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Nonparametric Bayesian Data Analysis
Peter Müller and Fernando A. Quintana

Abstract. We review the current state of nonparametric Bayesian inference.
The discussion follows a list of important statistical inference problems,
including density estimation, regression, survival analysis, hierarchical
models and model validation. For each inference problem we review relevant
nonparametric Bayesian models and approaches including Dirichlet process
(DP) models and variations, Pólya trees, wavelet based models, neural
network models, spline regression, CART, dependent DP models and model
validation with DP and Pólya tree extensions of parametric models.

Key words and phrases:Dirichlet process, regression, density estimation,
survival analysis, Pólya tree, random probability model (RPM).

1. INTRODUCTION

Nonparametric Bayesian inference is an oxymoron
and a misnomer. Bayesian inference by definition al-
ways requires a well-defined probability model for
observable datay and any other unknown quanti-
tiesθ , that is, parameters. Nonparametric Bayesian in-
ference traditionally refers to Bayesian methods that
result in inference comparable to classical nonpara-
metric inference, such as kernel density estimation,
scatterplot smoothers, etc. Such flexible inference is
typically achieved by models with massively many
parameters. In fact, a commonly used technical defin-
ition of nonparametric Bayesian models is probability
models with infinitely many parameters (Bernardo and
Smith, 1994). Equivalently, nonparametric Bayesian
models are probability models on function spaces.
Nonparametric Bayesian models are used to avoid crit-
ical dependence on parametric assumptions, to robus-
tify parametric models and to define model diagnostics
and sensitivity analysis for parametric models by em-
bedding them in a larger encompassing nonparametric
model. The latter two applications are technically sim-
plified by the fact that many nonparametric models al-
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low one to center the probability distribution at a given
parametric model.

In this article we review the current state of Bayesian
nonparametric inference. The discussion follows a list
of important statistical inference problems, including
density estimation, regression, survival analysis, hier-
archical models and model validation. The list is not
exhaustive. In particular, we will not discuss nonpara-
metric Bayesian approaches in time series analysis and
in spatial and spatiotemporal inference.

Other recent surveys of nonparametric Bayesian
models appear in Walker, Damien, Laud and Smith
(1999) and Dey, Müller and Sinha (1998). Nonpara-
metric models based on Dirichlet process mixtures are
reviewed in MacEachern and Müller (2000). A recent
review of nonparametric Bayesian inference in survival
analysis can be found in Sinha and Dey (1997).

2. DENSITY ESTIMATION

The density estimation problem starts with a ran-

dom samplexi
i.i.d.∼ F(xi), i = 1, . . . , n, generated from

some unknown distributionF . A Bayesian approach to
this problem requires a probability model for the un-
known F . Traditional parametric inference considers
models that can be indexed by a finite-dimensional pa-
rameter, for example, the mean and covariance matrix
of a multivariate normal distribution of the appropriate
dimension. In many cases, however, constraining infer-
ence to a specific parametric form may limit the scope
and type of inferences that can be drawn from such
models. In contrast, under a nonparametric perspective
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we consider a prior probability modelp(F ) for the un-
known densityF , for F in some infinite-dimensional
function space. This requires the definition of probabil-
ity measures on a collection of distribution functions.
Such probability measures are generically referred
to asrandom probability measures(RPM). Ferguson
(1973) states two important desirable properties for this
class of measures (see also Antoniak, 1974): (i) their
support should be large and (ii) posterior inference
should be “analytically manageable.” In the parametric
case, the development of Markov chain Monte Carlo
(MCMC) methods (see, e.g., Gelfand and Smith, 1990)
allows one to largely overcome the restrictions posed
by (ii). In the nonparametric context, however, compu-
tational aspects are still the subject of much research.

We next describe some of the most common random
probability measures adopted in the literature.

2.1 The Dirichlet Process

Motivated by properties (i) and (ii), Ferguson (1973)
introduced the Dirichlet process (DP) as an RPM.
A random probability distributionF is generated by
a DP if for any partitionA1, . . . ,Ak of the sample
space the vector of random probabilitiesF(Ai) follows
a Dirichlet distribution:(

F(A1), . . . , F (Ak)
)

∼ D
(
M · F0(A1), . . . ,M · F0(Ak)

)
.

We denote this byF ∼ D(M,F0). Two parameters
need to be specified: the weight parameterM , and
the base measureF0. The base measureF0 defines
the expectationE(B) = F0(B), andM is a precision
parameter that defines variance. For more discussion of
the role of these parameters see Walker et al. (1999). A
fundamental motivation for the DP construction is the
simplicity of posterior updating. Assume

x1, . . . , xn|F i.i.d.∼ F and F ∼ D(M,F0).(1)

Let δx(·) denote a point mass atx. The posterior
distribution is F |x1, . . . , xn ∼ D(M + n,F1) with
F1 ∝ F0 + ∑n

i=1 δxi
.

More properties of the DP are discussed, among oth-
ers, in Ferguson (1973), Korwar and Hollander (1973),
Antoniak (1974), Diaconis and Freedman (1986),
Rolin (1992), Diaconis and Kemperman (1996) and
Cifarelli and Melilli ( 2000). Of special relevance for
computational purposes is the Pólya urn representa-
tion by Blackwell and MacQueen (1973). Another very

useful result is the construction by Sethuraman (1994):
anyF ∼ D(M,F0) can be represented as

F(·) =
∞∑

h=1

whδµh
(·), µh

i.i.d.∼ F0 and

(2)
wh = Uh

∏
j<h

(1− Uj) with Uh
i.i.d.∼ Beta(1,M).

In words, realizations of the DP can be represented as
infinite mixtures of point masses. The locationsµh of
the point masses are a sample fromF0, and the random
weightswh are generated by a “stick-breaking” pro-
cedure. In particular, the DP is an almost surely (a.s.)
discrete RPM.

The DP is by far the most popular nonparamet-
ric model in the literature (for a recent review, see
MacEachern and Müller, 2000). However, the a.s. dis-
creteness is in many applications inappropriate. A sim-
ple extension to remove the constraint to discrete
measures is to introduce an additional convolution, rep-
resenting the RPMF as

F(x) =
∫

f (x|θ) dG(θ) with G ∼ D(M,G0).(3)

Such models are known as DP mixtures (MDP)
(Escobar, 1988; MacEachern, 1994; Escobar and
West, 1995). Using a Gaussian kernelf (x|µ,S) =
φµ,S(x) ∝ exp[−(x − µ)T S−1(x − µ)/2] and mix-
ing with respect toθ = (µ,S), we obtain density
estimates resembling traditional kernel density es-
timation. Related models have been studied in Lo
(1984), Escobar and West (1995) and Gasparini (1996).
Posterior consistency is discussed in Ghosal, Ghosh
and Ramamoorthi (1999).

