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LME - Is it worth it?

fitOLS<-lm(y.nels ~ flp.nels + ses.nels + flp.nels*ses.nels)

summary(fitOLS)

##

## Call:

## lm(formula = y.nels ~ flp.nels + ses.nels + flp.nels * ses.nels)

##

## Residuals:

## Min 1Q Median 3Q Max

## -36.107 -5.758 0.142 5.977 33.538

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 54.8442 0.2280 240.50 <2e-16 ***

## flp.nels -2.0809 0.1075 -19.36 <2e-16 ***

## ses.nels 4.9058 0.2810 17.46 <2e-16 ***

## flp.nels:ses.nels -0.1279 0.1361 -0.94 0.347

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 8.754 on 12970 degrees of freedom

## Multiple R-squared: 0.2028, Adjusted R-squared: 0.2026

## F-statistic: 1100 on 3 and 12970 DF, p-value: < 2.2e-16
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LME - Is it worth it?
fitLME<-lmer(y.nels ~ flp.nels + ses.nels + flp.nels:ses.nels + (ses.nels|g.nels) )

summary(fitLME)

## Linear mixed model fit by REML ['lmerMod']

## Formula: y.nels ~ flp.nels + ses.nels + flp.nels:ses.nels + (ses.nels |

## g.nels)

##

## REML criterion at convergence: 92388.1

##

## Scaled residuals:

## Min 1Q Median 3Q Max

## -3.9769 -0.6415 0.0198 0.6659 4.5206

##

## Random effects:

## Groups Name Variance Std.Dev. Corr

## g.nels (Intercept) 9.056 3.009

## ses.nels 1.602 1.266 0.06

## Residual 67.258 8.201

## Number of obs: 12974, groups: g.nels, 684

##

## Fixed effects:

## Estimate Std. Error t value

## (Intercept) 55.3989 0.3866 143.285

## flp.nels -2.4070 0.1822 -13.212

## ses.nels 4.4899 0.3333 13.472

## flp.nels:ses.nels -0.1931 0.1590 -1.214

##

## Correlation of Fixed Effects:

## (Intr) flp.nl ss.nls

## flp.nels -0.930

## ses.nels -0.157 0.088

## flp.nls:ss. 0.085 -0.007 -0.926
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LME - Is it worth it?

For the mixed effects model

yj = Xjβ + Zjaj + ϵj ,

the OLS estimate is still unbiased. However,

• it is no longer the BLUE;

• its variance is no longer σ2(X⊤X)−1.

For this model,

• the BLUE is (approximately) the MLE returned by lmer;

• the standard errors for fixed effects account for within-group correlation;

• the standard errors for the macro-level fixed effects can be very different.
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Linear unbiased estimators

Model:

• y = Xβ + ϵ

• E[ϵ|X] = 0,Var[ϵ|X] = σ2I.

or equivalently,

• E[y|X] = Xβ

• Var[y|X] = σ2I

OLS Estimator: β̂ = (X⊤X)−1X⊤y

Linear unbiased estimators: β̌ = [(X⊤X)−1X⊤ +H⊤]y, where H⊤X = 0.

Exercise: Show that β̌, and hence β̂, are unbiased.
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Variance of linear unbiased estimators
Let X+ = (X⊤X)−1X⊤

Var[β̌] = (X+ +H⊤)Var[ϵ](X+ +H⊤)⊤

= σ2(X+ +H⊤)(X+ +H⊤)⊤

= σ2
(
X+(X+)⊤ + X+H+H⊤(X+)⊤ +H⊤H

)
.

Now calculate the individual terms:

X+(X+)⊤ = (X⊤X)−1X⊤X(X⊤X)−1

= (X⊤X)−1,

H⊤(X+)⊤ = H⊤X(X⊤X)−1

= 0.

So

Var[β̌] = σ2(X⊤X)−1 + σ2H⊤H

= Var[β̂] + σ2H⊤H.
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Gauss-Markov theorem

Definition (Loewner order)

For two positive semidefinite matrices Σ1 and Σ2 of the same size, we say that
Σ1 > Σ2 if Σ1 −Σ2 is positive definite, and that Σ1 ≥ Σ2 if Σ1 −Σ2 is positive
semidefinite.

Theorem
Let β̌ be a linear unbiased estimator of β in a linear model where
E[y] = Xβ,β ∈ Rp and Var[y] = σ2I, σ2 > 0. Then

Var[β̌] ≥ Var[β̂],

where β̂ is the OLS estimator.

The OLS estimator is the BLUE in this case.
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Non-isotropic variance

What if Var[y] ̸= σ2I?

• Heteroscedasticity: Var[yi ] = wiσ
2 for some known w1, . . . ,wn.

• Time series: Var[y] = σ2A, where ai,j = ρ|i−j|.

