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Nonparametric Bayesian Data Analysis
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Abstract. We review the current state of nonparametric Bayesian inference.
The discussion follows a list of important statistical inference problems,
including density estimation, regression, survival analysis, hierarchical
models and model validation. For each inference problem we review relevant
nonparametric Bayesian models and approaches including Dirichlet process
(DP) models and variations, Polya trees, wavelet based models, neural
network models, spline regression, CART, dependent DP models and model
validation with DP and Polya tree extensions of parametric models.
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1. INTRODUCTION low one to center the probability distribution at a given
parametric model.

In this article we review the current state of Bayesian
nonparametric inference. The discussion follows a list
of important statistical inference problems, including
density estimation, regression, survival analysis, hier-
archical models and model validation. The list is not
exhaustive. In particular, we will not discuss nonpara-
metric Bayesian approaches in time series analysis and

Nonparametric Bayesian inference is an oxymoron
and a misnomer. Bayesian inference by definition al-
ways requires a well-defined probability model for
observable datay and any other unknown quanti-
tieso, that is, parameters. Nonparametric Bayesian in-
ference traditionally refers to Bayesian methods that
result in inference comparable to classical nonpara-
metric inference, such as kernel density estimation,in spatial and spatiotemporal inference.

scatterplot smoothers, etc. Such flexible inference is Other recent surveys of nonparametric Bayesian
typically achieved by models with massively many models appear in Walker, Damien, Laud and Smith

parameters. In fact, a commonly used technical defin-(lggg) and Dey, Miiller and Sinha (1998). Nonpara-

|t|or(1j Olf nqnhpgr?mmlc Bayesian models |sBprobadb|I|ty q metric models based on Dirichlet process mixtures are
models with infinitely many parameters (Bernardo and o ie\ved in MacEachern and Miiller (2000). A recent

Smith, 1994). Equivalently, nonparametric Bayesian review of nonparametric Bayesian inference in survival

models are probabili';y models on function spaces. analysis can be found in Sinha and Dey (1997).
Nonparametric Bayesian models are used to avoid crit-

ical dependence on parametric assumptions, to robus-
tify parametric models and to define model diagnostics
and sensitivity analysis for parametric models by em-  The density estimation problem starts with a ran-

bedding them in a larger encompassing nonparametricdom sample; iid F(x;),i=1,...,n,generated from
model. The latter two applications are teChnica”y sim- some unknown distributiofr. A Bayesian approach to
plified by the fact that many nonparametric models al- this problem requires a probability model for the un-
known F. Traditional parametric inference considers
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pm@odin.mdacc.tmc.edu). F. A. Quintana is Profesor dimension. In many cases, however, constraining infer-
Adjunto, Departmento de Estadistica, Pontificia Uni- ence to a specific parametric form may limit the scope
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we consider a prior probability model F') for the un- useful result is the construction by Sethuraman (1994):
known densityF, for F in some infinite-dimensional any F ~ D (M, Fp) can be represented as

function space. This requires the definition of probabil- 00 N

ity measures on a collection of distribution functions. F()= Z wid, (), L F, and

Such probability measures are generically referred h=1

to asrandom pobability mesures(RPM). Ferguson @) iid

(1973) states two important desirable properties for this wp = Up H 1-Uj with U, ~ Beta1, M).

class of measures (see also Antoniak, 1974): (i) their J<h

support should be large and (ii) posterior inference In words, realizations of the DP can be represented as

should be “analytically manageable.” In the parametric infinite mixtures of point masses. The locatigog of

case, the development of Markov chain Monte Carlo the point masses are a sample frép and the random

(MCMC) methods (see, e.g., Gelfand and Smith, 1990) weights w;, are generated by a “stick-breaking” pro-

allows one to largely overcome the restrictions posed cedure. In particular, the DP is an almost surely (a.s.)

by (ii). In the nonparametric context, however, compu- discrete RPM.

tational aspects are still the subject of much research. The DP is by far the most popular nonparamet-
We next describe some Ofthe most common randomric model in the literature (fOI’ a recent I‘eVieW, see

- creteness is in many applications inappropriate. A sim-
2.1 The Dirichlet Process ple extension to remove the constraint to discrete

measures is to introduce an additional convolution, rep-

Motivated by properties (i) and (ii), Ferguson (1973) resenting the RP\F as

introduced the Dirichlet process (DP) as an RPM.
A random probability distributionF' is generated by @3) F() :/f(xl@)a’G(e) with G ~ D(M. Gy).

a DP if for any partitionAq, ..., A of the sample

space the vector of random probabiliti€gA;) follows Such models are known as DP mixtures (MDP)

a Dirichlet distribution: (Escobar, 1988; MacEachern, 1994; Escobar and
West, 1995). Using a Gaussian kernélx|u, S) =
(F(AD, ..., F(AD) Bus(x) o exp—(x — wTS~1(x — w)/2] and mix-
~ D(M - Fo(A1), ..., M - Fo(Ayp)). ing with respect tod = (u, S), we obtain density

estimates resembling traditional kernel density es-
We denote this byF ~ D(M, Fp). Two parameters  timation. Related models have been studied in Lo
need to be specified: the weight parametér and  (1984), Escobar and West (1995) and Gasparini (1996).
the base measurgp. The base measurgy defines  Posterior consistency is discussed in Ghosal, Ghosh
the expectatiorE (B) = Fo(B), andM is a precision  and Ramamoorthi (1999).
parameter that defines variance. For more discussion of Posterior inference in MDP models is based on
the role of these parameters see Walker et al. (1999). AMCMC posterior simulation. Most approaches proceed
fundamental motivation for the DP construction is the by breaking the mixture in (3) with the introduction

simplicity of posterior updating. Assume of latent variable®; as x;|6; ~ f(x|0) and6; ~ G.
- Efficient MCMC simulation for general MDP models
Q) x1,...,x4|F “YF and F~ DM, Fp). is discussed, among others, in Bush and MacEachern

_ _ (1996), MacEachern and Miller (1998), Neal (2000)
Let &.(-) denote a point mass at. The posterior  and west, Miiller and Escobar (1994). For related
distribution is Flxi,...,x, ~ D(M + n, F1) with  gigorithms in a more general setting, see Ishwaran
FrocFo+ 307 _q 8y and James (2001). Alternative to MCMC simulation,
More properties of the DP are discussed, among oth-sequential importance sampling-based methods have
ers, in Ferguson (1973), Korwar and Hollander (1973), been proposed for MDP models. Examples can be
Antoniak (1974), Diaconis and Freedman (1986), found in Liu (1996), Quintana (1998), MacEachern,
Rolin (1992), Diaconis and Kemperman (1996) and Clyde and Liu (1999), Ishwaran and Takahara (2002)
Cifarelli and Mdilli ( 2000). Of special relevance for and references therein. A third class of methods for
computational purposes is the Pdlya urn representa-MDP models, called thepredictive recursion was
tion by Blackwell and MacQueen (1973). Another very proposed by Newton and Zhang (1999). Consider
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the posterior predictive distribution in model (3). Let Dalal’'s (1979) construction is based on invariance un-