Posterior inference in MDP models is based on
MCMC posterior simulation. Most approaches proceed
by breaking the mixture in (3) with the introduction
of latent variablesθi as xi|θi ∼ f (x|θ) and θi ∼ G.
Efficient MCMC simulation for general MDP models
is discussed, among others, in Bush and MacEachern
(1996), MacEachern and Müller (1998), Neal (2000)
and West, Müller and Escobar (1994). For related
algorithms in a more general setting, see Ishwaran
and James (2001). Alternative to MCMC simulation,
sequential importance sampling-based methods have
been proposed for MDP models. Examples can be
found in Liu (1996), Quintana (1998), MacEachern,
Clyde and Liu (1999), Ishwaran and Takahara (2002)
and references therein. A third class of methods for
MDP models, called thepredictive recursion, was
proposed by Newton and Zhang (1999). Consider
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the posterior predictive distribution in model (3). Let
Fn(B)

def= E(F (B)|x1, . . . , xn) denote the posterior
mean of the RPM. The posterior mean is identical to
the predictive distribution,

Fn(B) = P (θn+1 ∈ B|x1, . . . , xn)

for any Borel setB in the appropriate space. The Pólya
urn representation implies

F1(B) = M

M + 1
F0(B) + 1

M + 1
P (θ1 ∈ B|x1).

Newton and Zhang (1999) extrapolate this representa-
tion to a recursion in the general case:

Fi(B) = (1−wi)Fi−1(B)+wiPi−1(θi ∈ B|xi),(4)

where the probability in the second term in the right-
hand side of (4) is computed under the current approx-
imation Fi−1, and the nominal values for the weights
arewi = 1/(M + i), i ≥ 1. The approximation is exact
for i = 1. In general,Fn(B) depends on the order in
whichx1, . . . , xn are processed, but this dependence is
rather weak, and in practice it is recommended to av-
erage over a number of permutations of the data. The
method is very fast to execute and produces very good
approximations, although it tends to oversmooth the re-
sults. For a comparison of the computational strategies
mentioned here, see Quintana and Newton (2000).

Model (1) has the advantage of the conjugate form.
However, getting exact draws from a DP is impossible
because this requires the generation of an infinite
mixture of point masses. Typical MCMC schemes
are based on integrating out the DP via Blackwell
and MacQueen’s (1973) representation. This makes
it difficult to produce inference on functionals of the
posterior DP. A similar problem is found in the more
general MDP models. Some authors propose MCMC
strategies where, instead of integrating out the DP,
an approximation to the DP is considered. This is
usually done by drawing from

∑N
h=1whδµh

(·) for large
enoughN . Examples of this strategy can be found
in Muliere and Tardella (1998), Ishwaran and James
(2002), Kottas and Gelfand (2001) and Gelfand and
Kottas (2002).

2.2 Other Discrete Random Probability Measures

An interesting extension of the DP that has been used
in the context of density estimation is the invariant
DP introduced by Dalal (1979). The idea is to define
a prior process on the space of distribution functions
that has a structure that can be characterized via in-
variance, for example, symmetry or exchangeability.

Dalal’s (1979) construction is based on invariance un-
der a finite group, essentially by restricting Ferguson’s
(1973) definition to invariant centering measures and
partitions. This guarantees that the posterior process
is also invariant. Dalal (1979) uses this setup to esti-
mate distribution functions that are symmetric with re-
spect to a known valueµ, usingF0 such thatF0(t) =
1−F0(2µ− t) for all t ≤ µ and the groupG = {g1, g2},
whereg1(x) = x andg2(x) = 2µ − x.

An alternative model to (1) or (3) is obtained by
replacing the prior DP with a convenient approx-
imation. Natural candidates follow from truncating
Sethuraman’s (1994) construction (2). In this setup, the
prior

∑∞
h=1whδµh

(·) is replaced by
∑N

h=1whδµh
(·) for

some appropriately chosen value ofN . An example of
this procedure is theε-DP proposed by Muliere and
Tardella (1998), whereN is chosen such that the to-
tal variation distance between the DP and the trunca-
tion is bounded by a givenε. Another variation is the
Dirichlet-multinomial process introduced by Muliere
and Secchi (1995). Here the RPM is, for some fi-
niteN ,

F(·) =
N∑

h=1

whδµh
(·),

(w1, . . . ,wN) ∼ D(M · N−1, . . . ,M · N−1) and

µh
i.i.d.∼ F0.

More generally, Pitman (1996) described a class of
models

F(·) =
∞∑

h=1

whδµh
(·) +

(
1−

∞∑
h=1

wh

)
F0(·),(5)

where, for a continuous distributionF0, we have

µh
i.i.d.∼ F0, assumed independent of the nonnegative

random variableswh. The weightswh are constrained
by

∑∞
h=1wh ≤ 1. The model is known asa species

sampling model(SSM), withwh interpreted as the rel-
ative frequency of thehth species in a list of species
present in a certain population, andµh as the tag as-
signed to that species. If

∑∞
h=1wh = 1, the SSM is

calledproperand the corresponding prior RPM is dis-
crete. The stick-breaking priors studied by Ishwaran
and James (2001) are a special case of (5), adopt-
ing the form

∑N
h=1whδµh

(·), where 1≤ N ≤ ∞. The
weights are defined aswh = ∏h−1

j=1(1 − Uj)Uh with
Uh ∼ Beta(ah, bh), independently, for given sequences
(a1, a2, . . . ) and (b1, b2, . . . ). Stick-breaking priors
are quite general, including not only the Dirichlet-
multinomial process and the DP as special cases, but
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also a two-parameter DP extension, known as the
Pitman–Yor process (Pitman and Yor, 1997), and the
Beta two-parameter process (Ishwaran and Zarepour,
2000). Additional examples and MCMC implemen-
tation details for stick-breaking RPM’s can be found
in Ishwaran and James (2001). Further discussion of
SSM’s appears in Pitman (1996) and Ishwaran and
James (2003).

An interesting property of MDP models is that any
exchangeable sequence of random variables can be
well approximated in the sense of the Prokhorov metric
by a certain sequence of mixtures of DP’s (Regazzini,
1999). In practice, however, this result has limited use.
We review next some methods for defining RPM’s
supported on the set of continuous distributions that
have been used in density estimation problems.

2.3 Pólya Trees

Pólya trees (PT) are proposed in Lavine (1992,
1994) as a generalization of the DP. Like the DP,
the PT model satisfies conditions (i) and (ii). The
PT includes DP models as a special case. However,
in contrast to the DP, an appropriate choice of the
PT parameters allows one to generate continuous
distributions with probability 1. The definition requires
a nested sequence� = {πm,m = 1,2, . . .} of partitions
of the sample space�. Without loss of generality,
we assume the partitions are binary. We start with
a partition π1 = {B0,B1} of the sample space,� =
B0∪B1, and continue with nested partitions defined by
B0 = B00∪B01, B1 = B10∪B11 etc. Thus the partition
at levelm is πm = {Bε, ε = ε1, . . . , εm}, whereε are
all binary sequences of lengthm. We say thatF has a
PT (prior) distribution, denoted byF ∼ PT (�,A), if
there are sequences of nonnegative constantsA = {αε}
and independent random variablesY = {Yε} such that
Yε ∼ Beta(αε0, αε1) and, for everyε = (ε1, . . . , εm)

andm ≥ 1,

F
(
Bε1...εm

)
=

(
m∏

j=1;εj=0

Yε1...εj−1

)(
m∏

j=1;εj =1

(
1− Yε1...εj−1

))
.

