmvnorm(\mathbf{y}_m , $\mathbf{X}_m\beta$, $\mathbf{X}_m\Psi\mathbf{X}_m + \sigma^2\mathbf{I}$).

Model fitting •0000000 Group-level characteristics 0000000 General LME Model

Fitting a HLM

Assuming data are independent *across* groups, the likelihood at a value (β, Ψ, σ^2) can be computed as follows:

Model fitting •0000000 Group-level characteristics 0000000 General LME Model

Fitting a HLM

Assuming data are independent *across* groups, the likelihood at a value (β, Ψ, σ^2) can be computed as follows:

Model fitting •0000000 Group-level characteristics 0000000 General LME Model

Fitting a HLM

Assuming data are independent *across* groups, the likelihood at a value (β, Ψ, σ^2) can be computed as follows:

0. Set ll= 0. 1. Set ll= ll + ldmvnorm(\mathbf{y}_1 , $\mathbf{X}_1\beta$, $\mathbf{X}_1\Psi\mathbf{X}_1 + \sigma^2\mathbf{I}$). 2. Set ll= ll + ldmvnorm(\mathbf{y}_2 , $\mathbf{X}_2\beta$, $\mathbf{X}_2\Psi\mathbf{X}_2 + \sigma^2\mathbf{I}$). . . m. Set ll= ll + ldmvnorm(\mathbf{y}_m , $\mathbf{X}_m\beta$, $\mathbf{X}_m\Psi\mathbf{X}_m + \sigma^2\mathbf{I}$).

Model fitting •0000000 Group-level characteristics 0000000 General LME Model

Fitting a HLM

Assuming data are independent *across* groups, the likelihood at a value (β, Ψ, σ^2) can be computed as follows:

0. Set ll= 0. 1. Set ll= ll + ldmvnorm(\mathbf{y}_1 , $\mathbf{X}_1\beta$, $\mathbf{X}_1\Psi\mathbf{X}_1 + \sigma^2\mathbf{I}$). 2. Set ll= ll + ldmvnorm(\mathbf{y}_2 , $\mathbf{X}_2\beta$, $\mathbf{X}_2\Psi\mathbf{X}_2 + \sigma^2\mathbf{I}$). : m. Set ll= ll + ldmvnorm(\mathbf{y}_m , $\mathbf{X}_m\beta$, $\mathbf{X}_m\Psi\mathbf{X}_m + \sigma^2\mathbf{I}$).

Model fitting •0000000 Group-level characteristics 0000000 General LME Model

Fitting a HLM

Assuming data are independent *across* groups, the likelihood at a value (β, Ψ, σ^2) can be computed as follows:

0. Set ll= 0. 1. Set ll= ll + ldmvnorm(\mathbf{y}_1 , $\mathbf{X}_1\beta$, $\mathbf{X}_1\Psi\mathbf{X}_1 + \sigma^2\mathbf{I}$). 2. Set ll= ll + ldmvnorm(\mathbf{y}_2 , $\mathbf{X}_2\beta$, $\mathbf{X}_2\Psi\mathbf{X}_2 + \sigma^2\mathbf{I}$). : m. Set ll= ll + ldmvnorm(\mathbf{y}_m , $\mathbf{X}_m\beta$, $\mathbf{X}_m\Psi\mathbf{X}_m + \sigma^2\mathbf{I}$).

Fixed and random effects 00000000 Model fitting 00000000

Group-level characteristics 0000000 General LME Mode 00000000

Fitting the HLM with Imer

library(lme4)
fit.lme<-lmer(y.nels ~ ses.nels + (ses.nels | g.nels),REML=FALSE)</pre>

summary(fit.lme)

summary(fit.lme)

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Mode 00000000

Fitting the HLM with Imer

library(lme4)
fit.lme<-lmer(v.nels ~ ses.nels + (ses.nels | g.nels),REML=FALSE)</pre>

```
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: y.nels ~ ses.nels + (ses.nels | g.nels)
##
##
       AIC
               BIC logLik deviance df.resid
## 92553 1 92597 9 -46270 5 92541 1 12968
##
## Scaled residuals:
##
      Min
              10 Median 30
                                    Max
## -3.8910 -0.6382 0.0179 0.6669 4.4613
##
## Random effects:
  Groups Name
                     Variance Std.Dev. Corr
##
## g.nels (Intercept) 12.223 3.496
##
           ses.nels 1.515 1.231 0.11
## Residual
                       67.345 8.206
## Number of obs: 12974, groups: g.nels, 684
##
## Fixed effects:
##
             Estimate Std. Error t value
## (Intercept) 50.6767 0.1551 326.70
## ses.nels 4.3594 0.1231 35.41
##
## Correlation of Fixed Effects:
##
           (Intr)
## ses.nels 0.007
```

Model fitting 00000000 Group-level characteristics 0000000 General LME Mode 00000000

Extracting results - fixed effects

fixed effects
beta.hat<-fixef(fit.lme)
beta.hat</pre>

(Intercept) ses.nels ## 50.676702 4.359396

variance-covariance of fixed effects estimates VBETA<-vcov(fit.lme) VBETA

2 x 2 Matrix of class "dpoMatrix"
(Intercept) ses.nels
(Intercrept) 0.0240607576 0.0001310263
ses.nels 0.0001310263 0.0151611175

```
### standard errors
sqrt(diag(VBETA))
```

(Intercept) ses.nels
0.1551153 0.1231305

t-values

beta.hat/sqrt(diag(VBETA))

(Intercept) ses.nels
326.70343 35.40469

Model fitting 00000000 Group-level characteristics 0000000 General LME Mode 00000000

Extracting results - fixed effects

fixed effects
beta.hat<-fixef(fit.lme)
beta.hat</pre>

(Intercept) ses.nels ## 50.676702 4.359396

```
### variance-covariance of fixed effects estimates
VBETA<-vcov(fit.lme)
VBETA</pre>
```

```
## 2 x 2 Matrix of class "dpoMatrix"
## (Intercept) ses.nels
## (Intercept) 0.0240607576 0.0001310263
## ses.nels 0.0001310263 0.0151611175
```

```
### standard errors
sqrt(diag(VBETA))
## (Intercept) ses.nels
## 0.1551153 0.1231305
### t-values
beta.hat/sqrt(diag(VBETA))
## (Intercept) ses.nels
## 326.70343 35.40469
```

Model fitting 00000000 Group-level characteristics 0000000 General LME Mode 00000000

Extracting results - fixed effects

fixed effects
beta.hat<-fixef(fit.lme)
beta.hat</pre>

(Intercept) ses.nels ## 50.676702 4.359396

```
### variance-covariance of fixed effects estimates
VBETA<-vcov(fit.lme)
VBETA</pre>
```

```
## 2 x 2 Matrix of class "dpoMatrix"
## (Intercept) ses.nels
## (Intercept) 0.0240607576 0.0001310263
## ses.nels 0.0001310263 0.0151611175
```

```
### standard errors
sqrt(diag(VBETA))
## (Interpret)
```

(Intercept) ses.nels
0.1551153 0.1231305

```
### t-values
```

```
beta.hat/sqrt(diag(VBETA))
```

(Intercept) ses.nels
326.70343 35.40469

Fixed and random effects 00000000 Model fitting 00000000

Group-level characteristics 0000000 General LME Mode 00000000

Extracting results - variance components

within-group variance
s2.hat<-sigma(fit.lme)^2</pre>

```
### across-group variance
VarCorr(fit.lme)$g.nels
```

```
## (Intercept) ses.nels
## (Intercept) 12.2232568 0.4888068
## ses.nels 0.4888068 1.5148390
## attr(,"stddev")
## (Intercept) ses.nels
## 3.496177 1.230788
## attr(,"correlation")
## (Intercept) 1.0000000 0.1135954
## ses.nels 0.1135954 1.0000000
```

remove the S4 ugliness
VB<-matrix(VarCorr(fit.lme)\$g.nels,2,2)</pre>

VB

Fixed and random effects 00000000 Model fitting 00000000

Group-level characteristics 0000000 General LME Mode 00000000

Extracting results - variance components

within-group variance
s2.hat<-sigma(fit.lme)^2</pre>

```
### across-group variance
VarCorr(fit.lme)$g.nels
```

```
## (Intercept) ses.nels
## (Intercept) 12.2232568 0.4888068
## ses.nels 0.4888068 1.5148390
## attr(,"stddev")
## (Intercept) ses.nels
## 3.496177 1.230788
## attr(,"correlation")
## (Intercept) ses.nels
## (Intercept) 1.0000000 0.1135954
## ses.nels 0.1135954 1.0000000
```

remove the S4 ugliness
VB<-matrix(VarCorr(fit.lme)\$g.nels,2,2)</pre>

VB

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Mode 00000000

Extracting results - variance components

within-group variance
s2.hat<-sigma(fit.lme)^2</pre>

```
### across-group variance
VarCorr(fit.lme)$g.nels
```

```
## (Intercept) ses.nels
## (Intercept) 12.2232568 0.4888068
## ses.nels 0.4888068 1.5148390
## attr(,"stddev")
## (Intercept) ses.nels
## 3.496177 1.230788
## attr(,"correlation")
## (Intercept) ses.nels
## (Intercept) 1.0000000 0.1135954
## ses.nels 0.1135954 1.0000000
```

```
### remove the S4 ugliness
VB<-matrix(VarCorr(fit.lme)$g.nels,2,2)
VB
## [,1] [,2]
## [1,] 12.2232568 0.4888068</pre>
```

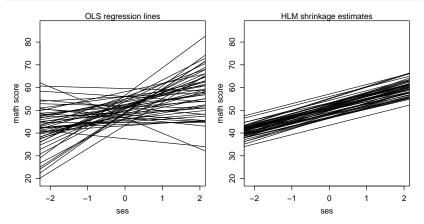
[2,] 0.4888068 1.5148390

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Mode 00000000

Random effects estimates

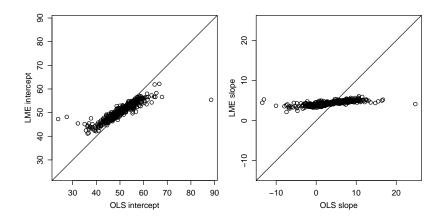
B.LME<-as.matrix(ranef(fit.lme)\$g.nels)
BETA.LME<-sweep(B.LME , 2 , beta.hat, "+")</pre>



Fixed and random effect 00000000 Model fitting 000000000

Group-level characteristics 0000000 General LME Model

Range of shrinkage estimates



Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Model

Formula for shrinkage estimates

Intuitively: Let $\hat{\boldsymbol{\beta}}_j = (\mathbf{X}_j^\top \mathbf{X}_j)^{-1} \mathbf{X}_j^\top \mathbf{y}_j$.