F,(B) def E(F(B)|x1,...,x,) denote the posterior derafinite group, essentially by restricting Ferguson’s

mean of the RPM. The posterior mean is identical to (1973) definition to invariant centering measures and

the predictive distribution, partitions. This guarantees that the posterior process

is also invariant. Dalal (1979) uses this setup to esti-
Fn(B) = P (Op+1 € Blxa, ..., xn) mate distribution functions that are symmetric with re-

for any Borel se3 in the appropriate space. The Polya SPect to a known valug, using Fo such thatFo(1) =

urn representation implies 1—Fo(2u—1) forall 7 < and the groufg = {g1, g2},
wheregy(x) = x andga(x) = 2u — x.

Fi(B) = Fo(B) + ip(gl € Blx1). An alternative model to (1) or (3) is obtained by
M+1 M+1 replacing the prior DP with a convenient approx-

Newton and Zhang (1999) extrapolate this representa-imation. Natural candidates follow from truncating
tion to a recursion in the general case: Sethuraman’s (1994) construction (2). In this setup, the

prior Y% . wy,8,., (-) is replaced by Y . w8, () for

(4) Fi(B)= Q—w)Fi—1(B) +w; Pi—1(4; € Blxp), some ahpplroprigliely chosen valuem};‘ Aln exg?nple of
where the probability in the second term in the right- this procedure is the-DP proposed by Muliere and
hand side of (4) is computed under the current approx- Tardella (1998), wher&/ is chosen such that the to-
imation F;_1, and the nominal values for the weights tal variation distance between the DP and the trunca-
arew; = 1/(M +1i),i > 1. The approximation is exact tion is bounded by a givea. Another variation is the
for i = 1. In general,F,,(B) depends on the order in Dirichlet-multinomial process introduced by Muliere
whichxy, ..., x, are processed, but this dependence is @nd Secchi (1995). Here the RPM is, for some fi-
rather weak, and in practice it is recommended to av-N1té NV,

erage over a number of permutations of the data. The N
method is very fast to execute and produces very good F() = Z whdp, (),
approximations, although it tends to oversmooth the re- h=1
sults. For a comparison of the computational strategies (wi,....wy) ~ D(M-N"Y,....M-N"Y) and
mentioned here, see Quintana and Newton (2000). -
Model (1) has the advantage of the conjugate form. Wh g Fo.

However, getting exact draws from a DP is impossible
because this requires the generation of an infinite
mixture of point masses. Typical MCMC schemes - -
are based on integrating out the DP via Blackwell

and MacQueen’s (1973) representation. This makes® F0) _;whél‘h(')_’_ (1_;%)1:0(')’

it difficult to produce inference on functionals of the B ) T

posterior DP. A similar problem is found in the more Where, for a continuous distributioro, we have
general MDP models. Some authors propose MCMC ux ~ Fo, assumed independent of the nonnegative
strategies where, instead of integrating out the DP,random variables),. The weightsw, are constrained
an approximation to the DP is considered. This is by > ;2 w, < 1. The model is known aa species
usually done by drawing fro@{l\’zl wps,, () for large sampling modelSSM), withwy, interpreted as the rel-
enoughN. Examples of this strategy can be found ative frequency of théth species in a list of species
in Muliere and Tardella (1998), Ishwaran and James present in a certain population, apg as the tag as-
(2002), Kottas and Gelfand (2001) and Gelfand and Signed to that species. ;2 ; w, =1, the SSM is

More generally, Pitman (1996) described a class of
models

Kottas (2002). calledproperand the corresponding prior RPM is dis-
) N crete. The stick-breaking priors studied by Ishwaran
2.2 Other Discrete Random Probability Measures and James (2001) are a special case of (5), adopt-

An interesting extension of the DP that has been useding the form>-;__; w8, (), where 1< N < cc. The
in the context of density estimation is the invariant weights are defined as, = ]‘[’};%(1 — Uj)Uy, with
DP introduced by Dalal (1979). The idea is to define U, ~ Betaay, by), independently, for given sequences
a prior process on the space of distribution functions (ay, az,...) and (b1, ba,...). Stick-breaking priors
that has a structure that can be characterized via in-are quite general, including not only the Dirichlet-
variance, for example, symmetry or exchangeability. multinomial process and the DP as special cases, but
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also a two-parameter DP extension, known as theresults in discontinuities in the predictive distribu-
Pitman—Yor process (Pitman and Yor, 1997), and the tions. Third, implementations for higher-dimensional
Beta two-parameter process (Ishwaran and Zarepourdistributions require extensive housekeeping and are
2000). Additional examples and MCMC implemen- impractical. To mitigate problems related to the dis-
tation details for stick-breaking RPM’'s can be found continuities Paddock, Ruggeri, Lavine and West (2003)
in Ishwaran and James (2001). Further discussion ofand Hanson and Johnson (2002) introduced random-
SSM’s appears in Pitman (1996) and Ishwaran andized Pélya trees. The idea is based on dyadic rational
James (2003). partitions, but instead of taking the nominal half-point

An interesting property of MDP models is that any Paddock et al. (2003) randomly choose a “close” cut-
exchangeable sequence of random variables can b@ff. This construction is shown to reduce the effect of
well approximated in the sense of the Prokhorov metric the binary tree partition on the first two points noted
by a certain sequence of mixtures of DP’s (Regazzini, above. On the other hand, Hanson and Johnson (2002)
1999). In practice, however, this result has limited use. consider instead a mixture with respect to a hyperpa-
We review next some methods for defining RPM's rameter that defines the partitioning tree. The problem
supported on the set of continuous distributions that concerning high dimension persists though.