The type of models used for density estimation now
replaces the DP in (1) and (3) by thePT (�,A) prior.
For a description of samples from a PT prior, see
Walker et al. (1999). Posterior consistency issues for
density estimation using PT priors have been discussed
in Barron, Schervish and Wasserman (1999).

Pólya trees have some practical limitations. First,
the resulting RPM is dependent on the specific par-
tition adopted. Second, the fixed partitioning scheme

results in discontinuities in the predictive distribu-
tions. Third, implementations for higher-dimensional
distributions require extensive housekeeping and are
impractical. To mitigate problems related to the dis-
continuities Paddock, Ruggeri, Lavine and West (2003)
and Hanson and Johnson (2002) introduced random-
ized Pólya trees. The idea is based on dyadic rational
partitions, but instead of taking the nominal half-point
Paddock et al. (2003) randomly choose a “close” cut-
off. This construction is shown to reduce the effect of
the binary tree partition on the first two points noted
above. On the other hand, Hanson and Johnson (2002)
consider instead a mixture with respect to a hyperpa-
rameter that defines the partitioning tree. The problem
concerning high dimension persists though.

2.4 Bernstein Polynomials

For a distribution functionF on the unit interval, the
corresponding Bernstein polynomial is defined as

B(x, k,F ) =
k∑

j=0

F(j/k) ·
(

k

j

)
xj (1− x)k−j .

A remarkable property ofB(x, k,F ) is that it con-
verges uniformly toF ask → ∞. The definition for
B(x, k,F ) takes the form of a mixture of Beta den-
sities. Petrone (1999a, b) exploits this property to
propose a class of prior distributions on the set of den-
sities defined on(0,1]. Petrone and Wasserman (2002)
consider the following model. Assumex1, . . . , xn are
conditionally i.i.d. givenk andwk with common den-
sity

f (x|k,wk)

=
k∑

j=1

wjk

{
k!

(j − 1)!(k − j)!
}
xj−1(1− x)k−j ,

wherek is the number of components in the mixture
of Beta densities and the weightswk = (w1k, . . . ,wkk)

satisfy wjk ≥ 0 and
∑k

j=1wjk = 1. We call f a
Bernstein polynomial density (BPD). The model is
completed by assuming a prior distributionp(k) for k

and a distributionHk(·) givenk on the(k − 1)-dimen-
sional simplex. Petrone (1999a) showed that ifp(k) > 0
for all k ≥ 1, then every distribution on(0,1] is the
(weak) limit of some sequence of BPD, and every con-
tinuous density on(0,1] can be well approximated in
the Kolmogorov–Smirnov distance by BPD. Petrone
and Wasserman (2002) discuss MCMC strategies for
fitting the above model and prove consistency of pos-
terior density estimation under mild conditions. Rates
of such convergence are given in Ghosal (2001).
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2.5 Other Random Distributions

Lenk (1988) introduces the logistic normal process.
The construction of a logistic normal process starts
with a Gaussian processZ(x) with mean function
µ(x) and covariance functionσ(x, y). The trans-
formed processW = exp(Z) is a lognormal process.
Stopping the construction here and defining a random
densityf (x) ∝ W would be impractical. The lognor-
mal process is not closed under prior to posterior updat-
ing; that is, the posterior onf conditional on observing
yi ∼ f , i = 1, . . . , n, is not proportional to a lognormal
process. Instead Lenk (1988) proceeds by defining the
generalized lognormal processLNX(µ,σ, ζ ), defined
essentially by weighting realizations under the lognor-
mal process with the random integral(

∫
W dλ)ζ . Let

f (x) ∝ V (x) for V ∼ LNX(µ,σ, ζ ). The densityf is
said to be a logistic normal processLNSX(µ,σ, ζ ). The
posterior onf , conditional on a random sampley ∼ f ,
is again a logistic normal processLNSX(µ∗, σ, ζ ∗).
The updated parameters areµ∗(s) = µ(s) + σ(s, y)

andζ ∗ = ζ − 1.

3. REGRESSION

The generic regression problem seeks to estimate
an unknown mean functiong(x) based on data with
i.i.d. measurement errors:yi = g(xi)+εi , i = 1, . . . , n.
Bayesian inference ong starts with a prior probabil-
ity model for the unknown functiong. If restrictive
parametric assumptions forg are inappropriate, we are
led to consider nonparametric Bayesian models. Many
approaches proceed by considering some basisB =
{f1, f2, f3, . . . } for an appropriate function space, like
the space of square integrable functions. Typical ex-
amples are the Fourier basis, wavelet bases and spline
bases. Given a chosen basisB, any functiong can be
represented asg(·) = ∑

h bhfh(·). A random function
g is parametrized by the sequenceb = (b1, b2, . . . ) of
basis coefficients. Assuming a prior probability model
for b we implicitly put a prior probability model on the
random function.

3.1 Spline Models

A commonly used class of basis functions are
splines, for example, cubic regression splinesB =
{1, x, x2, x3, (x − ξ1)

3+, . . . , (x − ξT )3+}, where(x)+ =
max(x,0) and ξ = (ξ1, . . . , ξT ) is a set of knots. To-
gether with a normal measurement errorεi ∼ N(0, σ )

this defines a nonparametric regression model

yi = ∑
bhfh(xi) + εi .(6)

The model is completed with a priorp(ξ, b, σ ) on
the set of knots and corresponding coefficients. Smith
and Kohn (1996), Denison, Mallick and Smith (1998b)
and DiMatteo, Genovese and Kass (2001) are typical
examples of such models. Approaches differ mainly
in the choice of priors and the implementation. Typ-
ically the prior is assumed to factor,p(ξ, b, σ ) =
p(ξ)p(σ )p(b|σ). Smith and Kohn (1996) use the
Zellner g-prior (Zellner, 1986) forp(b). The prior
covariance matrix Var(b|σ) is assumed to be pro-
portional to (B ′B)−1, whereB is the design matrix
for the given data set. Assuming a conjugate normal
prior b ∼ N(0, cσ (B ′B)−1), the conditional posterior
meanE(b|ξ, σ ) is a simple linear shrinkage of the
least squares estimateb̂. DiMatteo, Genovese and Kass
(2001) use a unit-information prior which is defined as
a Zellnerg-prior with the scalarc chosen such that
the prior variance is equivalent to one observation.
Denison, Mallick and Smith (1998b) prefer a ridge
prior p(b) = N(0,V ) with V = diag(∞, v, . . . , v).