 $oldsymbol{\hat{eta}}_j = (1-w_j) oldsymbol{\hat{eta}}_j + w_j oldsymbol{eta}$

where w_j depends on Ψ and $\sigma^2 (\mathbf{X}_j^T \mathbf{X}_j)^{-1}$:

- w_j is small if $\sigma^2 (\mathbf{X}_j^T \mathbf{X}_j)^{-1}$ small compared to Ψ ;
- w_j is big if $\sigma^2(\mathbf{X}_j^T\mathbf{X}_j)^{-1}$ large compared to Ψ .

This is almost right. Averaging has to be done using matrices. The BLUP is:

$$ilde{oldsymbol{eta}}_{j} = \left(\mathbf{X}_{j}^{ op} \mathbf{X}_{j} / \sigma^{2} + \Psi^{-1}
ight)^{-1} \left(\mathbf{X}_{j} \mathbf{y}_{j} / \sigma^{2} + \Psi^{-1} oldsymbol{eta}
ight)$$

Fixed and random effects 00000000 Model fitting

Group-level characteristics

General LME Model

Formula for shrinkage estimates

Intuitively: Let $\hat{\boldsymbol{\beta}}_j = (\mathbf{X}_j^\top \mathbf{X}_j)^{-1} \mathbf{X}_j^\top \mathbf{y}_j$.

 $oldsymbol{\hat{eta}}_j = (1-w_j) oldsymbol{\hat{eta}}_j + w_j oldsymbol{eta}$

where w_j depends on Ψ and $\sigma^2 (\mathbf{X}_j^T \mathbf{X}_j)^{-1}$:

- w_j is small if $\sigma^2(\mathbf{X}_j^T\mathbf{X}_j)^{-1}$ small compared to Ψ ;
- w_j is big if $\sigma^2(\mathbf{X}_j^T\mathbf{X}_j)^{-1}$ large compared to Ψ .

This is almost right. Averaging has to be done using matrices. The BLUP is:

$$ilde{oldsymbol{eta}}_{j} = \left(\mathbf{X}_{j}^{ op} \mathbf{X}_{j} / \sigma^{2} + \Psi^{-1}
ight)^{-1} \left(\mathbf{X}_{j} \mathbf{y}_{j} / \sigma^{2} + \Psi^{-1} oldsymbol{eta}
ight)$$

Fixed and random effects 00000000 Model fitting

Group-level characteristics

General LME Model

Formula for shrinkage estimates

Intuitively: Let $\hat{\boldsymbol{\beta}}_j = (\mathbf{X}_j^\top \mathbf{X}_j)^{-1} \mathbf{X}_j^\top \mathbf{y}_j$.

 $oldsymbol{\hat{eta}}_j = (1-w_j) oldsymbol{\hat{eta}}_j + w_j oldsymbol{eta}$

where w_j depends on Ψ and $\sigma^2 (\mathbf{X}_j^T \mathbf{X}_j)^{-1}$:

- w_j is small if $\sigma^2(\mathbf{X}_j^T \mathbf{X}_j)^{-1}$ small compared to Ψ ;
- w_j is big if $\sigma^2(\mathbf{X}_j^T \mathbf{X}_j)^{-1}$ large compared to Ψ .

This is almost right. Averaging has to be done using matrices. The BLUP is:

$$ilde{oldsymbol{eta}}_{j} = \left(\mathbf{X}_{j}^{ op} \mathbf{X}_{j} / \sigma^{2} + \Psi^{-1}
ight)^{-1} \left(\mathbf{X}_{j} \mathbf{y}_{j} / \sigma^{2} + \Psi^{-1} oldsymbol{eta}
ight)$$

Fixed and random effects 00000000 Model fitting

Group-level characteristics

General LME Model

Formula for shrinkage estimates

Intuitively: Let $\hat{\boldsymbol{\beta}}_j = (\mathbf{X}_j^\top \mathbf{X}_j)^{-1} \mathbf{X}_j^\top \mathbf{y}_j$.

 $oldsymbol{\hat{eta}}_j = (1-w_j) oldsymbol{\hat{eta}}_j + w_j oldsymbol{eta}$

where w_j depends on Ψ and $\sigma^2 (\mathbf{X}_j^T \mathbf{X}_j)^{-1}$:

- w_j is small if $\sigma^2 (\mathbf{X}_j^T \mathbf{X}_j)^{-1}$ small compared to Ψ ;
- w_j is big if $\sigma^2 (\mathbf{X}_j^T \mathbf{X}_j)^{-1}$ large compared to Ψ .

This is almost right. Averaging has to be done using matrices. The BLUP is:

$$\tilde{\boldsymbol{\beta}}_{j} = \left(\boldsymbol{\mathsf{X}}_{j}^{\top}\boldsymbol{\mathsf{X}}_{j}/\sigma^{2} + \boldsymbol{\Psi}^{-1}\right)^{-1} \left(\boldsymbol{\mathsf{X}}_{j}\boldsymbol{\mathsf{y}}_{j}/\sigma^{2} + \boldsymbol{\Psi}^{-1}\boldsymbol{\boldsymbol{\beta}}\right)$$

Fixed and random effects 00000000 Model fitting

Group-level characteristics

General LME Model

Formula for shrinkage estimates

Intuitively: Let $\hat{\boldsymbol{\beta}}_j = (\mathbf{X}_j^\top \mathbf{X}_j)^{-1} \mathbf{X}_j^\top \mathbf{y}_j$.

 $oldsymbol{\hat{eta}}_j = (1-w_j) oldsymbol{\hat{eta}}_j + w_j oldsymbol{eta}$

where w_j depends on Ψ and $\sigma^2 (\mathbf{X}_j^T \mathbf{X}_j)^{-1}$:

- w_j is small if $\sigma^2(\mathbf{X}_j^T \mathbf{X}_j)^{-1}$ small compared to Ψ ;
- w_j is big if $\sigma^2 (\mathbf{X}_j^T \mathbf{X}_j)^{-1}$ large compared to Ψ .

This is almost right. Averaging has to be done using matrices. The BLUP is:

$$\tilde{\boldsymbol{\beta}}_{j} = \left(\boldsymbol{\mathsf{X}}_{j}^{\mathsf{T}}\boldsymbol{\mathsf{X}}_{j}/\sigma^{2} + \boldsymbol{\Psi}^{-1}\right)^{-1} \left(\boldsymbol{\mathsf{X}}_{j}\boldsymbol{\mathsf{y}}_{j}/\sigma^{2} + \boldsymbol{\Psi}^{-1}\boldsymbol{\boldsymbol{\beta}}\right)$$

In practice, σ^2, Ψ, β are usually replaced with $\hat{\sigma}^2, \hat{\Psi}, \hat{\beta}$.

Quiz: How does $\tilde{\beta}_j$ vary with **X**_j, σ^2 and Ψ ?

Fixed and random effects 00000000 Model fitting

Group-level characteristics

General LME Model

Formula for shrinkage estimates

Intuitively: Let $\hat{\boldsymbol{\beta}}_j = (\mathbf{X}_j^\top \mathbf{X}_j)^{-1} \mathbf{X}_j^\top \mathbf{y}_j$.

 $oldsymbol{\hat{eta}}_j = (1-w_j) oldsymbol{\hat{eta}}_j + w_j oldsymbol{eta}$

where w_j depends on Ψ and $\sigma^2 (\mathbf{X}_j^T \mathbf{X}_j)^{-1}$:

- w_j is small if $\sigma^2 (\mathbf{X}_j^T \mathbf{X}_j)^{-1}$ small compared to Ψ ;
- w_j is big if $\sigma^2 (\mathbf{X}_j^T \mathbf{X}_j)^{-1}$ large compared to Ψ .

This is almost right. Averaging has to be done using matrices. The BLUP is:

$$\tilde{\boldsymbol{\beta}}_{j} = \left(\boldsymbol{\mathsf{X}}_{j}^{\mathsf{T}}\boldsymbol{\mathsf{X}}_{j}/\sigma^{2} + \boldsymbol{\Psi}^{-1}\right)^{-1} \left(\boldsymbol{\mathsf{X}}_{j}\boldsymbol{\mathsf{y}}_{j}/\sigma^{2} + \boldsymbol{\Psi}^{-1}\boldsymbol{\boldsymbol{\beta}}\right)$$

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Model

Derivation of shrinkage formula

•
$$\hat{\boldsymbol{\beta}}_{j}|\boldsymbol{\beta}_{j} \sim N(\beta_{j},\sigma^{2}(\mathbf{X}_{j}^{\top}\mathbf{X}_{j})^{-1})$$

• $\beta_j \sim N(\beta, \Psi)$

Then Bayes rule says $\beta_j \sim N(\mathbf{m}, \mathbf{V})$ where

$$\mathbf{V} = (\mathbf{X}_j^\top \mathbf{X}_j / \sigma^2 + \boldsymbol{\Psi}^{-1})^{-1}$$
$$\mathbf{m} = V(\mathbf{X}_j^\top \mathbf{y}_j / \sigma^2 + \boldsymbol{\Psi}^{-1} \boldsymbol{\beta})$$

The BLUP/Bayes estimator is the conditional expectation:

$$\tilde{\boldsymbol{\beta}}_{j} = \left(\boldsymbol{\mathsf{X}}_{j}^{\mathsf{T}}\boldsymbol{\mathsf{X}}_{j}/\sigma^{2} + \boldsymbol{\Psi}^{-1}\right)^{-1} \left(\boldsymbol{\mathsf{X}}_{j}\boldsymbol{\mathsf{y}}_{j}/\sigma^{2} + \boldsymbol{\Psi}^{-1}\boldsymbol{\beta}\right)$$

Introducti	

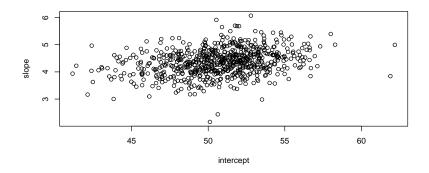
Model fitting

Group-level characteristics •000000

General LME Model

Macro-level effects

LME regression estimates:



Questions:

- What kind of schools have big intercepts?
- What kind of schools have big slopes?

Can we relate macro-level parameters to macro-level effects ?