have been used in density estimation problems. . .
2.4 Bernstein Polynomials

2.3 Polya Trees T . ..
y For a distribution functior on the unit interval, the

Pdlya trees (PT) are proposed in Lavine (1992, corresponding Bernstein polynomial is defined as
1994) as a generalization of the DP. Like the DP, .
the PT model satisfies conditions (i) and (ii). The . . (k) Je1 k=)
PT includes DP models as a special case. However, Bx, k. F) = ;)F(]/k) j X (=27,
in contrast to the DP, an appropriate choice of the ! . _
PT parameters allows one to generate continuous® remarkable property oB(x,k, F) is that it con-
distributions with probability 1. The definition requires Verges uniformly toF" ask — oo. The definition for
anested sequente= {r,,,m =1, 2, ...} of partitions B(x, k, F) takes the form of a mixture of Beta den-
of the sample spac&. Without loss of generality, ~Sities. Petrone (1999a, b) exploits this property to
we assume the partitions are binary. We start with Propose a class of prior distributions on the set of den-
a partition 71 = {Bo, B1} of the sample space& = sities defined ori0, 1]. Petrone and Wasserman (2002)
BoU By, and continue with nested partitions defined by consider the following model. Assuma, ..., x, are
Bo = BooU Bo1, By = B1gU B11 etc. Thus the partition cpndltlonally i.i.d. givenk andwy; with common den-

at levelm is m,, = {Bs, e = €1, ..., &m}, Wheree are  SIty
all binary sequences of length. We say thatF' has a FGelk, wy)
PT (prior) distribution, denoted by ~ L7 (T1, A), if
there are sequences of nonnegative constants{co, } k k! i1 k—j
and independent random variablgs= {Y,} such that Z /k{ G =Dk —))! }x‘ @ =x)",
Y, ~ Betaa.o, az1) and, for everys = (e1,...,&n) j=t
andm > 1, wherek is the number of components in the mixture
F(B ) of Beta densities and the weightg = (w1, ..., wir)
FLm satisfy wjr > 0 and Y5_jwj = 1. We call f a
" " Bernstein polynomial density (BPD). The model is
= ( H Y51~~5jl)< H (1- Y81~~€j1)>' completed by assuming a prior distributipiik) for k
j=Le;=0 J=Le;j=1 and a distributiorHy (-) givenk on the(k — 1)-dimen-

The type of models used for density estimation now sional simplex. Petrone (1999a) showed that(#) > 0
replaces the DP in (1) and (3) by tl&7 (I1, +) prior. for all k > 1, then every distribution o0, 1] is the
For a description of samples from a PT prior, see (weak) limit of some sequence of BPD, and every con-
Walker et al. (1999). Posterior consistency issues fortinuous density orf0, 1] can be well approximated in
density estimation using PT priors have been discussedhe Kolmogorov—-Smirnov distance by BPD. Petrone
in Barron, Schervish and Wasserman (1999). and Wasserman (2002) discuss MCMC strategies for
Pdlya trees have some practical limitations. First, fitting the above model and prove consistency of pos-
the resulting RPM is dependent on the specific par- terior density estimation under mild conditions. Rates
tition adopted. Second, the fixed partitioning scheme of such convergence are given in Ghosal (2001).
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2.5 Other Random Distributions

Lenk (1988) introduces the logistic normal process.
The construction of a logistic normal process starts
with a Gaussian procesg(x) with mean function
w(x) and covariance functiorr(x,y). The trans-
formed procesdV = exp(Z) is a lognormal process.
Stopping the construction here and defining a random
density f(x) o« W would be impractical. The lognor-
mal process is not closed under prior to posterior updat-
ing; that is, the posterior ofi conditional on observing
vi~ f,i=1,...,n,isnotproportional to a lognormal
process. Instead Lenk (1988) proceeds by defining th
generalized lognormal proce&dly (i, o, ¢), defined
essentially by weighting realizations under the lognor-
mal process with the random integrigl W dA)¢. Let
f(x) x V(x) for V.~ LNx(u, o, ¢). The densityf is
said to be alogistic normal procdd€§Sx (1, 0, ¢). The
posterior onf, conditional on a random sampie~ f,
is again a logistic normal procesNSy(u*, o, ™).
The updated parameters an€(s) = u(s) + o (s, y)
and¢*=¢ — 1.

3. REGRESSION

e
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The model is completed with a prigs(¢, b, o) on
the set of knots and corresponding coefficients. Smith
and Kohn (1996), Denison, Mallick and Smith (1998b)
and DiMatteo, Genovese and Kass (2001) are typical
examples of such models. Approaches differ mainly
in the choice of priors and the implementation. Typ-
ically the prior is assumed to factop(¢,b,0) =
pE)p(o)p(blo). Smith and Kohn (1996) use the
Zellner g-prior (Zellner, 1986) forp(b). The prior
covariance matrix Vdb|o) is assumed to be pro-
portional to (B’B)~%, where B is the design matrix
for the given data set. Assuming a conjugate normal
prior b ~ N (O, ca(B/B)_l), the conditional posterior
mean E(b|&,0) is a simple linear shrinkage of the
least squares estimaﬁeDiMatteo, Genovese and Kass
(2001) use a unit-information prior which is defined as
a Zellner g-prior with the scalarc chosen such that
the prior variance is equivalent to one observation.
Denison, Mallick and Sith (1998b) prefer a ridge
prior p(b) = N(0, V) with V = diag(co, v, ..., v).
Posterior simulation in (6) is straightforward except
for the computational challenge of updatigg the
number and location of knots. This typically involves
reversible jump MCMC (Green, 1995). Denison,

The generic regression problem seeks to estimateMallick and Smith (1998a) propose “birth,” “death”

an unknown mean functiop(x) based on data with
i.i.d. measurementerrorg; = g(x;)+¢;,i=1,...,n.
Bayesian inference og starts with a prior probabil-
ity model for the unknown functiory. If restrictive
parametric assumptions fgrare inappropriate, we are
led to consider nonparametric Bayesian models. Many
approaches proceed by considering some h&sis

and “move” proposals to add, delete and change knots
from the currently imputed sétof knots. In the imple-
mentation of these moves it is important to marginalize
with respect to the coefficients,. In the condition-
ally conjugate setup with a normal prigr(b|o) the
marginal posteriop(¢|o, y) can be evaluated analyt-
ically. DiMatteo, Genovese and Kass (2001) propose

{f1, fo, fa. ...} for an appropriate function space, like an approximate evaluat?on _of the rglevarjt B_»ayes fac-
the space of square integrab|e functions. Typica| ex- tOI’S' based pn the BayQSIan information criterion (B|C)
amples are the Fourier basis, wavelet bases and spliné\n interesting alternative, called focused sampling, is

bases. Given a chosen bags any functiong can be
represented ag(-) = >, by fr(-). A random function

g is parametrized by the sequence- (b1, by, ...) oOf
basis coefficients. Assuming a prior probability model
for b we implicitly put a prior probability model on the
random function.