Posterior simulation in (6) is straightforward except
for the computational challenge of updatingξ , the
number and location of knots. This typically involves
reversible jump MCMC (Green, 1995). Denison,
Mallick and Smith (1998a) propose “birth,” “death”
and “move” proposals to add, delete and change knots
from the currently imputed setξ of knots. In the imple-
mentation of these moves it is important to marginalize
with respect to the coefficientsbh. In the condition-
ally conjugate setup with a normal priorp(b|σ) the
marginal posteriorp(ξ |σ, y) can be evaluated analyt-
ically. DiMatteo, Genovese and Kass (2001) propose
an approximate evaluation of the relevant Bayes fac-
tors based on the Bayesian information criterion (BIC).
An interesting alternative, called focused sampling, is
discussed in Smith and Kohn (1998).

3.2 Multivariate Regression

Extensions of spline regression to multiple covari-
ates are complicated by the curse of dimensionality.
Smith and Kohn (1997) define a spline based bivari-
ate regression model. General, higher-dimensional re-
gression models require some simplifying assumptions
about the nature of interactions to allow a practical im-
plementation. One approach is to assume additive ef-
fects

yi = ∑
j

gj (xij ) + εi,

and proceed with eachgj as before. Shively, Kohn and
Wood (1999) and Denison, Mallick and Smith (1998b)
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propose such implementations. Denison, Mallick and
Smith (1998c) explore an alternative extension of
univariate splines, following the idea of multivariate
adaptive regression splines (MARS; Friedman, 1991).
MARS uses basis functions that are constructed as
products of univariate functions. Letxi = (xi1, . . . , xip)

denote the multivariate covariate vector. MARS as-
sumes

g(xi) = b0 +
k∑

h=1

bhfh(xi)

with

fh(x) =
Jh∏

j=1

shj
(
xwhj

− thj
)
+.

Here we used linear spline terms(x− thj )+ to construct
the basis functionsfh. Each basis function defines an
interaction ofJh covariates. The indiceswhj specify
the covariates and thethj give the corresponding knots.

Another intuitively appealing multivariate extension
is classification and regression tree (CART) models.
Chipman, George and McCulloch (1998) and Denison,
Mallick and Smith (1998a) discuss Bayesian inference
in CART models. A regression tree is parametrized by
a pair(T , θ) describing a binary treeT with b terminal
nodes, and a parameter vectorθ = (θ1, . . . , θb) with θi

defining the sampling distribution for observations that
are assigned to terminal nodei. Let yik, k = 1, . . . , ni ,
denote the observations assigned to theith node. In the
simplest case the sampling distribution for theith node
might be i.i.d. sampling,yik ∼ N(θi, σ ), k = 1, . . . , ni ,
with a node-specific mean. The treeT describes a
set of rules that decide how observations are assigned
to terminal nodes. Each internal node of the tree has
an associated splitting rule that decides whether an
observation is assigned to the right or to the left branch.
Let xj , j = 1, . . . , p, denote the covariates of the
regression. The splitting rule is of the form(xj > s) for
some thresholds. Thus each splitting node is defined
by a covariate index and a threshold. The leaves of
the tree are the terminal nodes. Chipman, George and
McCulloch (1998) and Denison, Mallick and Smith
(1998a) propose Bayesian inference in regression trees
by defining a prior probability model for(θ, T ) and
implementing posterior MCMC. The MCMC scheme
includes the following types of moves: (a) splitting
a current terminal node (“grow”); (b) removing a
pair of terminal nodes and making the parent into
a terminal node (“prune”); (c) changing a splitting

variable or threshold (“change”). Chipman, George and
McCulloch (1998) use an additional swap move to
propose a swap of splitting rules among internal nodes.
The complex nature of the parameter space makes
it difficult to achieve a well-mixing Markov chain
simulation. Chipman, George and McCulloch (1998)
caution against using one long run and instead advise
using frequent restarts. MCMC posterior simulation
in CART models should be seen as stochastic search
for high posterior probability trees. Achieving practical
convergence in the MCMC simulation is not typically
possible.

An interesting special case of multivariate regres-
sion arises in spatial inference problems. The spatial
coordinates(xi1, xi2) are the covariates for a response
surfaceg(xi). Wolpert and Ickstadt (1998a) propose a
nonparametric model for a spatial point process. At the
top level of a hierarchical model they assume a Poisson
process as sampling model for the observed data. Let
xi denote the coordinates of an observed event. For
example,xi could be the recorded occurrence of a
species in a species sampling problem. The model as-
sumes a Poisson processxi ∼ Po(
(x)) with intensity
function 
(x). The intensity function in turn is mod-
eled as a convolution of a normal kernelk(x, s) and a
Gamma process,
(x) = ∫

k(x, s)�(ds) and�(ds) ∼
Gamma(α(ds), β(ds)). With constantβ(s) = β and
rescaling the Gamma process to total mass 1, the model
for 
(x) reduces to a Dirichlet process mixture of nor-
mals.

Arjas and Heikkinen (1997) propose an alternative
approach to inference for a spatial Poisson process.
The prior probability model is based on Voronoi
tessellations with a random number and location of
knots.

3.3 Wavelet Based Modeling

Wavelets provide an orthonormal basis inL2 rep-
resentingg ∈ L2 as g(x) = ∑

j

∑
k djkψjk(x), with

basis functionsψjk(x) = 2j/2ψ(2j x − k) that can be
expressed as shifted and scaled versions of one under-
lying function ψ . The practical attraction of wavelet
bases is the availability of superfast algorithms to com-
pute the coefficientsdjk given a function, and vice
versa. Assuming a prior probability model for the coef-
ficientsdjk implicitly puts a prior probability model on
the random functiong. Typical prior probability mod-
els for wavelet coefficients include positive probabil-
ity mass at zero. Usually this prior probability mass
depends on the “level of detail”j , Pr(djk = 0) = πj .
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Given a nonzero coefficient, an independent prior
with level dependent variances is assumed, for exam-
ple,p(djk|djk �= 0) = N(0, τ2

j ). Appropriate choice of
πj andτj achieves posterior rules for the wavelet co-
efficientsdjk, which closely mimic the usual wavelet
thresholding and shrinkage rules (Chipman, Kolaczyk
and McCulloch, 1997; Vidakovic, 1998). Clyde and
George (2000) discuss the use of empirical Bayes esti-
mates for the hyperparameters in such models.

