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SUMMARY

Maximum likelihood parameter estimation and sampling from Bayesian posterior distributions
are problematic when the probability density for the parameter of interest involves an intractable
normalising constant which is also a function of that parameter. In this paper, an auxiliary
variable method is presented which requires only that independent samples can be drawn from the
unnormalised density at any particular parameter value. The proposal distribution is constructed
so that the normalising constant cancels from the Metropolis—Hastings ratio. The method is
illustrated by producing posterior samples for parameters of the Ising model given a particular
lattice realisation.

Some key words: Auxiliary variable method; Ising model; Markov chain Monte Carlo; Metropolis-Hastings
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1. INTRODUCTION

Intractable normalising constants arise in a number of statistical problems, including the
definition of Markov random fields (Besag, 1974), image analysis (Ibanez & Simo, 2003), Markov
point processes (Moller & Waagepetersen, 2003), Gaussian graphical models (Roverato, 2002),
neural networks (Lee, 2002) and in large dimensional Gaussian multivariate models (Wong et al.,
2003). Analytical expressions for normalising constants in such cases may be known, but are
computationally infeasible for many typical problems. Maximum likelihood parameter estimation,
or finding Bayesian posterior distributions for parameters of these distributions, is consequently
impossible by straightforward methods. A wide range of approximate techniques and stochastic
approximations have been proposed for circumventing this problem. These include pseudo-
likelihood (Besag, 1975), various Markov chain Monte Carlo estimation techniques (Chen & Shao,



452 J. MoLLER, A. N. PerTITT, R. REEVES AND K. K. BERTHELSEN

1997) and path sampling (Gelman & Meng, 1998), with recent examples of Berthelsen & Moller
(2003) and Green & Richardson (2002).

The approach proposed in this paper avoids such approximations by introducing an
auxiliary variable into a Metropolis—Hastings algorithm for the posterior of the parameters of
the unnormalised distribution. By judicious choice of the proposal distribution, the normalising
constants are made to cancel from the Metropolis—Hastings ratio. This is achieved by proposing
the auxiliary variable from the unnormalised distribution at the proposed parameter value.

2 AUXILIARY VARIABLE METHOD
We consider the problem of drawing from a posterior density

n(0]y) oc (0)m(y10) (1)
when the likelihood

n(¥10) = qo(¥)/Zo (2)

is given by an unnormalised density ¢,(y) but its normalising constant, or partition function, Z, is
not available analytically or exact computation is not feasible. To generate samples from (1) by a
Metropolis—Hastings algorithm, we need to calculate a Metropolis—Hastings ratio

m(0")qy (»)P(0I0") [ Zy
n(0)ao(Mp©O'10) | Z,

where p(0'10) is the proposal density. However (3) depends on the ratio of unknown normalising
constants Z, /Z,. The usual approach is to replace Z, /Z, by an estimate calculated by Markov
chain Monte Carlo methods, hoping that the algorithm then has an equilibrium distribution close
to (1).

Our Metropolis—Hastings algorithm works as follows. Assume that x is an auxiliary variable,
defined on the same state space as that of y, which has conditional density f(x|0, y), and consider
the posterior

H(0'10) = (3)

(0, x|y) oc (0, x, y) = f(x10, y)m(0)qo()/Zo»

which of course still involves the unknown Z,. Obviously, marginalisation over x of n(0, x|y) gives
the desired distribution 7(0|y). Now, if (0, x) is the current state of the algorithm, propose first 6’
with density p(0']0, x) and next x" with density p(x'|0’, 0, x). As usual the choice of these proposal
densities is arbitrary from the point of view of the equilibrium distribution of the chain of 0-values;
the choice of f(x]6, y) is also arbitrary in this respect. We take the proposal density for the auxiliary
variable x’ to be the same as the likelihood, but depending on 6’ rather than 6:

p(x'10", 0, x) = n(x'10") = qy (X")/Z, - (4)
Then the Metropolis—Hastings ratio

’ 0/’ 9/ , 0 6/, ’
H(O', X0, x) = S0, y)m(0)qq (y)qa(ic)p( /I x) (5)
J(x10, y)m(0)go()qe (x")P(0'10, x)
does not depend on Z,/Z,. With probability min {1, H(0’, x'|0, x)} we accept (', x") as the next
state; otherwise we retain (6, x).
For simplicity, we assume henceforth that