3.1 Spline Models

A commonly used class of basis functions are
splines, for example, cubic regression splinBs=
(1, x,x2,x3, (x —Sl)i, o (x —Sr)i}, where(x), =
max(x,0) and& = (&1, ..., &) is a set of knots. To-
gether with a normal measurement erspr~ N (0, o)
this defines a nonparametric regression model

(6) i =Y bnfu(xi) +ei.

discussed in Smith and Kohn (1998).
3.2 Multivariate Regression

Extensions of spline regression to multiple covari-
ates are complicated by the curse of dimensionality.
Smith and Kohn (1997) define a spline based bivari-
ate regression model. General, higher-dimensional re-
gression models require some simplifying assumptions
about the nature of interactions to allow a practical im-
plementation. One approach is to assume additive ef-
fects

yi = Z gj(xij) +&i,
J

and proceed with eacgy as before. Shively, Kohn and
Wood (1999) and Denison, Mallick and Smith (1998b)
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propose such implementations. Denison, Mallick and variable or threshold (“change”). Chipman, George and
Smith (1998c) explore an alternative extension of McCulloch (1998) use an additional swap move to
univariate splines, following the idea of multivariate propose a swap of splitting rules among internal nodes.
adaptive regression splines (MARS; Friedman, 1991). The complex nature of the parameter space makes
MARS uses basis functions that are constructed asit difficult to achieve a well-mixing Markov chain
products of univariate functions. Let= (x;1, ..., xip) simulation. Chipman, George and McCulloch (1998)
denote the multivariate covariate vector. MARS as- caution against using one long run and instead advise

sumes using frequent restarts. MCMC posterior simulation
k in CART models should be seen as stochastic search
g(x)) =bo+ Z b fa (xi) for high posterior probability trees. Achieving practical
=1 convergence in the MCMC simulation is not typically
with possible.

An interesting special case of multivariate regres-
Jh sion arises in spatial inference problems. The spatial
Jn(x) = H Shj (xWhj - ’hj)+- coordinategx;1, x;2) are the covariates for a response
j=1 surfaceg (x;). Wolpert and Ickstadt (1998a) propose a
Here we used linear spline terrs—1,;) 1. to construct nonparametric model for a spatial point process. At the
the basis functiong;,. Each basis function defines an top level of a hierarchical model they assume a Poisson
interaction ofJ, covariates. The indices;,; specify ~ Process as sampling model for the observed data. Let
the covariates and thg; give the corresponding knots. x; denote the coordinates of an observed event. For
Another intuitively appealing multivariate extension €xample,x; could be the recorded occurrence of a
is classification and regression tree (CART) models. species in a species sampling problem. The model as-
Chipman, George and McCulloch (1998) and Denison, SUmMes a Poisson process~ Po(A (x)) with intensity
Mallick and Smith (1998a) discuss Bayesian inference function A(x). The intensity function in turn is mod-
in CART models. A regression tree is parametrized by eled as a convolution of a normal kerrigk, s) and a
apair(T, 0) describing a binary tre® with b terminal ~ Gamma process\ (x) = [ k(x, s)T'(ds) andT'(ds) ~
nodes, and a parameter veofor (61, ..., 6),) with 6; Gammaa(ds), B(ds)). With constantg(s) = g and
defining the sampling distribution for observations that rescaling the Gamma process to total mass 1, the model

are assigned to terminal nodelLet y;x, k=1, ...,n;, for A(x) reduces to a Dirichlet process mixture of nor-
denote the observations assigned toithenode. In the mal;. o _
simplest case the sampling distribution for ttienode Arjas and Heikkinen (1997) propose an alternative
might be i.i.d. samplingyix ~ N(#;,0), k=1, ...,n;, approach to inference for a spatial Poisson process.

with a node-specific mean. The trde describes a  The prior probability model is based on Voronoi
set of rules that decide how observations are assignedessellations with a random number and location of
to terminal nodes. Each internal node of the tree hasknots.

an assogiat_ed sp_litting rule th_at decides whether an, 5 \yavelet Based Modeling

observation is assigned to the right or to the left branch.

Let x;, j =1,..., p, denote the covariates of the Wavelets provide an orthonormal basis 18 rep-
regression. The splitting rule is of the form; > s) for resentingg € L? as g(x) = Y_; Yx djxjk(x), with
some threshold. Thus each splitting node is defined basis functions/ ;. (x) = 211242/ x — k) that can be
by a covariate index and a threshold. The leaves ofexpressed as shifted and scaled versions of one under-
the tree are the terminal nodes. Chipman, George andying function v». The practical attraction of wavelet
McCulloch (1998) and Denison, Mallick and Smith bases is the availability of superfast algorithms to com-
(1998a) propose Bayesian inference in regression treepute the coefficients/;; given a function, and vice
by defining a prior probability model fo, T) and versa. Assuming a prior probability model for the coef-
implementing posterior MCMC. The MCMC scheme ficientsd ;x implicitly puts a prior probability model on
includes the following types of moves: (a) splitting the random functiory. Typical prior probability mod-

a current terminal node (“grow”); (b) removing a els for wavelet coefficients include positive probabil-
pair of terminal nodes and making the parent into ity mass at zero. Usually this prior probability mass
a terminal node (“prune”); (c) changing a splitting depends on the “level of detailf, Prd;x =0) =x;.
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Given a nonzero coefficient, an independent prior decomposition is used to model random functions.
with level dependent variances is assumed, for exam-Typical examples are the unknown density in a den-
ple, p(djildjx #0) = N(O, rjz). Appropriate choice of  sity estimation (Miller and Vidakovic, 1998) and the
m; andt; achieves posterior rules for the wavelet co- spectrum in a spectral density estimation (Muller and
efficientsd;, which closely mimic the usual wavelet Vidakovic, 1999). In either case evaluation of the like-
thresholding and shrinkage rules (Chipman, Kolaczyk lihood p(y|d) requires reconstruction of the random
and McCulloch, 1997; Vidakovic, 1998). Clyde and functiong(-). Although a technical inconvenience, this
George (2000) discuss the use of empirical Bayes esti-does not hinder the practical use of a wavelet basis. The
mates for the hyperparameters in such models. superfast wavelet decomposition and reconstruction al-
Posterior inference is greatly simplified by the or- gorithms still allow computationally efficient likeli-

thonormality of the wavelet basis. Consider a regres- hood evaluation even with the original raw data.