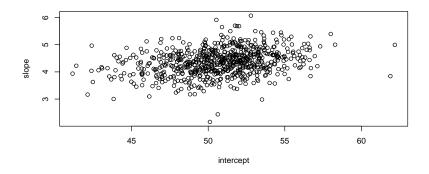
Inti		ictio	
OC	000	00	

Model fitting

Group-level characteristics •000000 General LME Model

Macro-level effects

LME regression estimates:



Questions:

- What kind of schools have big intercepts?
- What kind of schools have big slopes?

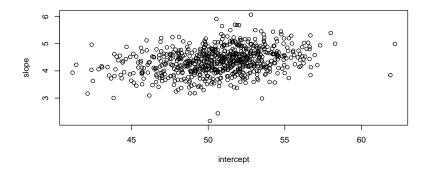
Can we relate macro-level parameters to macro-level effects ?

Fixed and random effects 00000000 Model fitting

Group-level characteristics •000000 General LME Model

Macro-level effects

LME regression estimates:



Questions:

- What kind of schools have big intercepts?
- What kind of schools have big slopes?

Can we relate macro-level parameters to macro-level effects ?

	od.	1 cet	ion
00			

Model fitting

Group-level characteristics

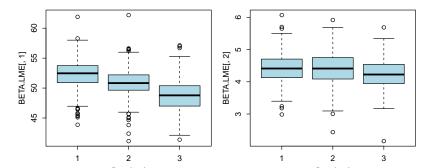
General LME Mode 00000000

Macro-level effects

```
### FLP variable
flp.school<-tapply( flp.nels , g.nels, mean)
table(flp.school)</pre>
```

flp.school
1 2 3
226 257 201

```
### RE and FLP association
mpar()
par(mfrow=c(1,2))
boxplot(BETA.LME[,1]~flp.school,col="lightblue")
boxplot(BETA.LME[,2]~flp.school,col="lightblue")
```



Fixed and random effects 00000000

Model fitting 00000000 Group-level characteristics

General LME Model

Macro-level effects

It seems that $\beta_{0,j}$ and possibly $\beta_{1,j}$ are associated with flp_j.

- Testing: Is there evidence for the association?
- Estimation: What is the association?

These questions can be addressed by expanding the model:

Old model:

$$egin{aligned} y_{i,j} &= eta_{0,j} + eta_{1,j} imes \mathit{ses}_{i,j} + \epsilon_{i,j} \ &= (eta_0 + eta_{0,j}) + (eta_1 + eta_{1,j}) imes \mathit{ses}_{i,j} + \epsilon_{i,j} \end{aligned}$$

New model:

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

= $(\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$

Note that under this model,

- The intercept for school j is $\beta_{0,j} = (\beta_{00} + \beta_{01} \times flp_j + a_{0,j})$
- The slope for school j is $\beta_{1,j} = (\beta_{10} + \beta_{11} \times flp_j + a_{1,j})$

Model fitting 00000000 Group-level characteristics

General LME Model

Macro-level effects

It seems that $\beta_{0,j}$ and possibly $\beta_{1,j}$ are associated with flp_j.

- Testing: Is there evidence for the association?
- Estimation: What is the association?

These questions can be addressed by expanding the model:

Old model:

$$egin{aligned} y_{i,j} &= eta_{0,j} + eta_{1,j} imes extsf{ses}_{i,j} + eta_{i,j} \ &= (eta_0 + eta_{0,j}) + (eta_1 + eta_{1,j}) imes extsf{ses}_{i,j} + eta_{i,j} \end{aligned}$$

New model:

 $y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$ = $(\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$

Note that under this model,

- The intercept for school j is $\beta_{0,j} = (\beta_{00} + \beta_{01} \times flp_j + a_{0,j})$
- The slope for school j is $\beta_{1,j} = (\beta_{10} + \beta_{11} \times flp_j + a_{1,j})$

Model fitting 00000000 Group-level characteristics

General LME Model

Macro-level effects

It seems that $\beta_{0,j}$ and possibly $\beta_{1,j}$ are associated with flp_j.

- Testing: Is there evidence for the association?
- Estimation: What is the association?

These questions can be addressed by expanding the model:

Old model:

$$egin{aligned} y_{i,j} &= eta_{0,j} + eta_{1,j} imes extsf{ses}_{i,j} + \epsilon_{i,j} \ &= (eta_0 + eta_{0,j}) + (eta_1 + eta_{1,j}) imes extsf{ses}_{i,j} + \epsilon_{i,j} \end{aligned}$$

New model:

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

= $(\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$

Note that under this model,

- The intercept for school j is $\beta_{0,j} = (\beta_{00} + \beta_{01} \times flp_j + a_{0,j})$
- The slope for school j is $\beta_{1,j} = (\beta_{10} + \beta_{11} \times flp_j + a_{1,j})$

Model fitting 00000000 Group-level characteristics

General LME Model

Macro-level effects

It seems that $\beta_{0,j}$ and possibly $\beta_{1,j}$ are associated with flp_j.

- Testing: Is there evidence for the association?
- Estimation: What is the association?

These questions can be addressed by expanding the model:

Old model:

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$
$$= (\beta_0 + a_{0,j}) + (\beta_1 + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$$

New model:

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

= $(\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$

Note that under this model,

- The intercept for school j is $\beta_{0,j} = (\beta_{00} + \beta_{01} \times flp_j + a_{0,j})$
- The slope for school j is $\beta_{1,j} = (\beta_{10} + \beta_{11} \times flp_j + a_{1,j})$

Model fitting 00000000 Group-level characteristics

General LME Model

Macro-level effects

It seems that $\beta_{0,j}$ and possibly $\beta_{1,j}$ are associated with flp_j.

- Testing: Is there evidence for the association?
- Estimation: What is the association?

These questions can be addressed by expanding the model:

Old model:

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$
$$= (\beta_0 + a_{0,j}) + (\beta_1 + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$$

New model:

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

= $(\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$

Note that under this model,

- The intercept for school j is $\beta_{0,j} = (\beta_{00} + \beta_{01} \times flp_j + a_{0,j})$
- The slope for school j is $\beta_{1,j} = (\beta_{10} + \beta_{11} \times flp_j + a_{1,j})$

Model fitting 00000000 Group-level characteristics

General LME Model

Macro-level effects

It seems that $\beta_{0,j}$ and possibly $\beta_{1,j}$ are associated with flp_j.

- Testing: Is there evidence for the association?
- Estimation: What is the association?

These questions can be addressed by expanding the model:

Old model:

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$
$$= (\beta_0 + a_{0,j}) + (\beta_1 + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$$

New model:

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

= $(\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$

Note that under this model,

• The intercept for school j is $\beta_{0,j} = (\beta_{00} + \beta_{01} \times flp_j + a_{0,j})$

• The slope for school j is $\beta_{1,j} = (\beta_{10} + \beta_{11} \times flp_j + a_{1,j})$

Model fitting 00000000 Group-level characteristics

General LME Model

Macro-level effects

It seems that $\beta_{0,j}$ and possibly $\beta_{1,j}$ are associated with flp_j.

- Testing: Is there evidence for the association?
- Estimation: What is the association?

These questions can be addressed by expanding the model:

Old model:

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$
$$= (\beta_0 + a_{0,j}) + (\beta_1 + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$$

New model:

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

= $(\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$

Note that under this model,

- The intercept for school j is $\beta_{0,j} = (\beta_{00} + \beta_{01} \times flp_j + a_{0,j})$
- The slope for school j is $\beta_{1,j} = (\beta_{10} + \beta_{11} \times flp_j + a_{1,j})$

Model fitting 00000000 Group-level characteristics

General LME Model

Macro-level effects

It seems that $\beta_{0,j}$ and possibly $\beta_{1,j}$ are associated with flp_j.

- Testing: Is there evidence for the association?
- Estimation: What is the association?

These questions can be addressed by expanding the model:

Old model:

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$
$$= (\beta_0 + a_{0,j}) + (\beta_1 + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$$

New model:

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

= $(\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$

Note that under this model,

- The intercept for school j is $\beta_{0,j} = (\beta_{00} + \beta_{01} \times flp_j + a_{0,j})$
- The slope for school j is $\beta_{1,j} = (\beta_{10} + \beta_{11} \times flp_j + a_{1,j})$

Model fitting 00000000 Group-level characteristics

General LME Model

Macro-level effects

It seems that $\beta_{0,j}$ and possibly $\beta_{1,j}$ are associated with flp_j.

- Testing: Is there evidence for the association?
- Estimation: What is the association?

These questions can be addressed by expanding the model:

Old model:

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$
$$= (\beta_0 + a_{0,j}) + (\beta_1 + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$$

New model:

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

= $(\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$

Note that under this model,

- The intercept for school j is $\beta_{0,j} = (\beta_{00} + \beta_{01} \times flp_j + a_{0,j})$
- The slope for school j is $\beta_{1,j} = (\beta_{10} + \beta_{11} \times flp_j + a_{1,j})$

Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics

General LME Mode 00000000

Macro-level fixed effects

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

= $(\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$

- β_{01} represents the macro effect of flp_j on the intercept/mean in group j
 - β₁₁ represents the macro effect of *flp_j* on the slope with ses_{i,j} in group j

Note: β_{01} and β_{11} do not vary across groups. If they did, they would be confounded with $a_{0,j}$ and $a_{1,j}$.

Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics

General LME Model

Macro-level fixed effects

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

= $(\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$

• β_{01} represents the macro effect of flp_j on the intercept/mean in group j

• β_{11} represents the macro effect of flp_j on the slope with ses_{i,j} in group j

Note: β_{01} and β_{11} do not vary across groups. If they did, they would be confounded with $a_{0,j}$ and $a_{1,j}$.

Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics

General LME Mode 00000000

Macro-level fixed effects

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

= $(\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$

- β_{01} represents the macro effect of flp_j on the intercept/mean in group j
- β_{11} represents the macro effect of flp_j on the slope with $ses_{i,j}$ in group j

Note: β_{01} and β_{11} do not vary across groups. If they did, they would be confounded with $a_{0,j}$ and $a_{1,j}$.

Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics

General LME Model

Macro-level fixed effects

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

= $(\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$

- β_{01} represents the macro effect of flp_j on the intercept/mean in group j
- β_{11} represents the macro effect of flp_j on the slope with $ses_{i,j}$ in group j

Note: β_{01} and β_{11} do not vary across groups. If they did, they would be confounded with $a_{0,j}$ and $a_{1,j}$.

Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics

General LME Model

Macro-level fixed effects

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

= $(\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$

- β_{01} represents the macro effect of flp_j on the intercept/mean in group j
- β_{11} represents the macro effect of flp_j on the slope with $ses_{i,j}$ in group j

Note: β_{01} and β_{11} do not vary across groups. If they did, they would be confounded with $a_{0,j}$ and $a_{1,j}$.

Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics

General LME Mode 00000000

Macro-level fixed effects

$$y_{i,j} = \beta_{0,j} + \beta_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

= $(\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$

- β_{01} represents the macro effect of flp_j on the intercept/mean in group j
- β_{11} represents the macro effect of flp_j on the slope with $ses_{i,j}$ in group j

Note: β_{01} and β_{11} do not vary across groups. If they did, they would be confounded with $a_{0,j}$ and $a_{1,j}$.

Model fitting

Group-level characteristics

General LME Model

Macro-level fixed effects

 $y_{i,j} = (\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$

Rearranging, we get

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{10} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

Fixed effects regression: $\beta_{00} + \beta_{01} \times flp_j + \beta_{10} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j}$ Random effects regression: $a_{0,i} + a_{1,i} \times ses_{i,i}$

- The predictors for the two regressions are different.
- Macro-effects do not appear in the random effects regression.

Model fitting

Group-level characteristics

General LME Model

Macro-level fixed effects

$$y_{i,j} = (\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$$

Rearranging, we get

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{10} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

Fixed effects regression: $\beta_{00} + \beta_{01} \times flp_j + \beta_{10} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j}$ Random effects regression: $a_{0,j} + a_{1,j} \times ses_{i,j}$

- The predictors for the two regressions are different.
- Macro-effects do not appear in the random effects regression.

Model fitting

Group-level characteristics

General LME Model

Macro-level fixed effects

$$y_{i,j} = (\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$$

Rearranging, we get

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{10} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

Fixed effects regression: $\beta_{00} + \beta_{01} \times flp_j + \beta_{10} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j}$ Random effects regression: $a_{0,i} + a_{1,i} \times ses_{i,j}$

- The predictors for the two regressions are different.
- Macro-effects do not appear in the random effects regression.

Model fitting

Group-level characteristics

General LME Model

Macro-level fixed effects

$$y_{i,j} = (\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$$

Rearranging, we get

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{10} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

Fixed effects regression: $\beta_{00} + \beta_{01} \times flp_j + \beta_{10} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j}$ Random effects regression: $a_{0,i} + a_{1,i} \times ses_{i,j}$

- The predictors for the two regressions are different.
- Macro-effects do not appear in the random effects regression.

Model fitting

Group-level characteristics

General LME Model

Macro-level fixed effects

$$y_{i,j} = (\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$$

Rearranging, we get

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{10} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

Fixed effects regression: $\beta_{00} + \beta_{01} \times flp_j + \beta_{10} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j}$ Random effects regression: $a_{0,i} + a_{1,i} \times ses_{i,j}$

- The predictors for the two regressions are different.
- Macro-effects do not appear in the random effects regression.

Model fitting

Group-level characteristics

General LME Model

Macro-level fixed effects

$$y_{i,j} = (\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$$

Rearranging, we get

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{10} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

Fixed effects regression: $\beta_{00} + \beta_{01} \times flp_j + \beta_{10} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j}$ Random effects regression: $a_{0,i} + a_{1,i} \times ses_{i,j}$

- The predictors for the two regressions are different.
- Macro-effects do not appear in the random effects regression.

Model fitting

Group-level characteristics

General LME Model

Macro-level fixed effects

$$y_{i,j} = (\beta_{00} + \beta_{01} \times flp_j + a_{0,j}) + (\beta_{10} + \beta_{11} \times flp_j + a_{1,j}) \times ses_{i,j} + \epsilon_{i,j}$$

Rearranging, we get

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{10} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

Fixed effects regression: $\beta_{00} + \beta_{01} \times flp_j + \beta_{10} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j}$ Random effects regression: $a_{0,i} + a_{1,i} \times ses_{i,j}$

- The predictors for the two regressions are different.
- Macro-effects do not appear in the random effects regression.

Model fitting 00000000 Group-level characteristics

General LME Model

Mixed-effects model

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{11} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

We would like to avoid these double subscripts.

We rewrite the model as

$$\begin{aligned} y_{i,j} &= \beta_0 + \beta_1 \times \textit{flp}_j + \beta_2 \times \textit{ses}_{i,j} + \beta_3 \times \textit{flp}_j \times \textit{ses}_{i,j} + \\ a_{0,j} + a_{1,j} \times \textit{ses}_{i,j} + \\ \epsilon_{i,j} \end{aligned}$$

$$= \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_{i,j} + \mathbf{a}_{j}^{\mathsf{T}} \mathbf{z}_{i,j} + \epsilon_{i,j}$$

- $\mathbf{x}_{i,j} = (1, flp_j, ses_{i,j}, flp_j \times ses_{i,j})$
- $z_{i,j} = (1, ses_{i,j})$

Model fitting 00000000 Group-level characteristics

General LME Model

Mixed-effects model

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{11} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

We would like to avoid these double subscripts.

We rewrite the model as

$$\begin{aligned} y_{i,j} &= \beta_0 + \beta_1 \times \textit{flp}_j + \beta_2 \times \textit{ses}_{i,j} + \beta_3 \times \textit{flp}_j \times \textit{ses}_{i,j} + \\ a_{0,j} + a_{1,j} \times \textit{ses}_{i,j} + \\ \epsilon_{i,j} \end{aligned}$$

$$= \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_{i,j} + \mathbf{a}_{j}^{\mathsf{T}} \mathbf{z}_{i,j} + \epsilon_{i,j}$$

- $\mathbf{x}_{i,j} = (1, flp_j, ses_{i,j}, flp_j \times ses_{i,j})$
- $\mathsf{z}_{i,j} = (1, ses_{i,j})$

Model fitting 00000000 Group-level characteristics

General LME Model

Mixed-effects model

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{11} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

We would like to avoid these double subscripts.

We rewrite the model as

$$\begin{aligned} \mathbf{y}_{i,j} &= \beta_0 + \beta_1 \times flp_j + \beta_2 \times ses_{i,j} + \beta_3 \times flp_j \times ses_{i,j} + \\ & \mathbf{a}_{0,j} + \mathbf{a}_{1,j} \times ses_{i,j} + \\ & \epsilon_{i,j} \end{aligned}$$

$$= \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

- $\mathbf{x}_{i,j} = (1, flp_j, ses_{i,j}, flp_j \times ses_{i,j})$
- $\mathsf{z}_{i,j} = (1, ses_{i,j})$

Model fitting 00000000 Group-level characteristics

General LME Model

Mixed-effects model

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{11} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

We would like to avoid these double subscripts.

We rewrite the model as

$$\begin{aligned} \mathbf{y}_{i,j} &= \beta_0 + \beta_1 \times flp_j + \beta_2 \times ses_{i,j} + \beta_3 \times flp_j \times ses_{i,j} + \\ & \mathbf{a}_{0,j} + \mathbf{a}_{1,j} \times ses_{i,j} + \\ & \epsilon_{i,j} \end{aligned}$$

$$= \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

- $\mathbf{x}_{i,j} = (1, flp_j, ses_{i,j}, flp_j \times ses_{i,j})$
- $\mathsf{z}_{i,j} = (1, ses_{i,j})$

Model fitting

Group-level characteristics

General LME Model

Mixed-effects model

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{11} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

We would like to avoid these double subscripts.

We rewrite the model as

$$y_{i,j} = \beta_0 + \beta_1 \times flp_j + \beta_2 \times ses_{i,j} + \beta_3 \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$
$$= \beta^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

- $\mathbf{x}_{i,j} = (1, flp_j, ses_{i,j}, flp_j \times ses_{i,j})$
- $\mathsf{z}_{i,j} = (1, ses_{i,j})$

Model fitting

Group-level characteristics

General LME Model

Mixed-effects model

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{11} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

We would like to avoid these double subscripts.

We rewrite the model as

$$y_{i,j} = \beta_0 + \beta_1 \times flp_j + \beta_2 \times ses_{i,j} + \beta_3 \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$
$$= \beta^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

- $\mathbf{x}_{i,j} = (1, flp_j, ses_{i,j}, flp_j \times ses_{i,j})$
- $\mathsf{z}_{i,j} = (1, ses_{i,j})$

Model fitting

Group-level characteristics

General LME Model

Mixed-effects model

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{11} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

We would like to avoid these double subscripts.

We rewrite the model as

$$y_{i,j} = \beta_0 + \beta_1 \times flp_j + \beta_2 \times ses_{i,j} + \beta_3 \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$
$$= \beta^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

- $\mathbf{x}_{i,j} = (1, \textit{flp}_j, \textit{ses}_{i,j}, \textit{flp}_j \times \textit{ses}_{i,j})$
- $\mathsf{z}_{i,j} = (1, ses_{i,j})$

Model fitting

Group-level characteristics

General LME Model

Mixed-effects model

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{11} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

We would like to avoid these double subscripts.

We rewrite the model as

$$y_{i,j} = \beta_0 + \beta_1 \times flp_j + \beta_2 \times ses_{i,j} + \beta_3 \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$
$$= \beta^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

- $\mathbf{x}_{i,j} = (1, \textit{flp}_j, \textit{ses}_{i,j}, \textit{flp}_j \times \textit{ses}_{i,j})$
- $\mathsf{z}_{i,j} = (1, ses_{i,j})$

Model fitting

Group-level characteristics

General LME Model

Mixed-effects model

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{11} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

We would like to avoid these double subscripts.

We rewrite the model as

$$\begin{aligned} y_{i,j} &= \beta_0 + \beta_1 \times \textit{flp}_j + \beta_2 \times \textit{ses}_{i,j} + \beta_3 \times \textit{flp}_j \times \textit{ses}_{i,j} + \\ & a_{0,j} + a_{1,j} \times \textit{ses}_{i,j} + \\ & \epsilon_{i,j} \end{aligned}$$

$$= \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

- $\mathbf{x}_{i,j} = (1, flp_j, ses_{i,j}, flp_j \times ses_{i,j})$
- $z_{i,j} = (1, ses_{i,j})$

Model fitting

Group-level characteristics

General LME Model

Mixed-effects model

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{11} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

We would like to avoid these double subscripts.