Posterior inference is greatly simplified by the or-
thonormality of the wavelet basis. Consider a regres-
sion modelyi = g(xi) + εi , i = 1, . . . , n, with equally
spaced dataxi , for example,xi = i/n. Substitute a
wavelet basis representationg(·) = ∑

j

∑
k djkψjk(x),

and let y, d and ε denote the data vector, the vec-
tor of all wavelet coefficients and the residual vector,
respectively. Also, letB = [ψjk(xi)] denote the de-
sign matrix of the wavelet basis functions evaluated at
thexi . Then we can write the regression in matrix no-
tation asy = Bd + ε. The discrete wavelet transform
of the data finds, in a computationally highly efficient
algorithm, d̂ = B−1y. Assuming independent normal
errors,εi ∼ N(0, σ 2), orthogonality of the design ma-
trix B implies d̂jk ∼ N(djk, σ

2), independently across
(j, k). Assuming a priori independentdjk leads to a
posteriori independence of the wavelet coefficientsdjk.
In other words, we can consider one univariate infer-
ence problemp(djk|y) at a time. Even if the prior
probability modelp(d) is not marginally independent
acrossdjk, it typically assumes independence condi-
tional on hyperparameters, still leaving a considerable
simplification of posterior simulation.

The above detailed explanation serves to highlight
two critical assumptions. Posterior independence, con-
ditional on hyperparameters or marginally, only holds
for equally spaced data and under a priori indepen-
dence overdjk. In most applications prior indepen-
dence is a technically convenient assumption, but does
not reflect genuine prior knowledge. However, incor-
porating assumptions about prior dependence is not
excessively difficult either. Starting with an assump-
tion about dependence ofg(xi), i = 1, . . . , n, Vannucci
and Corradi (1999) show that a straightforward two-
dimensional wavelet transform can be used to derive
the corresponding covariance matrix for the wavelet
coefficientsdjk.

In the absence of equally spaced data the convenient
mapping of the raw datayi to the empirical wavelet
coefficientsd̂jk is lost. The same is true for infer-
ence problems other than regression where wavelet

decomposition is used to model random functions.
Typical examples are the unknown density in a den-
sity estimation (Müller and Vidakovic, 1998) and the
spectrum in a spectral density estimation (Müller and
Vidakovic, 1999). In either case evaluation of the like-
lihood p(y|d) requires reconstruction of the random
functiong(·). Although a technical inconvenience, this
does not hinder the practical use of a wavelet basis. The
superfast wavelet decomposition and reconstruction al-
gorithms still allow computationally efficient likeli-
hood evaluation even with the original raw data.

3.4 Neural Networks

Neural networks are another popular approach fol-
lowing the general theme of defining random functions
by probability models for coefficients with respect to
an appropriate basis. Now the bases are rescaled ver-
sions of logistic functions. Let�(η) = exp(η)/(1 +
exp(η)); theng(x) = ∑M

j=1βj�(x′γj ) can be used to
represent a random functiong. The random function is
parameterized byθ = (β1, γ1, . . . , βM,γM). Bayesian
inference proceeds by assuming an appropriate prior
probability model and considering posterior updating
conditional on the observed data. Recent reviews of
statistical inference for neural networks in regression
models appear in Cheng and Titterington (1994) and
Stern (1996). Neal (1996) and Müller and Ríos-Insua
(1998) discuss specifically Bayesian inference in such
models. Ríos-Insua and Müller (1998) argue to include
the number of componentsM in the parameter vec-
tor and consider inference over “variable architecture”
neural network models. Lee (2001) compares alterna-
tive Bayesian model selection criteria for neural net-
works.

3.5 Other Nonparametric Regression Methods

Alternatively to modeling the random functiong, the
nonparametric regression problem can be reduced to
a density estimation problem by proceeding as if the
pairs(xi, yi) were an i.i.d. sample,(xi, yi) ∼ F(x, y),
from some unknown distributionF . Inference onF
implies inference on the conditional means process
gF (x) ≡ EF (y|x). Müller, Erkanli and West (1996)
propose this approach using a DP mixture model
for inference on the unknown joint distributionF .
Regression curvesg estimated under this approach
take the form of locally weighted linear regression
lines, similar to traditional kernel regression in clas-
sical nonparametric inference. Considering(xi, yi)

as an i.i.d. sample—wrongly—introduces an addi-
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tional factor
∏

F(xi) in the likelihood
∏

F(xi, yi) =∏
F(xi)F (yi|xi) and thus provides only approximate

inference.
An interesting approach to isotonic regression is pur-

sued in Lavine and Mockus (1995), who use a rescaled
cumulative density functionF to model a regression
mean curveg(x) = a + bF (x). Assuming a DP prior
for F they implement nonparametric Bayesian infer-
ence.

Newton, Czado and Chappell (1996) propose a mod-
ified DP, constraining the random probability measure
to median 0 and fixed length central interval (such as,
e.g., the interquartile range). The modified DP is used
to define a linkF in a nonparametric binary regression
model withP (yi = 1) = F(x′

iβ).

4. SURVIVAL ANALYSIS

Survival analysis involves modeling the time until
a certain event occurs (survival times), often including
a regression on covariates. In most applications, the
data is subject to right-censoring. Letx1, . . . , xn denote
the survival times,xi ∼ F(·). Let C1, . . . ,Cn denote
the (possibly random) censoring times. The actually
observed data is a collection of pairs(T1, I1), . . . ,

(Tn, In) with censored observationsTi = min{xi,Ci}
and censoring indicatorsIi = I {xi ≤ Ci}. Interval and
other types of censoring could be also considered in a
similar fashion. Two quantities are of primary interest
in survival analysis: the survival functionS(t) = 1 −
F(t) and the hazard rate functionλ(t) = F ′(t)/S(t).
It turns out that the integrated or cumulative hazard
function
(t) = ∫ t

0 λ(s) ds is simpler to estimate, and
there is a one-to-one correspondence betweenS(t) and

(t), given byS(t) = exp(−
(t)).

AssumingC1, . . . ,Cn to be constant, Susarla and
Van Ryzin (1976) discuss inference with a DP prior
on F . The posterior mean converges to Kaplan and
Meier’s (1958) product limit estimate as the total
mass parameterM → 0+. More recently, Florens and
Rolin (2001) provided a closed form description of
the posterior process under a DP prior and random
censoring times. The characterization is quite useful
for posterior simulation of functionals of the posterior
distribution ofF . For a review of related approaches
applying the DP to similar problems see Ferguson,
Phadia and Tiwari (1992). Doss (1994) studied an
MDP model for survival data subject to more general
censoring schemes. Evaluation of the posterior mean
of F is done through an interesting MCMC scheme
that involves DP draws using a composition method.
Convergence of the algorithm is also discussed.

4.1 Neutral to the Right Processes

Many stochastic process priors that have been pro-
posed as nonparametric prior distributions for sur-
vival data analysis belong to the class of neutral
to the right (NTTR) processes. An RPMF(t) is
an NTTR process on the real line if it can be ex-
pressed asF(t) = 1 − exp(−Y (t)), whereY (t) is a
stochastic process with independent increments, al-
most surely right-continuous and nondecreasing with
P {Y (0) = 0} = 1 and P {limt→∞ Y (t) = ∞} = 1
(Doksum, 1974). Walker et al. (1999) callY (t) an
NTTR Lévy process. Doksum (1974) showed that the
posterior for an NTTR prior and i.i.d. sampling is again
an NTTR process. Ferguson and Phadia (1979) showed
that for right-censored data the class of NTTR process
priors remains closed; that is, the posterior is still an
NTTR process.