sion modely; = g(x;) +¢;,i =1, ..., n, with equally
spaced data;, for example,x; = i/n. Substitute a 3.4 Neural Networks
wavelet basis representatig) = > ; > i djx ¥k (x), Neural networks are another popular approach fol-

and lety,d and ¢ denote the data vector, the vec- lowing the general theme of defining random functions
tor of all wavelet coefficients and the residual vector, by probability models for coefficients with respect to
respectively. Also, letB = [y (x;)] denote the de- an appropriate basis. Now the bases are rescaled ver
sign matrix of the wavelet basis functions evaluated at sions of logistic functions. Let () = exp(n)/(1 +
thex;. Then we can write the regression in matrix no- exp(n)); theng(x) = ZyzlﬁjW(x/yj) can be used to
tation asy = Bd + ¢. The discrete wavelet transform represent a random functign The random function is
of the data finds, in a computationally highly efficient parameterized by = (81, y1, ..., Bu, Yu). Bayesian
algorithm,d = B~1y. Assuming independent normal inference proceeds by assuming an appropriate prior
errors,s; ~ N (0, o2), orthogonality of the design ma- probability model and considering posterior updating
trix B implieséjk ~ N(djk,oz), independently across conditional on the observed data. Recent reviews of
(j, k). Assuming a priori independent;; leads to a  statistical inference for neural networks in regression
posteriori independence of the wavelet coefficiehts models appear in Cheng and Titterington (1994) and
In other words, we can consider one univariate infer- Stern (1996). Neal (1996) and Muller and Rios-Insua
ence problemp(d;i|y) at a time. Even if the prior  (1998) discuss specifically Bayesian inference in such
probability modelp(d) is not marginally independent models. Rios-Insua and Muller (1998) argue to include
acrossd i, it typically assumes independence condi- the number of component® in the parameter vec-
tional on hyperparameters, still leaving a considerabletor and consider inference over “variable architecture”
simplification of posterior simulation. neural network models. Lee (2001) compares alterna-
The above detailed explanation serves to highlight tive Bayesian model selection criteria for neural net-
two critical assumptions. Posterior independence, con-works.
ditional on hyperparameters or marginally, only holds
for equally spaced data and under a priori indepen-
dence overd;;. In most applications prior indepen- Alternatively to modeling the random functignthe
dence is a technically convenient assumption, but doesnonparametric regression problem can be reduced to
not reflect genuine prior knowledge. However, incor- a density estimation problem by proceeding as if the
porating assumptions about prior dependence is notpairs(x;, y;) were an i.i.d. sampl€y;, y;) ~ F(x, y),
excessively difficult either. Starting with an assump- from some unknown distributioF. Inference onF
tion about dependence gtx;),i =1, ..., n, Vannucci implies inference on the conditional means process
and Corradi (1999) show that a straightforward two- gr(x) = Er(y|x). Mlller, Erkanli and West (1996)
dimensional wavelet transform can be used to derivepropose this approach using a DP mixture model
the corresponding covariance matrix for the wavelet for inference on the unknown joint distributioR.
coefficientsd jy.. Regression curveg estimated under this approach
In the absence of equally spaced data the convenientake the form of locally weighted linear regression
mapping of the raw data; to the empirical wavelet lines, similar to traditional kernel regression in clas-
coefficientsﬁjk is lost. The same is true for infer- sical nonparametric inference. Considering, y;)
ence problems other than regression where waveletas an i.i.d. sample—wrongly—introduces an addi-

3.5 Other Nonparametric Regression Methods
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tional factor[] F(x;) in the likelihood[] F (x;, y;) = 4.1 Neutral to the Right Processes
[1F (x;)F(y;|x;) and thus provides only approximate
inference.

An interesting approach to isotonic regression is pur-
sued in Lavine and Mockus (1995), who use a rescaled
cumulative density functiorF to model a regression
mean curvegz(x) = a + bF(x). Assuming a DP prior
for F they implement nonparametric Bayesian infer-
ence.

Newton, Czado and Chappell (1996) propose a mod-
ified DP, constraining the random probability measure
to median 0 and fixed length central interval (such as,
e.g., the interquartile range). The modified DP is used
to define a linkF in a nonparametric binary regression
model with P (y; =1) = F(x]8).

Many stochastic process priors that have been pro-
posed as nonparametric prior distributions for sur-
vival data analysis belong to the class of neutral
to the right (NTTR) processes. An RPM(¢) is
an NTTR process on the real line if it can be ex-
pressed ag'(t) = 1 — exp(—Y(¢)), whereY(¢) is a
stochastic process with independent increments, al-
most surely right-continuous and nondecreasing with
P{Y(0) =0} =1 and P{lim;,o Y(t) = oo} = 1
(Doksum, 1974). Walker et al. (1999) cdfl(z) an
NTTR Lévy process. Doksum (1974) showed that the
posterior foran NTTR prior and i.i.d. sampling is again
an NTTR process. Ferguson and Phadia (1979) showed
that for right-censored data the class of NTTR process
priors remains closed; that is, the posterior is still an
NTTR process.

Survival analysis involves modeling the time until NTTR processes are used in many approaches that
a certain event occurs (survival times), often including construct probability models fax(z) or A(t), rather
a regression on covariates. In most applications, thethan directly for . Dykstra and Laud (1981) define
data is subjectto right-censoring. Lat ..., x, denote  the extended Gamma process, generalizing the Gamma
the survival timesyx; ~ F(-). Let C1,...,C, denote  process studied in Ferguson (1973). The idea is to
the (possibly random) censoring times. The actually consider firstan NTTR proce$E (¢)} such that’ (1) —
observed data is a collection of pai(gy, 1), ..., Y(s) ~ T'(a(t) — a(s),1) for all r > s > 0, where
(T,, I,) with censored observatior’s = min{x;, C;} a(t) is a nondecreasing left-continuous function on
and censoring indicatorg = I'{x; < C;}. Interval and [0, >0). The new process is defined gﬁ&ﬁ(s)dY(s)
other types of censoring could be also considered in afor a positive right-continuous functiofi(z). Dykstra
similar fashion. Two quantities are of primary interest and Laud (1981) consider such processes on the hazard
in survival analysis: the survival functiofi(z) = 1 — function A(¢), studying their properties and obtaining
F(r) and the hazard rate functionz) = F'(¢)/S(1). estimates of the posterior hazard function without
It turns out that the integrated or cumulative hazard censoring and with right-censoring. In particular, the
function A(r) = J§ »(s) ds is simpler to estimate, and resulting function.(r) is monotone.
there is a one-to-one correspondence betwsenand An alternative model was proposed by Hjort (1990),
A(t), given byS(r) = exp(—A(¢)). by placing a Beta process prior af(z). To under-