p(6'16, x) = p(6'6)

does not depend on x.
Comparing (3) and (5), we see that Z, has been replaced by g¢,(x)/f(x|0, y) and Z, has been
replaced by g, (x")/f(x10', y). An analogy may be made with importance sampling: the importance
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sampling identity is
Zy = E{qy(x)/ge(x)}, (6)

where the expectation is taken with respect to an ‘instrumental’ density g,(x) such that g,(x)>0
whenever ¢,(x) >0 (Robert & Casella, 2005, p. 92). Thus our method is analogous to two single
sample importance sampling estimates of the normalising constants Z, and Z, in each iteration
of the Markov chain.

An appropriate auxiliary density f(x|60, y) and proposal density p(6'|0) must be chosen so that
the algorithm has good mixing and convergence properties. The analogy with importance sampling
suggests that the auxiliary distribution should approximate the distribution given by g,:

f(x10, y)==qy(x)/Z,.

If f(x]0, y) = qo(x)/Z, exactly, which we assume is impractical, then (3) and (5) agree and the mixing
properties of the two algorithms are the same. Recommendations on how to tune Metropolis—
Hastings algorithms to obtain optimal acceptance probabilities may exist in the case of (3); see
for example Breyer & Roberts (2000). This may suggest how to tune our Metropolis—Hastings
algorithm when f(x|0, y) approximates g,(x)/Z,.

A simple approximation is

J(x10, y) = q5(x)/ Z5, (7)

where 0 is fixed and, for example, 0 = 0(y) is an estimate for 0 based on the data y. Then the
normalising constant Z; cancels in

SN0, )/ 1(x10, y) = q3(x")/qq(x).

Thus the Metropolis—Hastings ratios (3) and (5) agree if Z,/Z, is estimated by bridge sampling
with single sample expectations and ‘bridge’ g; (Meng & Wong, 1996). The choice (7) may hence
be expected to work well if the posterior distribution of 0 is concentrated near 0, or, clearly, if
qo(.)/Zy does not strongly depend on 6.

Another approach is to make f(x|6, y) some tractable distribution which approximates the
intractable ¢,(x)/Z,. Partially ordered Markov models (Cressie et al., 2000) have proven suitable
auxiliary functions for approximating Markov point processes (Berthelsen & Moller, 2006) and in

on-going work with Ising models.

3. APPLICATION TO THE ISING MODEL
3-1. Model and algorithm

A simple example of a distribution with an intractable normalising constant is given by the
Ising model on a rectangular lattice. For large lattices and most neighbourhood structures the
computation of the normalising constant is not feasible, although a number of special results are
available; see for example Bartolucci & Besag (2002) and Reeves & Pettitt (2004).

Consider an Ising model with a constant external field parameter 0, and a constant, isotropic
association parameter 6,. The unnormalised density is given by

qo(y) =exp(0o Vo + 0, V1),
with

m n m—1 n m n—1
Vo= 2 2 Yijs Vi= 2 X VigVisrg+ 2 2 Viglijets
i=1j=1 i=1 j=1 i=1j=1
where i and j index the rows and columns of an m x n rectangular lattice and y; ;€ { —1, 1} denotes
a response at location (i, j). As in most statistical applications, where only positive spatial association
is a consideration, we exclude negative values of 0,.
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We use the maximum pseudolikelihood estimate (Besag, 1975) for § in the auxiliary variable
distribution (7), and also use it as the initial state for 0 in the Metropolis—Hastings algorithm for
drawing from 7(6, x|y). Furthermore, if 6 = (6,, 0,) is the current state of the algorithm, we draw
proposals 63 and 607 from independent normal distributions with means 6, and 6,, so that
p(010)/p(0'|0) = 1. The standard deviations of these proposal distributions can be adjusted to give
the best mixing of the chain. The auxiliary variable x’ is then drawn from (4) by perfect simulation
(Propp & Wilson, 1996). Also we assume a uniform prior on

0 € ® = [min 0,, max 0,] x [0, max 60,],

where min 6, <0, max 6,>0 and max 6, are large but finite numbers. Then 7(0")/%(0) is the
indicator function 1[0’ € ®], and the Metropolis—Hastings ratio (5) reduces to

3(x")qy X

H(O' X0 x)= 1[0 € ©] 45(x") 99 (¥)qo( ,)

45(X)q0(¥)q (X)

In practice, the exact values of min 0, <0, max 0, > 0 and max 0, have very little influence on the

chain, as long as they are large enough so that proposals very rarely fall outside them. Ranges for
0, of +1 and for 0, of [0, 1) are quite adequate for the examples we consider.