NTTR processes are used in many approaches that
construct probability models forλ(t) or 
(t), rather
than directly forF . Dykstra and Laud (1981) define
the extended Gamma process, generalizing the Gamma
process studied in Ferguson (1973). The idea is to
consider first an NTTR process{Y (t)} such thatY (t)−
Y (s) ∼ �(α(t) − α(s),1) for all t > s ≥ 0, where
α(t) is a nondecreasing left-continuous function on
[0,∞). The new process is defined as

∫ t
0 β(s) dY (s)

for a positive right-continuous functionβ(t). Dykstra
and Laud (1981) consider such processes on the hazard
function λ(t), studying their properties and obtaining
estimates of the posterior hazard function without
censoring and with right-censoring. In particular, the
resulting functionλ(t) is monotone.

An alternative model was proposed by Hjort (1990),
by placing a Beta process prior on
(t). To under-
stand this construction, let us look at a discrete ver-
sion of the process first. Following Nieto-Barajas and
Walker (2002b), consider a partition of the time axis
0 = τ0 < τ1 < τ2 · · ·, and failures occurring at times
chosen from the set{τ1, τ2, . . .}. Letλj denote the haz-
ard at timeτj , λj = P (x = τj |x ≥ τj ). Hjort (1990)
assumes independent, Beta-distributed priors for{λj }.
This generates a discrete process with independent in-
crements for the cumulative hazard function
(τj ) =∑j

i=0 λi . The class is closed under prior to poste-
rior updating as the posterior process is again of the
same type. The continuous version of this discrete Beta
process is derived by a limit argument as the inter-
val lengthsτj − τj−1 approach zero (for details, see
Hjort, 1990). Full Bayesian inference for a model with
a Beta process prior for the cumulative hazard func-
tion using Gibbs sampling can be found in Damien,
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Laud and Smith (1996). A variation of this idea was
used by Walker and Mallick (1997). Specifically, they
assumedλ(t) to be constant atλ1, λ2, . . . over the inter-
vals [0, τ1], (τ1, τ2], . . . with independently distributed
Gamma priors on{λj }. As pointed out in Nieto-Barajas
and Walker (2002b), there is no limit version of this
process.

Since an NTTR processY (t) has at most a count-
able number of discontinuity points, it turns out that
every NTTR process can be decomposed as the sum
of a continuous component and a pure jump compo-
nent. This observation is very useful for simulation
purposes (Walker and Damien, 1998; Walker et al.,
1999). To simulate from the jump component, Walker
and Damien (1998) suggest using methods discussed
in Walker (1995) or the latent variables method of
Damien, Wakefield and Walker (1999), depending on
the specific form adopted by the density to sample
from. To simulate from the continuous part Walker
and Damien (1998) note that a random variable aris-
ing from this component is infinitely divisible and build
on a method originally proposed by Bondesson (1982),
but discarded by the same author due to the prac-
tical implementation difficulties arising at that time.
Wolpert and Ickstadt (1998a) proposed an alterna-
tive method for approximately sampling from the con-
tinuous part, called the inverse Lévy measure (ILM)
algorithm. It is based on the result that any nonnega-
tive infinitely divisible distribution can be represented
as the distribution at timet = 1 of an increasing sto-
chastic processXt (calledsubordinator) with station-
ary and independent increments. The Lévy–Khintchine
theorem (e.g., Durrett, 1996, page 163) states that the
characteristic function of such a distribution satisfies

log(ϕ(t))

= ict − σ 2t2

2
+

∫
R

(
eitx − 1− itx

1+ x2

)
ν(dx),

whereν is called the Lévy measure and is such that

ν({0}) = 0 and
∫

R

x2

1+ x2
ν(dx) < ∞.

Therefore, to simulate the processXt over an interval
[0, T ] we can proceed as follows: generate indepen-
dent jump timesσm from the uniform distribution on
[0, T ], jumpsτm from a unit-rate Poisson process; de-
fineνm = inf{u ≥ 0 :ν([u,∞)) ≤ τm/T }; and setXt =∑{νm :σm ≤ t}. This summation definingXt will have
a finite number of terms if and only ifν([0,∞)) < ∞.
Thus, in general the method leads to an approximate

simulation. The name ILM comes from the fact that
νm = L−1(τm/T ), whereL(u) = ν([u,∞]). See addi-
tional details in Wolpert and Ickstadt (1998b).

4.2 Dependent Increments Models

We have already discussed independent increments
models for the cumulative hazard function
(t). In
the discrete version this implies independence for the
hazards{λj }. A different modeling perspective is ob-
tained by assuming dependence. A convenient way to
introduce dependence is a Markovian process prior
on {λk}. Gamerman (1991) proposes the following
model: log(λj ) = log(λj−1) + εj for j ≥ 2, where
{εj } are independent withE(εj ) = 0 and Var(εj ) =
σ 2 < ∞. In the linear Bayesian method of Gamerman
(1991) only a partial specification of the{εj } is re-
quired. The resulting model extends Leonard’s (1978)
smoothness prior for density estimation, stated also in
terms of a discrete survival formulation, but under the

assumption thatεj
i.i.d.∼ N(0, σ 2).

Later, Gray (1994) used a similar prior process but
directly on the hazards{λj }, without the log transfor-
mation. A further generalization involving a martingale
process was proposed in Arjas and Gasbarra (1994).
More recently, Nieto-Barajas and Walker (2002b) pro-
posed a model based on a latent process{uk} such that
{λj } is included as

λ1 → u1 → λ2 → u2 → ·· ·
and the pairs(u,λ) are generated from conditional
densitiesf (u|λ) and f (λ|u) implied by a specified
joint density f (u,λ). The main idea is to ensure
linearity in the conditional expectation:E(λk+1|λk) =
ak + bkλk . Nieto-Barajas and Walker (2002b) show
that both the Gamma process of Walker and Mallick
(1997) and the discrete Beta process of Hjort (1990) are
obtained as special cases of their construction, under
appropriate choices off (u,λ).

In the continuous case, Nieto-Barajas and Walker
(2002b) proposed a Markovian model where the hazard
rate function is modelled as

λ(t) =
∫ t

0
exp{−a(t − u)}dL(u),(7)

for a > 0, and whereL(t) is a pure jump process, that
is, an independent increments process on[0,∞) with-
out Gaussian components (Ferguson and Klass, 1972;
Walker and Damien, 2000). This model, called a Lévy
driven Markov process, extends Dykstra and Laud’s
(1981) proposal by allowing nonmonotone sample
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paths forλ(t). In addition, the sample paths are piece-
wise continuous functions. Nieto-Barajas and Walker
(2002b) obtain posterior distributions under (7) for dif-
ferent types of censoring and discuss applications in
several special cases, including the Markov–Gamma
process.