AssumingCy, ..., C, to be constant, Susarla and stand this construction, let us look at a discrete ver-
Van Ryzin (1976) discuss inference with a DP prior sion of the process first. Following Nieto-Barajas and
on F. The posterior mean converges to Kaplan and Walker (2002b), consider aagtition of the time axis
Meier's (1958) product limit estimate as the total 0= 10 < 71 < 72---, and failures occurring at times
mass paramete¥ — 0. More recently, Florens and chosen from the sgt1, 72, .. .}. Let; denote the haz-
Rolin (2001) provided a closed form description of ard at timez;, A; = P(x = t;|x > ;). Hjort (1990)
the posterior process under a DP prior and randomassumes independent, Beta-distributed priorgXg}.
censoring times. The characterization is quite useful This generates a discrete process with independent in-
for posterior simulation of functionals of the posterior crements for the cumulative hazard functiarz;) =
distribution of F. For a review of related approaches Z,‘J:o)\i- The class is closed under prior to poste-
applying the DP to similar problems see Ferguson, rior updating as the posterior process is again of the
Phadia and Tiwari (1992). Doss (1994) studied an same type. The continuous version of this discrete Beta
MDP model for survival data subject to more general process is derived by a limit argument as the inter-
censoring schemes. Evaluation of the posterior meanval lengthst; — r;_1 approach zero (for details, see
of F is done through an interesting MCMC scheme Hijort, 1990). Full Bayesian inference for a model with
that involves DP draws using a composition method. a Beta process prior for the cumulative hazard func-
Convergence of the algorithm is also discussed. tion using Gibbs sampling can be found in Damien,

4. SURVIVAL ANALYSIS
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Laud and Smith (1996). A variation of this idea was simulation. The name ILM comes from the fact that
used by Walker and Mallick (1997). Specifically, they v,, = L™ (z,,/T), whereL (u) = v([u, oo]). See addi-
assumed (z) to be constant aty, Ao, ... overthe inter- tional details in Wolpert and Ickstadt (1998b).
vals [0, t1], (11, 2], . .. with independently distributed
Gamma priors oifiA ;}. As pointed out in Nieto-Barajas
and Walker (2002b), there is no limit version of this ~ We have already discussed independent increments
process. models for the cumulative hazard function(z). In
Since an NTTR procesB(r) has at most a count- the discrete version this implies independence for the
able number of discontinuity points, it turns out that hazards{x;}. A different modeling perspective is ob-
every NTTR process can be decomposed as the sumained by assuming dependence. A convenient way to
of a continuous component and a pure jump compo-introduce dependence is a Markovian process prior
nent. This observation is very useful for simulation on {;}. Gamerman (1991) proposes the following
purposes (Walker and Damien, 1998; Walker et al., model: logh;) = log(x;_1) + ¢; for j >2, where
1999). To simulate from the jump component, Walker {¢;} are independent witlE(¢;) = 0 and Vate;) =
and Damien (1998) suggest using methods discusseg:2 ~ o, |n the linear Bayesian method of Gamerman
in Walker (1995) or the latent variables method of (1991) only a partial specification of thg;} is re-
Damien, Wakefield and Walker (1999), depending on qyired. The resulting model extends Leonard's (1978)
the specific form adopted by the density to sample smoothness prior for density estimation, stated also in
from. To simulate from the continuous part Walker terms of a discrete survival formulation, but under the
f':mdf Damrl]gn (1998) note t_h?t a Tan(_qu }/arlable z_;}rls— assumption that; 9 N, 02).
Ing from this co_m_ponentls infinitely divisible and build Later, Gray (1994) used a similar prior process but
on a method originally proposed by Bondesson (1982), directly on the hazard§ ;}, without the log transfor-

ttincJ;I dilricall:::gn g{i;ge di?f?chﬁieasug]r?srinduZtt?h;TiirgreaC_maﬁon' A further generalization involving a martingale
P 9 " process was proposed in Arjas and Gasbarra (1994).

Wolpert and Ickstadt.(1998a) prop'osed an alterna More recently, Nieto-Barajas and Walker (2002b) pro-
tive method for approximately sampling from the con-
. . b posed a model based on a latent prodegs such that
tinuous part, called the inverse Lévy measure (ILM) .

{A;}isincluded as

algorithm. It is based on the result that any nonnega-

4.2 Dependent Increments Models

tive infinitely divisible distribution can be represented M= UL —> Ay —> Up—> -+
as the distribution at time = 1 of an increasing sto- ) N
chastic procesg, (calledsubordinatoj with station- ~ @nd the pairs(u, 2) are generated from conditional

ary and independentincrements. The Lévy—Khintchine densities f (u[4) and f(Au) implied by a specified
theorem (e.g., Durrett, 1996, page 163) states that thd®int density f(u,1). The main idea is to ensure

characteristic function of such a distribution satisfies linearity in the conditional expectatios (A-+1|A¢) =
ar + bgir. Nieto-Barajas and Walker (2002b) show

log(e(1)) that both the Gamma process of Walker and Mallick
o212 _ itx (1997) and the discrete Beta process of Hjort (1990) are
=ict———+ . <e”x -1- 1+x2>v(dX), obtained as special cases of their construction, under
appropriate choices of (u, A).
wherev is called the Lévy measure and is such that In the continuous case, Nieto-Barajas and Walker
$2 (2002b) proposed a Markovian model where the hazard

v({0})) =0 and / 5v(dx) < o00. rate function is modelled as
R1+x

t
Therefore, to simulate the proceXs over an interval  (7) A1) :/ exp{—a(t —u)}dL(u),
[0, T] we can proceed as follows: generate indepen- 0
dent jump timesy,, from the uniform distribution on  for @ > 0, and wherd.(¢) is a pure jump process, that
[0, T'], jumpsrt, from a unit-rate Poisson process; de- is, an independent increments proces$®@mo) with-

finev,, =inf{u > 0:v([u, 00)) <1, /T}; and selX, = out Gaussian components (Ferguson and Klass, 1972;
> {vm 10y < t}. This summation defining’, will have Walker and Damien, 2000). This model, called a Lévy
a finite number of terms if and only if([0, c0)) < oo. driven Markov process, extends Dykstra and Laud’s