We rewrite the model as

$$\begin{aligned} y_{i,j} &= \beta_0 + \beta_1 \times \textit{flp}_j + \beta_2 \times \textit{ses}_{i,j} + \beta_3 \times \textit{flp}_j \times \textit{ses}_{i,j} + \\ & a_{0,j} + a_{1,j} \times \textit{ses}_{i,j} + \\ & \epsilon_{i,j} \end{aligned}$$

$$= \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

- $\mathbf{x}_{i,j} = (1, flp_j, ses_{i,j}, flp_j \times ses_{i,j})$
- $z_{i,j} = (1, ses_{i,j})$

Model fitting

Group-level characteristics

General LME Model

Mixed-effects model

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{11} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

We would like to avoid these double subscripts.

We rewrite the model as

$$\begin{aligned} y_{i,j} &= \beta_0 + \beta_1 \times \textit{flp}_j + \beta_2 \times \textit{ses}_{i,j} + \beta_3 \times \textit{flp}_j \times \textit{ses}_{i,j} + \\ & a_{0,j} + a_{1,j} \times \textit{ses}_{i,j} + \\ & \epsilon_{i,j} \end{aligned}$$

$$= \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

- $\mathbf{x}_{i,j} = (1, flp_j, ses_{i,j}, flp_j \times ses_{i,j})$
- $z_{i,j} = (1, ses_{i,j})$

Model fitting

Group-level characteristics

General LME Model

Mixed-effects model

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{11} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

We would like to avoid these double subscripts.

We rewrite the model as

$$\begin{aligned} y_{i,j} &= \beta_0 + \beta_1 \times \textit{flp}_j + \beta_2 \times \textit{ses}_{i,j} + \beta_3 \times \textit{flp}_j \times \textit{ses}_{i,j} + \\ a_{0,j} + a_{1,j} \times \textit{ses}_{i,j} + \\ \epsilon_{i,j} \end{aligned}$$

$$= \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

- $\mathbf{x}_{i,j} = (1, flp_j, ses_{i,j}, flp_j \times ses_{i,j})$
- $z_{i,j} = (1, ses_{i,j})$

Model fitting

Group-level characteristics

General LME Model

Mixed-effects model

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{11} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

We would like to avoid these double subscripts.

We rewrite the model as

$$\begin{aligned} y_{i,j} &= \beta_0 + \beta_1 \times \textit{flp}_j + \beta_2 \times \textit{ses}_{i,j} + \beta_3 \times \textit{flp}_j \times \textit{ses}_{i,j} + \\ a_{0,j} + a_{1,j} \times \textit{ses}_{i,j} + \\ \epsilon_{i,j} \end{aligned}$$

$$= \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}_{i,j} + \mathbf{a}_{j}^{\mathsf{T}} \mathbf{z}_{i,j} + \epsilon_{i,j}$$

- $\mathbf{x}_{i,j} = (1, flp_j, ses_{i,j}, flp_j \times ses_{i,j})$
- $z_{i,j} = (1, se_{i,j})$

Model fitting

Group-level characteristics

General LME Model

Mixed-effects model

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{11} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

We would like to avoid these double subscripts.

We rewrite the model as

$$\begin{aligned} y_{i,j} &= \beta_0 + \beta_1 \times \textit{flp}_j + \beta_2 \times \textit{ses}_{i,j} + \beta_3 \times \textit{flp}_j \times \textit{ses}_{i,j} + \\ a_{0,j} + a_{1,j} \times \textit{ses}_{i,j} + \\ \epsilon_{i,j} \end{aligned}$$

$$= \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

- $\mathbf{x}_{i,j} = (1, flp_j, ses_{i,j}, flp_j \times ses_{i,j})$
- $\mathbf{z}_{i,j} = (1, ses_{i,j})$

Model fitting

Group-level characteristics

General LME Model

Mixed-effects model

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{11} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

We would like to avoid these double subscripts.

We rewrite the model as

$$\begin{aligned} y_{i,j} &= \beta_0 + \beta_1 \times \textit{flp}_j + \beta_2 \times \textit{ses}_{i,j} + \beta_3 \times \textit{flp}_j \times \textit{ses}_{i,j} + \\ a_{0,j} + a_{1,j} \times \textit{ses}_{i,j} + \\ \epsilon_{i,j} \end{aligned}$$

$$=\boldsymbol{\beta}^{T}\mathbf{x}_{i,j} + \mathbf{a}_{j}^{T}\mathbf{z}_{i,j} + \epsilon_{i,j}$$

- $\mathbf{x}_{i,j} = (1, flp_j, ses_{i,j}, flp_j \times ses_{i,j})$
- $z_{i,j} = (1, ses_{i,j})$

Model fitting

Group-level characteristics

General LME Model

Mixed-effects model

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{11} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

We would like to avoid these double subscripts.

We rewrite the model as

$$\begin{aligned} y_{i,j} &= \beta_0 + \beta_1 \times \textit{flp}_j + \beta_2 \times \textit{ses}_{i,j} + \beta_3 \times \textit{flp}_j \times \textit{ses}_{i,j} + \\ & a_{0,j} + a_{1,j} \times \textit{ses}_{i,j} + \\ & \epsilon_{i,j} \end{aligned}$$

$$= \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

•
$$\mathbf{x}_{i,j} = (1, flp_j, ses_{i,j}, flp_j \times ses_{i,j})$$

• $\mathbf{z}_{i,j} = (1, ses_{i,j})$

Model fitting

Group-level characteristics

General LME Model

Mixed-effects model

$$y_{i,j} = \beta_{00} + \beta_{01} \times flp_j + \beta_{11} \times ses_{i,j} + \beta_{11} \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

We would like to avoid these double subscripts.

We rewrite the model as

$$y_{i,j} = \beta_0 + \beta_1 \times flp_j + \beta_2 \times ses_{i,j} + \beta_3 \times flp_j \times ses_{i,j} + a_{0,j} + a_{1,j} \times ses_{i,j} + \epsilon_{i,j}$$

$$= \boldsymbol{\beta}' \mathbf{x}_{i,j} + \mathbf{a}_{j}' \mathbf{z}_{i,j} + \epsilon_{i,j}$$

•
$$\mathbf{x}_{i,j} = (1, flp_j, ses_{i,j}, flp_j \times ses_{i,j})$$

• $\mathbf{z}_{i,j} = (1, ses_{i,j})$

Fixed and random effects 00000000 Model fitting

Group-level characteristics

General LME Model

Group-level representation

Micro-level representation:

$$y_{i,j} = \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

Combining observations within a group:

$$\begin{pmatrix} y_{1,j} \\ \vdots \\ y_{n,j} \end{pmatrix} = \begin{pmatrix} \mathbf{x}_{1,j} \to \\ \vdots \\ \mathbf{x}_{n,j} \to \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_{\rho} \end{pmatrix} + \begin{pmatrix} \mathbf{z}_{1,j} \to \\ \vdots \\ \mathbf{z}_{n,j} \to \end{pmatrix} \begin{pmatrix} a_{1,j} \\ \vdots \\ a_{\rho,j} \end{pmatrix} + \begin{pmatrix} \epsilon_{1,j} \\ \vdots \\ \epsilon_{n,j} \end{pmatrix}$$

Two-level HLM: General form

$$\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$$

Fixed and random effects 00000000 Model fitting

Group-level characteristics

General LME Model

Group-level representation

Micro-level representation:

$$y_{i,j} = \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

Combining observations within a group:

$$\begin{pmatrix} y_{1,j} \\ \vdots \\ y_{n,j} \end{pmatrix} = \begin{pmatrix} \mathbf{x}_{1,j} \to \\ \vdots \\ \mathbf{x}_{n,j} \to \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \mathbf{z}_{1,j} \to \\ \vdots \\ \mathbf{z}_{n,j} \to \end{pmatrix} \begin{pmatrix} \mathbf{a}_{1,j} \\ \vdots \\ \mathbf{a}_{p,j} \end{pmatrix} + \begin{pmatrix} \epsilon_{1,j} \\ \vdots \\ \epsilon_{n,j} \end{pmatrix}$$

Two-level HLM: General form

$$\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$$

Fixed and random effects 00000000 Model fitting

Group-level characteristics

General LME Model

Group-level representation

Micro-level representation:

$$y_{i,j} = \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

Combining observations within a group:

$$\begin{pmatrix} y_{1,j} \\ \vdots \\ y_{n,j} \end{pmatrix} = \begin{pmatrix} \mathbf{x}_{1,j} \to \\ \vdots \\ \mathbf{x}_{n,j} \to \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \mathbf{z}_{1,j} \to \\ \vdots \\ \mathbf{z}_{n,j} \to \end{pmatrix} \begin{pmatrix} \mathbf{a}_{1,j} \\ \vdots \\ \mathbf{a}_{p,j} \end{pmatrix} + \begin{pmatrix} \epsilon_{1,j} \\ \vdots \\ \epsilon_{n,j} \end{pmatrix}$$

Two-level HLM: General form

$$\mathbf{y}_j = \mathbf{X}_j \boldsymbol{eta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$$

Fixed and random effects 00000000 Model fitting

Group-level characteristics

General LME Model

Group-level representation

Micro-level representation:

$$y_{i,j} = \boldsymbol{\beta}^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

Combining observations within a group:

$$\begin{pmatrix} y_{1,j} \\ \vdots \\ y_{n,j} \end{pmatrix} = \begin{pmatrix} \mathbf{x}_{1,j} \to \\ \vdots \\ \mathbf{x}_{n,j} \to \end{pmatrix} \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \mathbf{z}_{1,j} \to \\ \vdots \\ \mathbf{z}_{n,j} \to \end{pmatrix} \begin{pmatrix} \mathbf{a}_{1,j} \\ \vdots \\ \mathbf{a}_{p,j} \end{pmatrix} + \begin{pmatrix} \epsilon_{1,j} \\ \vdots \\ \epsilon_{n,j} \end{pmatrix}$$

Two-level HLM: General form

$$\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$$

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Model •0000000

Two-level HLM: General form

This is the general form of a two-level hierarchical linear model

$$\mathbf{y}_j = \mathbf{X}_j \boldsymbol{eta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$$

where \mathbf{a}_j and $\boldsymbol{\epsilon}_j$ are multivariate normal.

- *β* are the *fixed effects coefficients*;
- X_j is the design matrix for the fixed effects.
- *a_j* are the *random effects coefficients for group j*;
- **Z**_j is the design matrix for the fixed effects.

Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model •0000000

Two-level HLM: General form

This is the general form of a two-level hierarchical linear model

$$\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$$

where \mathbf{a}_j and $\boldsymbol{\epsilon}_j$ are multivariate normal.