4.3 Competing Risks Model

An interesting extension of survival models consid-
ers a system withr components arranged in series.
Herex1, . . . , xr are the failure times of the components
and we observe(T , I ), whereT = min{x1, . . . , xr} and
I = j if T = xj . This setup is known as the compet-
ing risks model withr sources of failure. The survival
function for thej th component is

Sj (t) = P (xj > t)

and the subsurvival function is

S∗
j (t) = P (T > t, I = j).

The system survival function is

S(t) = P (T > t) =
r∑

j=1

S∗
j (t).

Let xi = (xi1, . . . , xir ), i = 1, . . . , n, be a sample
from the latentx1, . . . , xr failure times. The actual ob-
served data are(T1, I1), . . . , (Tn, In). Salinas-Torres,
de Bragança Pereira and Tiwari 1997 introduced the
multivariate DP as a nonparametric model for the
joint distribution of the failure timesx1, . . . ,xn. Let
F01, . . . ,F0r be distribution functions on the appropri-
ate space andM1, . . . ,Mr be positive mass parame-
ters, and letv = (v1, . . . , vr ) ∼ D(M1, . . . ,Mr). Then
P = (v1P1, . . . , vrPr) is called a multivariate DP of di-
mensionr if Pj ∼ D(Mj ,F0j ).

Consider now a given risk subset� ⊂ {1, . . . , r}
and let�c be its complement. The corresponding sub-
survival and survival functions are given byS∗

�(t) =
P (T > t, I ∈ �) andS�(t) = P (minj∈� xj > t). The
data structure obtained for the caser = 2, � = {1} and
�c = {2} reduces to the usual right-censored problem
with random censoring times. Peterson (1977) gives an
expression for the survival functionS�(t) in terms of
the subsurvival functionsS∗

�(t) andS∗
�c :

S�(t) = ϕ
(
S∗

�(t), S∗
�c; t

)
(8)

for t ≤ t∗ = min
{
tS�

, tS�c

}
,

where

ϕ(H,G; t)

= exp
(∮ t

0

dH(s)

H(s) + G(s)

)∏
t

{
H(s+) + G(s+)

H(s−) + G(s−)

}
,

and tS�
= sup{t :S�(t) > 0}. Here,

∮ t
0 represents in-

tegration over the union of intervals of continuity
points of H that are less than or equal tot , and

∏
t

represents a product over the discontinuity points of
H that are less than or equal tot [we assume that
S∗

�(t) andS∗
�c(t) have no common discontinuities]. In

this setting, Salinas-Torres, de Bragança Pereira and
Tiwari (2002) derived Bayes estimates ofS�(t) under
quadratic loss function. The estimate has the property
that it can be obtained by substituting the Bayes esti-
mates forS∗

� andS∗
�c into (8).

4.4 Models Based on Proportional Hazards

So far we have discussed survival analysis models
without covariates. To incorporate covariates, the most
popular choice is the proportional hazards model,
introduced in Cox (1972). AssumingT1, . . . , Tn are the
failure times ofn individuals, the hazard rate functions
are modeled as

λi(t) = λ0(t)exp{Zi(t)
T β}, i = 1, . . . , n,(9)

whereZi (t) is thep-dimensional vector of covariates
for the ith individual at timet > 0, β is the vector of
regression coefficients andλ0(t) is the baseline hazard
rate function.

Semiparametric approaches to inference in (9) con-
sider a nonparametric specification ofλ0(t). A model
based on an independent increments Gamma process
was proposed by Kalbfleisch (1978), who studied its
properties and estimation. Extensions of this model to
neutral-to-the-right processes were discussed in Wild
and Kalbfleisch (1981). In the context of multiple event
time data, Sinha (1993) considered an extension of
Kalbfleisch’s (1978) model forλ0(t). The proposal as-
sumes the events are generated by a counting process
with intensity given by a multiplicative expression sim-
ilar to (9), but including an indicator of the censoring
process, and individual frailties to accommodate the
multiple events occurring per subject. Sinha (1993) dis-
cusses posterior inference for this model using Gibbs
sampling, under the assumption of Gamma-distributed
frailties. Extensions of this model to the case of pos-
itive stable frailty distributions and a correlated prior
process with piecewise exponential hazards can be
found in Qiou, Ravishanker and Dey (1999). See ad-
ditional comments, details on computational strategies
and extensions to multivariate survival data in Sinha
and Dey (1998).

Other modeling approaches based on (9) have been
studied in the literature. Laud, Damien and Smith
(1998) consider (9) using a Beta process prior for
(t),
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and proposing an MCMC implementation for full
posterior inference. Nieto-Barajas and Walker (2001)
propose their flexible Lévy driven Markov process
(Nieto-Barajas and Walker, 2002a) to modelλ0(t),
and allow for time dependent covariates. Full posterior
inference is achieved via substitution sampling.

Accelerated failure time models are an alternative
framework to introduce regression in survival analy-
sis. Instead of introducing the regression in the log
hazard, as in (9), the generic accelerated failure time
model assumes that failure timesTi arise as logTi =
−Z′

iβ + log(xi). Nonparametric approaches assume
a probability model for the unknown distribution of
log(xi). Models based on DP priors appear in Johnson
and Christensen (1989) and Kuo and Mallick (1997).
Walker and Mallick (1999) propose an alternative
PT prior model.

5. HIERARCHICAL MODELS

An important application of nonparametric appro-
aches arises in modeling random effects distributions
in hierarchical models. Often little is known about the
specific form of the random effects distribution. As-
suming a specific parametric form is typically moti-
vated by technical convenience rather than by genuine
prior beliefs. Although inference about the random ef-
fects distribution itself is rarely of interest, it can have
implications for the inference of interest. Thus it is im-
portant to allow for population heterogeneity, outliers,
skewness, etc.

In the context of a traditional randomized block
ANOVA model with subject specific random effectszi

a Bayesian nonparametric model can be used to allow
for more general random effects distributions. Bush
and MacEachern (1996) propose a DP prior forzi ∼ G,
G ∼ D(G0,M). Kleinman and Ibrahim (1998) pro-
pose the same approach in a more general framework
for a linear model with random effects. They discuss
an application to longitudinal random effects models.
Müller and Rosner (1997) use DP mixture of nor-
mals to avoid the awkward discreteness of the implied
random effects distribution. Also, the additional con-
volution with a normal kernel significantly simplifies
posterior simulation for sampling distributions beyond
the normal linear model. Mukhopadhyay and Gelfand
(1997) implement the same approach in generalized
linear models with linear predictorzi + x′

iβ and a DP
mixture model for the random effectzi . In Wang and
Taylor (2001) random effectsWi are entire longitudi-
nal paths for each subject in the study. They use in-
tegrated Ornstein–Uhlenbeck stochastic process priors
for WiS(t).