Thus, in general the method leads to an approximate(1981) proposal by allowing nonmonotone sample
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paths fori(z). In addition, the sample paths are piece- andts, = sufz:Sa(¢) > 0}. Here,g% represents in-
wise continuous functions. Nieto-Barajas and Walker tegration over the union of intervals of continuity
(2002b) obtain posterior distributions under (7) for dif- points of H that are less than or equal tpand[],
ferent types of censoring and discuss applications inrepresents a product over the discontinuity points of
several special cases, including the Markov—-Gammap that are less than or equal to[we assume that
process. SA () andS%.(r) have no common discontinuities]. In
this setting, Salinas-Torres, de Braganca Pereira and
_ _ _ . . Tiwari (2002) derived Bayes estimates${(¢) under

An interesting extension of survival models consid- quadratic loss function. The estimate has the property

ers a system with- components arranged in series. that it can be obtained by substituting the Bayes esti-
Herexs, ..., x, are the failure times of the components | ,5iag fors% andsx. into (8).

and we observér, I), whereT = min{x1, ..., x,} and
I = j if T =x;. This setup is known as the compet- 4.4 Models Based on Proportional Hazards
ing risks model withr sources of failure. The survival
function for thejth component is

4.3 Competing Risks Model

So far we have discussed survival analysis models
without covariates. To incorporate covariates, the most
Sit)=P(x;>1) popular choice is the proportional hazards model,
introduced in Cox (1972). Assumirg, ..., T, are the
failure times ofn individuals, the hazard rate functions
are modeled as

and the subsurvival function is
Sit)=P(T >1,1=j).
The system survival function is

) ri(0)=ro)explZ;(D" Y, i=1....n,
S@)=P(T >1)= Z Sj-‘(t). whereZ;(¢) is the p-dimensional vector of covariates
=1 for theith individual at timer > 0, B is the vector of

Let X; = (xi1,...,%ir), i = 1,...,n, be a sample regression coefficients and(r) is the baseline hazard

from the latentyy, . . ., x, failure times. The actual ob- rate function.
served data ar€Ty, ), ..., (T,, I,). Salinas-Torres, Semiparametric approaches to inference in (9) con-
de Braganca Pereira and Tiwari 1997 introduced thesider a nonparametric specificationaf(r). A model
multivariate DP as a nonparametric model for the based on an independent increments Gamma process
joint distribution of the failure timeq, ..., x,. Let ~ was proposed by Kalbfleisch (1978), who studied its
Fou, . .., For be distribution functions on the appropri- properties and estimation. Extensions of this model to
ate space and/i, ..., M, be positive mass parame- neutral-to-the-right processes were discussed in Wild
ters, and lev = (vy,...,v,) ~ D(M1, ..., M,). Then and Kalbfleisch (1981). In the context of multiple event
P= (v1P1,...,v,P) is called a multivariate DP of di- time data, Sinha (1993) considered an extension of
mensiorv if P; ~D(M;, Fgj). Kalbfleisch’s (1978) model foko(z). The proposal as-
Consider now a given risk subset c {1,...,r} sumes the events are generated by a counting process
and letA“ be its complement. The corresponding sub- with intensity given by a multiplicative expression sim-
survival and survival functions are given I8 (r) = ilar to (9), but including an indicator of the censoring
P(T >t,1 € A)andSa(r) = P(minjeax; >1). The  process, and individual frailties to accommodate the
data structure obtained for the case 2, A ={1}and  multiple events occurring per subject. Sinha (1993) dis-
A¢ = {2} reduces to the usual right-censored problem cusses posterior inference for this model using Gibbs
with random censoring times. Peterson (1977) gives ansampling, under the assumption of Gamma-distributed
expression for the survival functio$ (z) in terms of  frailties. Extensions of this model to the case of pos-

the subsurvival functionSj (1) and S, itive stable frailty distributions and a correlated prior
Sa(t) = o(S% (1), Skes 1) process with piecewise exponential hazards can be
(8) found in Qiou, Ravishanker and Dey (1999). See ad-
forr <t* =min{rs, . 1s,.}, ditional comments, details on computational strategies
where and extensions to multivariate survival data in Sinha
o(H.G: 1) and Dey (1998).

Other modeling approaches based on (9) have been
_ exp( ' dH(s) )1—[ { H(sy) + G(S+)} studied in the literature. Laud, Damien and Smith
0 H(s)+G(s)/ ",  LH(s-) + G(s-) ’ (1998) consider (9) using a Beta process priorAdr),
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and proposing an MCMC implementation for full A further complication arises when the model hierar-
posterior inference. Nieto-Barajas and Walker (2001) chy in a hierarchical model continues beyond the non-
propose their flexible Lévy driven Markov process parametric model, that is, if the nonparametric model

(Nieto-Barajas and Walker, 2002a) to modeJ(r),  appears in a submodel of the larger hierarchical model.
and allow for time dependent covariates. Full posterior For example, in a hierarchical analysis of related clin-
inference is achieved via substitution sampling. ical studies there might be a different random effects

Accelerated failure time models are an alternative distribution in each of the related clinical trials. L@t
framework to introduce regression in survival analy- denote the random distribution or random function in
sis. Instead of introducing the regression in the 109 sybmodet. Assuming a nonparametric mode(G;)
hazard, as in (9), the generic accelerated failure timefor the ith submodel, model completion requires an
model assumes that failure tim@s arise as lodi = additional assumption about the joint distribution of
—Z:B + log(x;). Nonparametric approaches assume {G;,i € I}. Using DP priors,G; ~ D(G?, M), mar-

a probability model for the unknown distribution of ginally for eachG;, a conceptually stlraightforward
log(x;). Models based on DP priors appear in JOhnsonapproach is to link the base measuK@s. For ex-

and Christensen (1989) and Kuo and Mallick (1997). ample, the base measu@ could include a regres-
Walker and Mallick (1999) propose an alternative gjqn on covariates specific to thigh submodel. This

PT prior model. construction is introduced in Cifarelli and Regazzini
(1978) as mixture of products of Dirichlet process. The
model is used, for example, in Muliere and Petrone