LME models can be viewed as models for correlated data. Let

yj = Xjβ + Zjaj + ϵj

where

• E[aj ] = 0,Var[aj ] = Ψ.

• E[ϵj ] = 0,Var[ϵj ] = σ2I.

• E[ϵja
⊤
j ] = 0.

Then

E[yj ] = Xjβ

Var[yj ] = ZjΨZ⊤
j + σ2I.
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OLS with dependent data

The OLS estimator is still unbiased when data are correlated:

E[β̂] = E[(X⊤X)−1X⊤y] = (X⊤X)−1X⊤E[X⊤β + ϵ]

= β + 0 = β.

However, its variance in this case is complicated:

Var[β̂] = Var[(X⊤X)−1X⊤y] = (X⊤X)−1X⊤Var[y]X(X⊤X)−1

= σ2(X⊤X)−1X⊤VX(X⊤X)−1.

This is quite messy, and not equal to σ2(X⊤X)−1 unless Var[y] is special.
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GLS estimator

Let Var[y] = Var[ϵ] = σ2V. We define the symmetric square root V1/2 of V as

V1/2 = EΛ1/2E⊤.

where (E,Λ) are the eigenvectors and values of Σ. Note thatV1/2V1/2 = V.

V−1/2 is a whitening matrix for y:

Var[V−1/2y] = V−1/2Var[y]V−⊤/2

= V−1/2(σ2V)V−1/2 = σ2I.
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OLS with whitened data

Let ỹ = V−1/2y. The linear model for ỹ is then

V−1/2y = V−1/2Xβ + V−1/2ϵ

ỹ = X̃β + ϵ̃,

where E[ϵ̃] = 0 and

Var[ϵ̃] = σ2V−1/2VV−1/2 = σ2I.

The BLUE based on ỹ, X̃ is

β̂V = (X̃⊤X̃)−1X̃⊤ỹ
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GLS via whitened OLS

β̂V is linear in y! So β̂V is the BLUE of β, based on either ỹ or y.

On the original scale of the data, we have

β̂V = (X̃⊤X̃)−1X̃⊤ỹ

= (X⊤V−1/2V−1/2X)−1X⊤V−1/2V−1/2y

= (X⊤V−1X)−1X⊤V−1y.

This estimator is the generalized least squares (GLS) estimator of β. Its
variance is

Var[β̂V ] = σ2(X⊤V−1X)−1.
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Gauss-Markov-Aitkin theorem

Theorem
Let β̌ be a linear unbiased estimator of β in a linear model with
E[y] = Xβ, Var[y] = σ2V for (β, σ2) ∈ Rp × R+ with X and V known. Then

Var[β̌] ≥ σ2(XV−1X⊤)−1 = Var[β̂V ],

where β̂V = (X⊤V−1X)−1X⊤V−1y.
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LME model as a GLM

Within-groups model: yj = Xjβ + Zjaj + ϵj .

• E[yj ] = Xjβ;

• Var[yj ] = ZjΨZ⊤
j + σ2Inj .

Let

• y = (y1, . . . , ym) ∈ R
∑

nj ;

• X = (X⊤
1 · · ·X⊤

m )
⊤ ∈ R

∑
nj×p.

Then

E[y] = Xβ

Var[y] =


Z1ΨZ⊤

1 0 · · · 0
0 Z2ΨZ⊤

2 · · · 0
...

...
0 · · · 0 ZmΨZ⊤

m

+ σ2I ≡ Γ.
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Iterative estimation procedures

Typically estimation of (β,Ψ, σ2) is done in two or more stages:

Feasible GLS:

1. Estimate Ψ and Ω = Var[y]

1.1 Find N so that N⊤X = 0;
1.2 Let e = N⊤y so that E[e] = 0, Var[e] = N⊤ΩN

1.3 Obtain estimate Ψ̂ of Ψ from e.
1.4 Construct the estimate Ω̂ of Ω using Ψ̂.

2. Estimate β̂ using feasible GLS:

β̂ = (X⊤Ω̂−1X)−1X⊤Ω̂−1y.
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Simulation study

m<-11

n<-7

g<-rep(1:m,times=rep(n,m))

xg<-rnorm(m)[g]

xn<-rnorm(m*n)

X<-cbind(1,xg,xn)

X[1:25,]