A further complication arises when the model hierar-
chy in a hierarchical model continues beyond the non-
parametric model, that is, if the nonparametric model
appears in a submodel of the larger hierarchical model.
For example, in a hierarchical analysis of related clin-
ical studies there might be a different random effects
distribution in each of the related clinical trials. LetGi

denote the random distribution or random function in
submodeli. Assuming a nonparametric modelp(Gi)

for the ith submodel, model completion requires an
additional assumption about the joint distribution of
{Gi, i ∈ I }. Using DP priors,Gi ∼ D(Go

i ,M), mar-
ginally for eachGi , a conceptually straightforward
approach is to link the base measuresGo

i . For ex-
ample, the base measureGo

i could include a regres-
sion on covariates specific to theith submodel. This
construction is introduced in Cifarelli and Regazzini
(1978) as mixture of products of Dirichlet process. The
model is used, for example, in Muliere and Petrone
(1993), who define dependent nonparametric mod-
els Fx ∼ D(M,F o

x ) by assuming a regression in the
base measureFo

x = N(βx,σ 2). Similar models are
discussed in Mira and Petrone (1996) and Giudici,
Mezzetti and Muliere (2003). Carota and Parmigiani
(2002) and Dominici and Parmigiani (2001) use the
same approach to model random distributionsGi ∼
D(Go

i ,Mi) centered around, among other choices,
a Binomial base measureGo

i = Bin(θ
p
i ,Ni), includ-

ing the total mass parameterMi in the hierarchy. Both
the Binomial success probabilityθo

i and the total mass
parameterMi are modeled as a regression on covari-
atesdi , specific to submodeli.

Linking the related nonparametric models through
a regression on the parameters of the nonparametric
models limits the nature of the dependence to the struc-
ture of this regression. MacEachern (1999) proposes
the dependent DP (DDP) as an alternative approach
to define a dependent prior model for a set of ran-
dom measures{Gx}, with Gx ∼ D marginally. Recall
the stick-breaking representation (2) for the DP ran-
dom measure,Gx = ∑

h wxhδ(µxh). The key idea be-
hind the DDP is to introduce dependence across the
measuresGx by assuming the distribution of the point
massesµxh to be dependent across different levels
of x, but still independent acrossh. In the basic ver-
sion of the DDP the weights are assumed to be the same
acrossx, that is,wxh = wh. To introduce dependence
of µxh acrossx MacEachern (1999) uses a Gaussian
process. De Iorio, Müller, Rosner and MacEachern
(2004) construct the ANOVA DDP as a joint prob-
ability model for dependent random measures. They
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consider a family of unknown probability measuresFx

indexed by categorical factorsx. For example, in a clin-
ical trial, Fx might be the random effects distribution
for patients with categorical covariatesx. Covariates
might include treatment levels, etc. Dependence across
{Fx} is induced by assuming ANOVA models onµxh

acrossx.

6. MODEL VALIDATION

An interesting use of nonparametric Bayesian infer-
ence arises in model validation. One way to validate a
proposed parametric model is to consider a nonpara-
metric extension and report appropriate summaries of
a comparison of the parametric and nonparametric fits.

Carota and Parmigiani (1996) and Carota, Parmigiani
and Polson (1996) discuss such approaches using DP
extensions and point out the limitations of formalizing
the comparison with a Bayes factor. Due to the dis-
crete nature of the Dirichlet process RPM inference
is driven by the number of duplicates in the data set.
They suggest, among other approaches, to consider
KL-divergence of prior to posterior on the random
probability model. Conigliani, Castro and O’Hagan
(2000) discuss a similar approach, using fractional
Bayes factors to summarize the comparison.

Berger and Guglielmi (2001) take up the same
theme, but replace the DP prior with a PT model. To
center the PT model at a parametric modelf (x|θ) they
construct PT’s with mean measuref (x|θ). They fix the
nested partition sequence and set the parametersαε for
the random probabilities such that the desired mean is
achieved. Computation of Bayes factors for the model
validation is greatly simplified by the availability of
a closed form expression for the marginal distribution
under such PT models:

m(x1, . . . , xn|θ)

=
n∏

i=1

f (xi|θ)

·
n∏

j=2

m∗(xj )∏
m=1

α′
εm(xj )(αεm−10(xj ) + αεm−11(xj ))

αεm(xj )(α
′
εm−10(xj ) + α′

εm−11(xj )
)
.

The αε are the Beta distribution parameters in the
definition of the PT, as defined in Section 2.3. The in-
dicesεm(xj ) = ε1 · · · εm identify the partitioning sub-
setBε1···εm of levelm that containsxj , that is,xj ∈ Bε,
andα′

ε are the parameters of the posterior PT, given the
observations(x1, . . . , xj−1). The upper boundm∗(xj )

in the product is the smallest levelm such that noxi ,

i < j , belongs to the same partitioning subsetBεm(xj )

asxj at levelm. Theα sequences depend on the pa-
rameterθ . Evaluation of Bayes factors of the paramet-
ric model versus nonparametric extension requires one
more step of marginalization to marginalize w.r.t.θ .
Berger and Guglielmi (2001) describe suitable numer-
ical methods.

A related approach is pursued in Mazzuchi, Soofi
and Soyer (2000). They consider parametric models
defined as maximum entropy models in a moment
class. This includes the exponential, Gamma, Weibull,
normal, etc. By considering the posterior expected
Kullback–Leibler divergence between the parametric
model and a nonparametric extension centered at that
parametric model they define a diagnostic of fit. For the
nonparametric extension they use a DP model centered
at the maximum entropy parametric model.

7. CONCLUSION

We have reviewed some important aspects of non-
parametric Bayesian inference. Rather than attempt
a complete catalog of existing methods we focused
on typical modeling strategies in important infer-
ence problems. Also, we emphasized recent devel-
opments over a historical perspective. The chosen
classification of Bayesian nonparametric approaches
into the listed application areas is an arbitrary subjec-
tive choice, leading us to miss some interesting non-
parametric Bayesian methods that did not fit cleanly
into one of these arbitrary categories. Typical exam-
ples are Quintana (1998) and Lee and Berger (2001),
discussing nonparametric approaches to modeling con-
tingency tables and selection sampling, respectively.

An important aspect of nonparametric Bayesian
inference that we excluded from the discussion are
computational issues. Many approaches are driven by
what are essentially computational concerns. Another
important line of research that we excluded from the
discussion are the many methods that are nonparamet-
ric in flavor even if they are not technically inference
in infinite-dimensional parameter spaces. Typical ex-
amples are finite mixture models. Such models often
provide flexible inference very much like correspond-
ing nonparametric extensions.

Finally, we did not discuss methods that are non-
parametric Bayes in the literal sense, rather than in
the sense of the technical definition we gave in the In-
troduction. A typical example is Lavine (1995), who
discusses inference based on a partial likelihood argu-
ment.
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