- β are the fixed effects coefficients;
- X_j is the design matrix for the fixed effects.
- *a_j* are the *random effects coefficients for group j*;
- **Z**_j is the design matrix for the fixed effects.

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Model •0000000

Two-level HLM: General form

This is the general form of a two-level hierarchical linear model

$$\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$$

where \mathbf{a}_j and $\boldsymbol{\epsilon}_j$ are multivariate normal.

- *B* are the *fixed effects coefficients*;
- X_j is the design matrix for the fixed effects.
- *a_j* are the *random effects coefficients for group j*;
- **Z**_j is the design matrix for the fixed effects.

Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model 0000000

Variance components

 $\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$

$$\mathsf{E}\left[\begin{array}{c} \mathsf{a}_{j}\\ \epsilon_{j}\end{array}\right] = \left[\begin{array}{c} \mathsf{0}\\ \mathsf{0}\end{array}\right] \text{ and } \mathsf{Cov}\left[\begin{array}{c} \mathsf{a}_{j}\\ \epsilon_{j}\end{array}\right] = \left[\begin{array}{c} \Psi & \mathsf{0}\\ \mathsf{0} & \Sigma\end{array}\right].$$

Across-group heterogeneity: Ψ is the variance-covariance in $\mathbf{a}_1, \ldots, \mathbf{a}_m$.

Within-group heterogeneity: Σ is the variance-covariance of $y_{1,j}, \ldots, y_{n_j,j}$.

Note: We should write Σ_i instead of Σ , as

$$\operatorname{Cov}[\mathbf{y}_j] = \operatorname{Cov}[\boldsymbol{\epsilon}_j] = \Sigma_j$$
 is an $n_j \times n_j$ matrix.

Note: In the examples so far,

$$\Sigma_j = \sigma^2 \mathrm{I}_{n_j}.$$

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Variance components

$$\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$$

$$\mathsf{E}\left[\begin{array}{c} \mathbf{a}_{j} \\ \mathbf{\epsilon}_{j} \end{array}\right] = \left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array}\right] \text{ and } \mathsf{Cov}\left[\begin{array}{c} \mathbf{a}_{j} \\ \mathbf{\epsilon}_{j} \end{array}\right] = \left[\begin{array}{c} \Psi & \mathbf{0} \\ \mathbf{0} & \Sigma \end{array}\right].$$

Across-group heterogeneity: Ψ is the variance-covariance in $\mathbf{a}_1, \ldots, \mathbf{a}_m$.

Within-group heterogeneity: Σ is the variance-covariance of $y_{1,j}, \ldots, y_{n_i,j}$.

Note: We should write Σ_j instead of Σ , as

$$\operatorname{Cov}[\mathbf{y}_j] = \operatorname{Cov}[\boldsymbol{\epsilon}_j] = \Sigma_j$$
 is an $n_j \times n_j$ matrix.

Note: In the examples so far,

$$\Sigma_j = \sigma^2 \mathrm{I}_{n_j}.$$

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Variance components

$$\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$$

$$\mathsf{E}\left[\begin{array}{c} \mathbf{a}_{j} \\ \mathbf{\epsilon}_{j} \end{array}\right] = \left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array}\right] \text{ and } \mathsf{Cov}\left[\begin{array}{c} \mathbf{a}_{j} \\ \mathbf{\epsilon}_{j} \end{array}\right] = \left[\begin{array}{c} \Psi & \mathbf{0} \\ \mathbf{0} & \Sigma \end{array}\right].$$

Across-group heterogeneity: Ψ is the variance-covariance in $\mathbf{a}_1, \ldots, \mathbf{a}_m$.

Within-group heterogeneity: Σ is the variance-covariance of $y_{1,j}, \ldots, y_{n_i,j}$.

Note: We should write Σ_i instead of Σ , as

 $\operatorname{Cov}[\mathbf{y}_j] = \operatorname{Cov}[\boldsymbol{\epsilon}_j] = \Sigma_j$ is an $n_j \times n_j$ matrix.

Note: In the examples so far,

$$\Sigma_j = \sigma^2 \mathrm{I}_{n_j}.$$

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Variance components

$$\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$$

$$\mathsf{E}\left[\begin{array}{c} \mathbf{a}_{j} \\ \boldsymbol{\epsilon}_{j} \end{array}\right] = \left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array}\right] \text{ and } \mathsf{Cov}\left[\begin{array}{c} \mathbf{a}_{j} \\ \boldsymbol{\epsilon}_{j} \end{array}\right] = \left[\begin{array}{c} \Psi & \mathbf{0} \\ \mathbf{0} & \Sigma \end{array}\right].$$

Across-group heterogeneity: Ψ is the variance-covariance in $\mathbf{a}_1, \ldots, \mathbf{a}_m$. Within-group heterogeneity: Σ is the variance-covariance of $y_{1,j}, \ldots, y_{n_i,j}$.

Note: We should write Σ_i instead of Σ , as

 $Cov[\mathbf{y}_j] = Cov[\boldsymbol{\epsilon}_j] = \Sigma_j$ is an $n_j \times n_j$ matrix.

Note: In the examples so far,

$$\Sigma_j = \sigma^2 \mathrm{I}_{n_j}.$$

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Variance components

$$\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$$

$$\mathsf{E}\left[\begin{array}{c} \mathbf{a}_{j}\\ \boldsymbol{\epsilon}_{j}\end{array}\right] = \left[\begin{array}{c} \mathbf{0}\\ \mathbf{0}\end{array}\right] \text{ and } \mathsf{Cov}\left[\begin{array}{c} \mathbf{a}_{j}\\ \boldsymbol{\epsilon}_{j}\end{array}\right] = \left[\begin{array}{c} \Psi & \mathbf{0}\\ \mathbf{0} & \Sigma\end{array}\right].$$

Across-group heterogeneity: Ψ is the variance-covariance in $\mathbf{a}_1, \ldots, \mathbf{a}_m$.

Within-group heterogeneity: Σ is the variance-covariance of $y_{1,j}, \ldots, y_{n_j,j}$.

Note: We should write Σ_j instead of Σ , as

$$Cov[\mathbf{y}_j] = Cov[\boldsymbol{\epsilon}_j] = \Sigma_j$$
 is an $n_j \times n_j$ matrix.

Note: In the examples so far,

$$\Sigma_j = \sigma^2 \mathrm{I}_{n_j}.$$

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Variance components

$$\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$$

$$\mathsf{E}\left[\begin{array}{c} \mathbf{a}_{j}\\ \boldsymbol{\epsilon}_{j}\end{array}\right] = \left[\begin{array}{c} \mathbf{0}\\ \mathbf{0}\end{array}\right] \text{ and } \mathsf{Cov}\left[\begin{array}{c} \mathbf{a}_{j}\\ \boldsymbol{\epsilon}_{j}\end{array}\right] = \left[\begin{array}{c} \Psi & \mathbf{0}\\ \mathbf{0} & \Sigma\end{array}\right].$$

Across-group heterogeneity: Ψ is the variance-covariance in $\mathbf{a}_1, \ldots, \mathbf{a}_m$.

Within-group heterogeneity: Σ is the variance-covariance of $y_{1,j}, \ldots, y_{n_j,j}$.

Note: We should write Σ_i instead of Σ , as

$$Cov[\mathbf{y}_j] = Cov[\boldsymbol{\epsilon}_j] = \Sigma_j$$
 is an $n_j \times n_j$ matrix.

Note: In the examples so far,

$$\Sigma_j = \sigma^2 I_{n_j}$$

Model fitting 00000000 Group-level characteristics 0000000 General LME Model 0000000

Variance components

$$\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$$

$$\mathsf{E}\left[\begin{array}{c} \mathbf{a}_{j}\\ \boldsymbol{\epsilon}_{j}\end{array}\right] = \left[\begin{array}{c} \mathbf{0}\\ \mathbf{0}\end{array}\right] \text{ and } \mathsf{Cov}\left[\begin{array}{c} \mathbf{a}_{j}\\ \boldsymbol{\epsilon}_{j}\end{array}\right] = \left[\begin{array}{c} \Psi & \mathbf{0}\\ \mathbf{0} & \Sigma\end{array}\right].$$

Across-group heterogeneity: Ψ is the variance-covariance in $\mathbf{a}_1, \ldots, \mathbf{a}_m$.

Within-group heterogeneity: Σ is the variance-covariance of $y_{1,j}, \ldots, y_{n_j,j}$.

Note: We should write Σ_i instead of Σ , as

$$Cov[\mathbf{y}_j] = Cov[\boldsymbol{\epsilon}_j] = \Sigma_j$$
 is an $n_j \times n_j$ matrix.

Note: In the examples so far,

$$\Sigma_j = \sigma^2 \mathbf{I}_{n_j}$$

Model fitting

Group-level characteristics 0000000 General LME Model

Example: One-way random effects model, aka the HNM

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

$$\{a_j\} \sim iid \ N(0, \tau^2)$$

$$\{\epsilon_{i,j}\} \sim iid \ N(0, \sigma^2)$$

Exercise: Express this model as $\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$

• Regression parameters:

$$eta=\mu\;,\; a_j=a_j$$

Design matrices:

$$\mathbf{X}_j = \mathbf{Z}_j = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$
 for each $j \in \{1, \dots, m\}$

Covariance terms:

$$\Psi = \operatorname{Var}[a_j] = au^2 \;, \; \Sigma = \sigma^2 \mathsf{I}$$

Model fitting

Group-level characteristics 0000000 General LME Model

Example: One-way random effects model, aka the HNM

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

$$\{a_j\} \sim iid \ N(0, \tau^2)$$

$$\{\epsilon_{i,j}\} \sim iid \ N(0, \sigma^2)$$

Exercise: Express this model as $\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$

Regression parameters:

 $eta=\mu\;,\; \mathsf{a}_{\mathsf{j}}=\mathsf{a}_{\mathsf{j}}$

Design matrices:

$$\mathbf{X}_j = \mathbf{Z}_j = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$
 for each $j \in \{1, \dots, m\}$

Covariance terms:

$$\Psi = {
m Var}[a_j] = au^2 \;, \; \Sigma = \sigma^2 {
m I}$$

Model fitting

Group-level characteristics 0000000 General LME Model

Example: One-way random effects model, aka the HNM

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

$$\{a_j\} \sim iid \ N(0, \tau^2)$$

$$\{\epsilon_{i,j}\} \sim iid \ N(0, \sigma^2)$$

Exercise: Express this model as $\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$