## xg xn

## [1,] 1 -0.6264538 0.38984324

## [2,] 1 -0.6264538 -0.62124058

## [3,] 1 -0.6264538 -2.21469989

## [4,] 1 -0.6264538 1.12493092

## [5,] 1 -0.6264538 -0.04493361

## [6,] 1 -0.6264538 -0.01619026

## [7,] 1 -0.6264538 0.94383621

## [8,] 1 0.1836433 0.82122120

## [9,] 1 0.1836433 0.59390132

## [10,] 1 0.1836433 0.91897737

## [11,] 1 0.1836433 0.78213630

## [12,] 1 0.1836433 0.07456498

## [13,] 1 0.1836433 -1.98935170

## [14,] 1 0.1836433 0.61982575

## [15,] 1 -0.8356286 -0.05612874

## [16,] 1 -0.8356286 -0.15579551

## [17,] 1 -0.8356286 -1.47075238

## [18,] 1 -0.8356286 -0.47815006

## [19,] 1 -0.8356286 0.41794156

## [20,] 1 -0.8356286 1.35867955

## [21,] 1 -0.8356286 -0.10278773

## [22,] 1 1.5952808 0.38767161

## [23,] 1 1.5952808 -0.05380504

## [24,] 1 1.5952808 -1.37705956

## [25,] 1 1.5952808 -0.41499456
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Simulation study

tau<-2 ; beta<-c(1,2,3)

y<- X%*%beta + tau*rnorm(m)[g] + rnorm(m*n)

If we (incorrectly) ignored grouping, we would assume

• β̂OLS is optimal;

• Var[β̂OLS ] = (X⊤X)−1.

VBI<-solve(t(X)%*%X)

VBI

## xg xn

## 0.014382218 -0.005053766 -0.001140851

## xg -0.005053766 0.019830831 -0.000673228

## xn -0.001140851 -0.000673228 0.016077814

sqrt(diag(VBI))

## xg xn

## 0.1199259 0.1408220 0.1267983
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Simulation study

beta<-c(1,2,3)

BOLS<-BGLS<-NULL

for(s in 1:1000){

y<- X%*%beta + tau*rnorm(m)[g] + rnorm(m*n)

BOLS<-rbind(BOLS,lm(y ~ -1 + X )$coef)

BGLS<-rbind(BGLS,fixef(lmer(y ~ -1 + X + (1|g) )))

}

apply(BOLS,2,sd)

## X Xxg Xxn

## 0.6288288 0.7527230 0.2116257

apply(BGLS,2,sd)

## X Xxg Xxn

## 0.6287044 0.7525413 0.1355320
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Simulation study

The simulation results match the theory:

V<-diag(n*m) + tau^2*kronecker(diag(m),matrix(1,n,n))

## Actual variance of betaOLS

IX<-solve(t(X)%*%X)%*%t(X)

VOLS<-IX%*%V%*%t(IX)

sqrt(diag(VOLS))

## xg xn

## 0.6441631 0.7578585 0.2039284

## Actual variance of betaGLS

VGLS<-solve(t(X)%*%solve(V)%*%X)

sqrt(diag(VGLS))

## xg xn

## 0.6440670 0.7578301 0.1304160
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MLEs and Bayes

Recall the HNM:

yi,j = µ+ aj + ϵi,j

Our estimators for µ and the aj ’s were

• the MLE/WLS estimate for µ;

• Bayes estimators for aj ’s (or equvalently, θj = µ+ aj).

Similarly, for the HLM

yi,j = x⊤i,jβ + z⊤i,jaj + ϵi,j

the estimators we’ve discussed are

• MLE/GLS for β;

• Bayes estimators for aj ’s (or equvalently, βj = β + aj).
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yi,j = x⊤i,jβ + z⊤i,jaj + ϵi,j

the estimators we’ve discussed are

• MLE/GLS for β;

• Bayes estimators for aj ’s (or equvalently, βj = β + aj).
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OLS, MLE and improper Bayes

Recall that for the non-hierarchical model

yi = µ+ ϵi

µ̂ = ȳ is the

• OLS estimator;

• MLE under normality;

• Bayes estimator under normality and a flat prior.

Similarly, for the non-hierarchical model

yi = x⊤i β + ϵi

β̂ = (X⊤X)−1X⊤y is the

• OLS estimator;

• MLE under normality;

• Bayes estimator under normality and a flat prior.
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BLUEs BLUPs and Bayes

For the HLM
yi,j = x⊤i,jβ ++z⊤i,jaj ϵi,j

we want to get the

• MLE for β;

• the Bayes estimator for aj , under the prior aj ∼ N(0,Ψ).

So consider the Bayes estimator of (β, a) under the “semi-improper” prior
β
a1
...
am

 ∼ N(0,V)

where

V =


∞I 0 · · · 0
0 Ψ · · · 0
...

...
...

...
0 · · · · · · Ψ

 .
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Henderson’s equations

Surprisingly (?) it turns out the BLUE/BLUP of (β, a1, . . . , am) is given by the
posterior mean estimator under the semi-improper prior.

(
â
β̂

)
=

(
Z⊤Z/σ2 +Ψ−1 Z⊤X/σ2

X⊤Z/σ2 X⊤X/σ2

)−1 (
Z⊤y/σ2

X⊤y/σ2

)
. (1)

This result has practical implications: Computing β̂ via the GLS equation
seems to require inversion of Var[y], which is nm × nm. The matrix here is of
dimension (p +mq)× (p +mq)
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