An important application of nonparametric appro- (1993), who define dependent nonparametric mod-
aches arises in modeling random effects distributionsels F, ~ D (M, F?) by assuming a regression in the

in hierarchical models. Often little is known about the base measuré?‘/g — N(ﬁx’ 0-2)_ Similar models are

specific form of the random effects distribution. As- discussed in Mira and Petrone (1996) and Giudici,
suming a specific parametric form is typically moti- \ezzetti and Muliere (2003). Carota and Parmigiani
vated by technical convenience rather than by genuine2002) and Dominici and Parmigiani (2001) use the
prior beliefs. Although inference about the random ef- g5 me approach to model random distributiagis~
fects distribution itself is rarely of interest, it can have D(G?, M;) centered around, among other choices,
implications for the inference of interest. Thus itis im- Bir;omial base measui@’ = Bin(@”. N;), includ-
portant to allow for population heterogeneity, outliers, ing the total mass parametlm,- in the lhi’erér’chy. Both

skewness, etc. the Binomial success probabilitf and the total mass

In the context of a traditional randomized block ) .
ANOVA model with subject specific random effects parameterM; are modeled as a regression on covari-
atesd;, specific to submodel

a Bayesian nonparametric model can be used to allow™ 7% .
y P Linking the related nonparametric models through

for more general random effects distributions. Bush . .
and MacEachern (1996) propose a DP priorfor G, a regression on the parameters of the nonparametric

G ~ D(Go, M). Kleinman and Ibrahim (1998) pro- models limits the nature of the dependence to the struc-

pose the same approach in a more general frameworiure of this regression. MacEachern (1999) proposes
for a linear model with random effects. They discuss 1€ dependent DP (DDP) as an alternative approach

an application to longitudinal random effects models. 10 define a dependent prior model for a set of ran-
Miller and Rosner (1997) use DP mixture of nor- dom measurefG,}, with G ~ O marginally. Recall
mals to avoid the awkward discreteness of the implied the stick-breaking representation (2) for the DP ran-
random effects distribution. Also, the additional con- dOM MeasureG;, =3, w8 (1) The key idea be-
volution with a normal kernel significantly simplifies hind the DDP is to introduce dependence across the
posterior simulation for sampling distributions beyond measures; . by assuming the distribution of the point
the normal linear model. Mukhopadhyay and Gelfand massesu., to be dependent across different levels
(1997) implement the same approach in generalizedof x, but still independent acrogs In the basic ver-
linear models with linear predictar + x/8 and a DP  sion of the DDP the weights are assumed to be the same
mixture model for the random effeef. In Wang and  acrossx, that is,w,;, = wy,. To introduce dependence
Taylor (2001) random effect®; are entire longitudi-  of u,, acrossx MacEachern (1999) uses a Gaussian
nal paths for each subject in the study. They use in- process. De lorio, Miller, Rosner and MacEachern
tegrated Ornstein—Uhlenbeck stochastic process prior§2004) construct the ANOVA DDP as a joint prob-
for W;S(1). ability model for dependent random measures. They

5. HIERARCHICAL MODELS
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consider a family of unknown probability measuigs
indexed by categorical factoxs For example, in a clin-

i < j, belongs to the same partitioning subsegy x;)
asx; at levelm. Thea sequences depend on the pa-
ical trial, F, might be the random effects distribution rametem. Evaluation of Bayes factors of the paramet-
for patients with categorical covariates Covariates  ric model versus nonparametric extension requires one
might include treatment levels, etc. Dependence acrossnore step of marginalization to marginalize w.gt.
{Fy} is induced by assuming ANOVA models on, Berger and Guglielmi (2001) describe suitable numer-
acrossc. ical methods.

A related approach is pursued in Mazzuchi, Soofi
and Soyer (2000). They consider parametric models
defined as maximum entropy models in a moment
class. This includes the exponential, Gamma, Weibull,
normal, etc. By considering the posterior expected
Kullback—-Leibler divergence between the parametric
model and a nonparametric extension centered at that

Carota and Parmigiani (1996) and Carota, Parmigianiparametric m_odel they_ define a diagnostic of fit. For the
and Polson (1996) discuss such approaches using Dlgonparamgtnc extension they use a DP model centered
extensions and point out the limitations of formalizing at the maximum entrapy parametric model.
the comparison with a Bayes factor. Due to the dis-
crete nature of the Dirichlet process RPM inference
is driven by the number of duplicates in the data set. We have reviewed some important aspects of non-
They suggest, among other approaches, to consideparametric Bayesian inference. Rather than attempt
KL-divergence of prior to posterior on the random a complete catalog of existing methods we focused
probability model. Conigliani, Castro and O’'Hagan on typical modeling strategies in important infer-
(2000) discuss a similar approach, using fractional ence problems. Also, we emphasized recent devel-
Bayes factors to summarize the comparison. opments over a historical perspective. The chosen

Berger and Guglielmi (2001) take up the same classification of Bayesian nonparametric approaches
theme, but replace the DP prior with a PT model. To into the listed application areas is an arbitrary subjec-
center the PT model at a parametric moglét|60) they tive choice, leading us to miss some interesting non-

6. MODEL VALIDATION

An interesting use of nonparametric Bayesian infer-
ence arises in model validation. One way to validate a
proposed parametric model is to consider a nonpara-
metric extension and report appropriate summaries of
a comparison of the parametric and nonparametric fits.

7. CONCLUSION

construct PT’s with mean measuféx|6). They fix the
nested partition sequence and set the parameids
the random probalities such thathe desired mean is

parametric Bayesian methods that did not fit cleanly
into one of these arbitrary categories. Typical exam-
ples are Quintana (1998) and Lee and Berger (2001),

achieved. Computation of Bayes factors for the model discussing nonparametric approaches to modeling con-

validation is greatly simplified by the availability of
a closed form expression for the marginal distribution
under such PT models:

m(x1,...,x,|0)

=[] /&6

i=1

0 omt(x)) oe;m(xj)(asmilo(xj) + e, _11(xj))

/ / *
=2 me=1 %enp @00 T %, 110c))

The «a, are the Beta distribution parameters in the
definition of the PT, as defined in Section 2.3. The in-
dicese,, (x;) = e1--- &5, identify the partitioning sub-
setB,....,, of levelm that contains;, thatis,x; € B,

tingency tables and selection sampling, respectively.

An important aspect of nonparametric Bayesian
inference that we excluded from the discussion are
computational issues. Many approaches are driven by
what are essentially computational concerns. Another
important line of research that we excluded from the
discussion are the many methods that are nonparamet-
ric in flavor even if they are not technically inference
in infinite-dimensional parameter spaces. Typical ex-
amples are finite mixture models. Such models often
provide flexible inference very much like correspond-
ing nonparametric extensions.

Finally, we did not discuss methods that are non-
parametric Bayes in the literal sense, rather than in
the sense of the technical definition we gave in the In-

ande, are the parameters of the posterior PT, given the troduction. A typical example is Lavine (1995), who

observationgxs, ..., x;_1). The upper bound:*(x;)
in the product is the smallest level such that noy;,

discusses inference based on a partial likelihood argu-
ment.
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