• Regression parameters:

$$\beta = \mu$$
, $a_j = a_j$

Design matrices:

$$\mathbf{X}_j = \mathbf{Z}_j = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$
 for each $j \in \{1, \dots, m\}$

• Covariance terms:

$$\Psi = \operatorname{Var}[a_j] = \tau^2 \ , \ \Sigma = \sigma^2 \mathbf{I}$$

Model fitting

Group-level characteristics

General LME Model

Example: One-way random effects model, aka the HNM

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

$$\{a_j\} \sim iid \ N(0, \tau^2)$$

$$\{\epsilon_{i,j}\} \sim iid \ N(0, \sigma^2)$$

Exercise: Express this model as $\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$

• Regression parameters:

$$\beta = \mu$$
 , $\mathbf{a}_j = \mathbf{a}_j$

• Design matrices:

$$\mathbf{X}_j = \mathbf{Z}_j = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$
 for each $j \in \{1, \dots, m\}$

• Covariance terms:

$$\Psi = \operatorname{Var}[a_j] = \tau^2 \ , \ \Sigma = \sigma^2 \mathbf{I}$$

Model fitting

Group-level characteristics 0000000 General LME Model

Example: One-way random effects model, aka the HNM

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

$$\{a_j\} \sim iid \ N(0, \tau^2)$$

$$\{\epsilon_{i,j}\} \sim iid \ N(0, \sigma^2)$$

Exercise: Express this model as $\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$

• Regression parameters:

$$\beta = \mu$$
 , $\mathbf{a}_j = \mathbf{a}_j$

Design matrices:

$$\mathbf{X}_j = \mathbf{Z}_j = \left[egin{array}{c} 1 \ dots \ 1 \ 1 \end{array}
ight] ext{ for each } j \in \{1,\ldots,m\}$$

Covariance terms:

$$\Psi = \mathsf{Var}[a_j] = \tau^2 \ , \ \Sigma = \sigma^2 \mathbf{I}$$

Model fitting

Group-level characteristics 0000000 General LME Model

Example: One-way random effects model, aka the HNM

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

$$\{a_j\} \sim iid \ N(0, \tau^2)$$

$$\{\epsilon_{i,j}\} \sim iid \ N(0, \sigma^2)$$

Exercise: Express this model as $\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$

• Regression parameters:

$$\beta = \mu$$
 , $a_j = a_j$

Design matrices:

$$\mathbf{X}_j = \mathbf{Z}_j = \left[egin{array}{c} 1 \ dots \ 1 \end{array}
ight] \quad ext{for each } j \in \{1,\ldots,m\}$$

Covariance terms:

$$\Psi = \mathsf{Var}[a_j] = \tau^2 \ , \ \Sigma = \sigma^2 \mathbf{I}$$

Model fitting

Group-level characteristics 0000000 General LME Model

Example: One-way random effects model, aka the HNM

$$y_{i,j} = \mu + a_j + \epsilon_{i,j}$$

$$\{a_j\} \sim iid \ N(0, \tau^2)$$

$$\{\epsilon_{i,j}\} \sim iid \ N(0, \sigma^2)$$

Exercise: Express this model as $\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$

• Regression parameters:

$$\beta = \mu$$
 , $\mathbf{a}_j = \mathbf{a}_j$

Design matrices:

$$\mathbf{X}_j = \mathbf{Z}_j = \left[egin{array}{c} 1 \ dots \ 1 \end{array}
ight] \quad ext{for each } j \in \{1,\ldots,m\}$$

Covariance terms:

$$\Psi = \mathsf{Var}[a_j] = \tau^2 \ , \ \Sigma = \sigma^2 \mathbf{I}$$

Model fitting

Group-level characteristics 0000000 General LME Model

Example: One-way random effects model, aka the HNM

fit.0<-lmer(y.nels~ 1 + (1|g.nels), REML=FALSE)</pre>

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

Example: One-way random effects model, aka the HNM

fit.0<-lmer(y.nels~ 1 + (1|g.nels), REML=FALSE)</pre>

```
summary(fit.0)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: y.nels ~ 1 + (1 | g.nels)
##
##
       ATC
               BIC logLik deviance df.resid
## 93919.3 93941.7 -46956.6 93913.3 12971
##
## Scaled residuals:
##
      Min
              1Q Median
                                    Max
                             3Q
## -3.8112 -0.6534 0.0093 0.6732 4.6999
##
## Random effects:
## Groups Name
                      Variance Std.Dev.
## g.nels (Intercept) 23.63 4.861
   Residual
                      73.71 8.585
##
## Number of obs: 12974, groups: g.nels, 684
##
## Fixed effects:
##
              Estimate Std. Error t value
## (Intercept) 50.9391 0.2026
                                  251.4
```

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Model

Group-specific linear regression

$$y_{i,j} = \beta^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{x}_{i,j} + \epsilon_{i,j}$$

$$\{\mathbf{a}_j\} \sim \quad iid \ N(0, \Psi)$$

$$\{\epsilon_{i,j}\} \sim \quad iid \ N(0, \sigma^2)$$

Exercise: Express this model as $\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$

• Design matrices:

$$\mathbf{X}_j = \mathbf{Z}_j = egin{bmatrix} \mathbf{x}_{1,j} o \ dots \ \mathbf{x}_{m_j,j} o \end{bmatrix}$$
 for each $j \in \{1, \dots, m\}$

Regression parameters:

$$\boldsymbol{eta} = \boldsymbol{eta} \;,\; \mathbf{a}_j = \mathbf{a}_j$$

• Covariance terms:

$$\Psi = \operatorname{Cov}[\mathbf{a}_j], \ \Sigma = \sigma^2 \mathbf{I}$$

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Model

Group-specific linear regression

$$y_{i,j} = \beta^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{x}_{i,j} + \epsilon_{i,j}$$

$$\{\mathbf{a}_j\} \sim iid \ N(0, \Psi)$$

$$\{\epsilon_{i,j}\} \sim iid \ N(0, \sigma^2)$$

Exercise: Express this model as $\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$

Design matrices:

$$\mathbf{X}_j = \mathsf{Z}_j = egin{bmatrix} \mathsf{x}_{1,j} o \ dots \ \mathsf{x}_{m_i,j} o \end{bmatrix}$$
 for each $j \in \{1,\ldots,m\}$

• Regression parameters:

 $oldsymbol{eta}=oldsymbol{eta}$, $\mathbf{a}_j=\mathbf{a}_j$

• Covariance terms:

$$\Psi = \operatorname{Cov}[\mathbf{a}_j], \ \Sigma = \sigma^2 \mathbf{I}$$

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Model

Group-specific linear regression

$$y_{i,j} = \beta^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{x}_{i,j} + \epsilon_{i,j}$$

$$\{\mathbf{a}_j\} \sim iid \ N(0, \Psi)$$

$$\{\epsilon_{i,j}\} \sim iid \ N(0, \sigma^2)$$

Exercise: Express this model as $\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$

Design matrices:

$$\mathbf{X}_j = \mathbf{Z}_j = \left[egin{array}{c} \mathbf{x}_{1,j}
ightarrow \ dots \ \mathbf{x}_{n_j,j}
ightarrow
ight] ext{ for each } j \in \{1,\ldots,m\}$$

• Regression parameters:

$$oldsymbol{eta}=oldsymbol{eta}\,,\,\, {\sf a}_j={\sf a}_j$$

• Covariance terms:

$$\Psi = \operatorname{Cov}[\mathbf{a}_j], \ \mathbf{\Sigma} = \sigma^2 \mathbf{I}$$

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Model

Group-specific linear regression

$$y_{i,j} = \beta^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{x}_{i,j} + \epsilon_{i,j}$$

$$\{\mathbf{a}_j\} \sim iid \ N(0, \Psi)$$

$$\{\epsilon_{i,j}\} \sim iid \ N(0, \sigma^2)$$

Exercise: Express this model as $\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$

Design matrices:

$$\mathbf{X}_j = \mathbf{Z}_j = \left[egin{array}{c} \mathbf{x}_{1,j}
ightarrow \ dots \ \mathbf{x}_{n_j,j}
ightarrow
ight] ext{ for each } j \in \{1,\ldots,m\}$$

• Regression parameters:

$$\boldsymbol{\beta} = \boldsymbol{\beta} \ , \ \mathbf{a}_j = \mathbf{a}_j$$

• Covariance terms:

$$\Psi = \operatorname{Cov}[\mathbf{a}_j], \ \mathbf{\Sigma} = \sigma^2 \mathbf{I}$$

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Model

Group-specific linear regression

$$y_{i,j} = \beta^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{x}_{i,j} + \epsilon_{i,j}$$

$$\{\mathbf{a}_j\} \sim iid \ N(0, \Psi)$$

$$\{\epsilon_{i,j}\} \sim iid \ N(0, \sigma^2)$$

Exercise: Express this model as $\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$

Design matrices:

$$\mathbf{X}_j = \mathbf{Z}_j = \left[egin{array}{c} \mathbf{x}_{1,j}
ightarrow \ dots \ \mathbf{x}_{n_j,j}
ightarrow \end{array}
ight] ext{ for each } j \in \{1,\ldots,m\}$$

Regression parameters:

$$\boldsymbol{\beta} = \boldsymbol{\beta} \ , \ \mathbf{a}_j = \mathbf{a}_j$$

• Covariance terms:

$$\Psi = \mathsf{Cov}[\mathbf{a}_j], \ \mathbf{\Sigma} = \sigma^2 \mathbf{I}$$

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Model

Group-specific linear regression

$$y_{i,j} = \beta^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{x}_{i,j} + \epsilon_{i,j}$$

$$\{\mathbf{a}_j\} \sim iid \ N(0, \Psi)$$

$$\{\epsilon_{i,j}\} \sim iid \ N(0, \sigma^2)$$

Exercise: Express this model as $\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$

Design matrices:

$$\mathbf{X}_j = \mathbf{Z}_j = \left[egin{array}{c} \mathbf{x}_{1,j}
ightarrow \ dots \ \mathbf{x}_{n_j,j}
ightarrow \end{array}
ight] ext{ for each } j \in \{1,\ldots,m\}$$

Regression parameters:

$$\boldsymbol{\beta} = \boldsymbol{\beta} \ , \ \mathbf{a}_j = \mathbf{a}_j$$

• Covariance terms:

$$\Psi = \mathsf{Cov}[\mathbf{a}_j], \ \mathbf{\Sigma} = \sigma^2 \mathbf{I}$$

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Model

Group-specific linear regression

$$y_{i,j} = \beta^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{x}_{i,j} + \epsilon_{i,j}$$

$$\{\mathbf{a}_j\} \sim iid \ N(0, \Psi)$$

$$\{\epsilon_{i,j}\} \sim iid \ N(0, \sigma^2)$$

Exercise: Express this model as $\mathbf{y}_j = \mathbf{X}_j \boldsymbol{\beta} + \mathbf{Z}_j \mathbf{a}_j + \boldsymbol{\epsilon}_j$

Design matrices:

$$\mathbf{X}_j = \mathbf{Z}_j = \left[egin{array}{c} \mathbf{x}_{1,j}
ightarrow \ dots \ \mathbf{x}_{n_j,j}
ightarrow \end{array}
ight] ext{ for each } j \in \{1,\ldots,m\}$$

• Regression parameters:

$$\boldsymbol{eta} = \boldsymbol{eta} \ , \ \mathbf{a}_j = \mathbf{a}_j$$

Covariance terms:

$$\Psi = \mathsf{Cov}[\mathbf{a}_j], \ \mathbf{\Sigma} = \sigma^2 \mathbf{I}$$

This is just a special case where $\mathbf{X}_j = \mathbf{Z}_j$.

Model fitting

Group-level characteristics 0000000 General LME Model

Group-specific linear regression

fit.1<-lmer(y.nels ses.nels + (ses.nels|g.nels), REML=FALSE)</pre>

summary(fit.1)

Fixed and random effects 00000000 Model fitting

Group-level characteristics 0000000 General LME Model

Group-specific linear regression

fit.1<-lmer(y.nels ses.nels + (ses.nels|g.nels), REML=FALSE)</pre>

summary(fit.1)

```
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: v.nels ~ ses.nels + (ses.nels | g.nels)
##
##
       AIC
               BIC logLik deviance df.resid
## 92553.1 92597.9 -46270.5 92541.1 12968
##
## Scaled residuals:
##
      Min 10 Median 30
                                   Max
## -3.8910 -0.6382 0.0179 0.6669 4.4613
##
## Random effects:
## Groups Name
                  Variance Std.Dev. Corr
## g.nels (Intercept) 12.223 3.496
##
           ses.nels 1.515 1.231
                                       0.11
## Residual
                       67 345 8 206
## Number of obs: 12974, groups: g.nels, 684
##
## Fixed effects:
            Estimate Std. Error t value
##
## (Intercept) 50.6767 0.1551 326.70
## ses.nels 4.3594 0.1231 35.41
##
## Correlation of Fixed Effects:
           (Intr)
##
## ses nels 0.007
```

Fixed and random effects 00000000

Model fitting 00000000 Group-level characteristics

General LME Model

General LME

$$y_{i,j} = \beta^{T} \mathbf{x}_{i,j} + \mathbf{a}_{j}^{T} \mathbf{z}_{i,j} + \epsilon_{i,j}$$

$$\{\mathbf{a}_{j}\} \sim iid \ N(0, \Psi)$$

$$\{\epsilon_{j}\} \sim iid \ N(0, \Sigma)^{*}$$

* modulo different sample sizes.

- Group-specific regressors should appear in X_j but not Z_j;
- If {a_{k,1},..., a_{k,m}} shows little variability (\u03c6_{k,k} small), we may want to remove \u03c8_{i,j,k} from the random effects model, and include it as a fixed effect only.
- Within-group covariances other than $\Sigma = \sigma^2 I$ might be useful:
 - $\mathbb{P} = \Sigma$ with temporal correlation for longitudinal/panel data;
 - Unrestricted E-foc correlation but unordered outcomes (teeth, eg.)

Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

General LME

$$y_{i,j} = \beta^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

$$\{\mathbf{a}_j\} \sim iid \ N(0, \Psi)$$

$$\{\epsilon_j\} \sim iid \ N(0, \Sigma)^*$$

* modulo different sample sizes.

- Group-specific regressors should appear in X_j but not Z_j;
- If {a_{k,1},..., a_{k,m}} shows little variability (ψ_{k,k} small), we may want to remove x_{i,j,k} from the random effects model, and include it as a fixed effect only.
- Within-group covariances other than $\Sigma = \sigma^2 I$ might be useful:
 - Σ with temporal correlation for longitudinal/panel data;
 - Unrestricted Σ for correlation but unordered outcomes (teeth, eg.)

Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

General LME

$$y_{i,j} = \beta^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

$$\{\mathbf{a}_j\} \sim iid \ N(0, \Psi)$$

$$\{\epsilon_j\} \sim iid \ N(0, \Sigma)^*$$

* modulo different sample sizes.

- Group-specific regressors should appear in **X**_j but not **Z**_j;
- If {a_{k,1},..., a_{k,m}} shows little variability (ψ_{k,k} small), we may want to remove x_{i,j,k} from the random effects model, and include it as a fixed effect only.
- Within-group covariances other than $\Sigma = \sigma^2 I$ might be useful:
 - Σ with temporal correlation for longitudinal/panel data;
 - Unrestricted Σ for correlation but unordered outcomes (teeth, eg.)

Fixed and random effects 00000000

Model fitting 00000000 Group-level characteristics 0000000 General LME Model

General LME

$$y_{i,j} = \beta^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

$$\{\mathbf{a}_j\} \sim iid \ N(0, \Psi)$$

$$\{\epsilon_j\} \sim iid \ N(0, \Sigma)^*$$

* modulo different sample sizes.

- Group-specific regressors should appear in **X**_j but not **Z**_j;
- If {a_{k,1},..., a_{k,m}} shows little variability (ψ_{k,k} small), we may want to remove x_{i,j,k} from the random effects model, and include it as a fixed effect only.
- Within-group covariances other than $\Sigma = \sigma^2 \mathbf{I}$ might be useful:
 - Σ with temporal correlation for longitudinal/panel data;
 - Unrestricted Σ for correlation but unordered outcomes (teeth, eg.)

Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

General LME

$$y_{i,j} = \beta^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

$$\{\mathbf{a}_j\} \sim iid \ N(0, \Psi)$$

$$\{\epsilon_j\} \sim iid \ N(0, \Sigma)^*$$

* modulo different sample sizes.

- Group-specific regressors should appear in X_j but not Z_j;
- If {a_{k,1},..., a_{k,m}} shows little variability (ψ_{k,k} small), we may want to remove x_{i,j,k} from the random effects model, and include it as a fixed effect only.
- Within-group covariances other than $\Sigma = \sigma^2 \mathbf{I}$ might be useful:
 - Σ with temporal correlation for longitudinal/panel data;
 - Unrestricted Σ for correlation but unordered outcomes (teeth, eg.)

Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

General LME

$$y_{i,j} = \beta^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

$$\{\mathbf{a}_j\} \sim iid \ N(0, \Psi)$$

$$\{\epsilon_j\} \sim iid \ N(0, \Sigma)^*$$

* modulo different sample sizes.

- Group-specific regressors should appear in X_j but not Z_j;
- If {a_{k,1},..., a_{k,m}} shows little variability (ψ_{k,k} small), we may want to remove x_{i,j,k} from the random effects model, and include it as a fixed effect only.
- Within-group covariances other than $\Sigma = \sigma^2 \mathbf{I}$ might be useful:
 - Σ with temporal correlation for longitudinal/panel data;
 - Unrestricted Σ for correlation but unordered outcomes (teeth, eg.)

Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

General LME

$$y_{i,j} = \beta^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

$$\{\mathbf{a}_j\} \sim iid \ N(0, \Psi)$$

$$\{\epsilon_j\} \sim iid \ N(0, \Sigma)^*$$

* modulo different sample sizes.

- Group-specific regressors should appear in X_j but not Z_j;
- If {a_{k,1},..., a_{k,m}} shows little variability (ψ_{k,k} small), we may want to remove x_{i,j,k} from the random effects model, and include it as a fixed effect only.
- Within-group covariances other than $\Sigma = \sigma^2 \mathbf{I}$ might be useful:
 - Σ with temporal correlation for longitudinal/panel data;
 - Unrestricted Σ for correlation but unordered outcomes (teeth, eg.)

Fixed and random effects 00000000 Model fitting 00000000 Group-level characteristics 0000000 General LME Model

General LME

$$y_{i,j} = \beta^T \mathbf{x}_{i,j} + \mathbf{a}_j^T \mathbf{z}_{i,j} + \epsilon_{i,j}$$

$$\{\mathbf{a}_j\} \sim iid \ N(0, \Psi)$$

$$\{\epsilon_j\} \sim iid \ N(0, \Sigma)^*$$

* modulo different sample sizes.

- Group-specific regressors should appear in X_j but not Z_j;
- If {a_{k,1},..., a_{k,m}} shows little variability (ψ_{k,k} small), we may want to remove x_{i,j,k} from the random effects model, and include it as a fixed effect only.
- Within-group covariances other than $\Sigma = \sigma^2 \mathbf{I}$ might be useful:
 - Σ with temporal correlation for longitudinal/panel data;
 - Unrestricted Σ for correlation but unordered outcomes (teeth, eg.)

Model fitting

Group-level characteristics

General LME Model

General LME

```
fit.2<-lmer(v.nels~flp.nels + ses.nels + flp.nels*ses.nels + (ses.nels | g.nels), REML=FALSE)
summary(fit.2)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: v.nels ~ flp.nels + ses.nels + flp.nels * ses.nels + (ses.nels |
##
      g.nels)
##
##
       AIC
               BIC logLik deviance df.resid
## 92396.3 92456.0 -46190.1 92380.3 12966
##
## Scaled residuals:
              10 Median 30
                                    Max
##
      Min
## -3.9773 -0.6417 0.0201 0.6659 4.5202
##
## Random effects:
                  Variance Std.Dev. Corr
## Groups
           Name
## g.nels (Intercept) 9.012 3.002
            ses.nels 1.571 1.254
##
                                      0.06
## Residual
                       67.260
                               8,201
## Number of obs: 12974, groups: g.nels, 684
##
## Fixed effects:
##
                   Estimate Std. Error t value
## (Intercept)
                   55.3975 0.3860 143.524
                  -2.4062 0.1819 -13.230
## flp.nels
                   4,4909 0,3326 13,500
## ses.nels
## flp.nels:ses.nels -0.1931
                               0.1587 -1.216
##
## Correlation of Fixed Effects:
##
            (Intr) flp.nl ss.nls
## flp.nels -0.930
## ses.nels -0.158 0.088
## flp.nls:ss. 0.086 -0.007 -0.926
```