3-2. Analytical and empirical results

Table 1 summarises some results for a 10 x 30 lattice with data simulated, by perfect simulation,
from Ising models at five different values of 0. For a lattice of this size, the posterior modes can
be computed exactly using a forward recursion algorithm for the normalising constant (Reeves &
Pettitt, 2004). We can also estimate the posterior standard deviation analytically using Laplace’s
method (Gelman et al., 2004, p. 341), which entails fitting a quadratic to the logarithm of the

Table 1. Summary of analytical and Markov chain Monte Carlo
estimates for the posteriors of 0, and 0, for five different Ising
models on a 10 x 30 lattice. The standard deviations for the
analytically estimated posterior modes were estimated by
Laplace’s method. The means and standard deviations of the
Markov chain Monte Carlo draws are calculated from 100000
iterations of the chain, with no burn-in. The standard errors, STE,
of the means were computed taking into account the correlation
within samples

True Analytical posterior MCMC posterior

0, 0, Mode Est. sTD Mean STE STD
Parameter of interest 0,

00 01 —0-085 0-054 —0084 16x10°° 0-055

00 02 0-020 0-034 0021  61x107> 0036

00 03 0-015 0-023 0023  69x107° 0027

01 01 0-085 0-050 0084 11x10°° 0-047

01 02 0-074 0-039 0079 89x 107> 0038
Parameter of interest 0,

00 01 0-057 0-042 0059 50x 107> 0034

00 02 0-223 0-038 0219  51x107° 0037

00 03 0-320 0-034 0311  78x107° 0033

01 01 0-109 0-042 0109 87 x 107> 0042

01 02 0-264 0-038 0258  99x107° 0038

McMmc, Markov chain Monte Carlo; Est. sTD, estimated standard
deviation; STE, standard error; STD, standard deviation.
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posterior in the region of the mode, from which the Hessian is estimated. In Table 1, we compare
the analytically-obtained posterior mode and estimated posterior standard deviation to the
posterior mean and posterior standard deviation given by the Markov chain Monte Carlo
algorithm after 100000 iterations. The respective posterior mode and mean are rather similar, the
standard deviations are of the same magnitude, and each posterior mode or mean departs from

(a) McMmc draws for 0, 0 5(b) McMc draws for 0,

0 04 08 12 16 2 0 04 08 12 16 2
Iteration (x107%) Iteration (x107%)

Fig. 1. The first 20000 Markov chain Monte Carlo draws of (a) 0, and (b) 0,, with the

lattice data simulated as in Table 1 at parameter values 0,=0-0 and 0, =0-3. The

analytically computed posterior mode appears as an unbroken line, while the simulation
average, over 100000 iterations, is shown as a dashed line.

Table 2. Summary of Markov chain Monte Carlo posteriors for 0,
and 0, for different lattices where posterior modes are unavailable
analytically. The Markov chain Monte Carlo calculations are based
on 100000 iterations of the chain, with no burn-in, and the following
are shown: ‘Prop o’, the proposal standard deviation for 0, and 0,;
the posterior means 0, and 0, and their standard errors a5, and
03,5 the posterior standard deviations o, and o, ; co and c, , the
corresponding lag-100 autocorrelations; and ‘Extr’, the proportion
of acceptance ratios below exp(— 10)

Case 1 Case 2 Case 3 Case 4
100 x 100 50 x 50 50 x 50 50 x 50
True 0, 01 02 02 0-0
0, 02 01 01 03
MPLE 0, 0115 0225 0217 —0:001
él 0-195 0-105 0-108 0-309
mMcMmc  Prop g 0-005 0-005 0-01 0-005
(70 0111 0-220 0-220 0-000
a3, 77x107% 64x107° 26x107° 79x107°
a9, 0-0083 0-023 0-023 0-007
(71 0-199 0-108 0-107 0-312
ag, 46x107% 32x107° 14x107° 98x107°
a9, 0-0066 0-015 0-015 0-011
Coy 0-192 0-502 0-208 0-089
Co, 0-132 0431 0-183 0-125
Extr 0-085 0-020 0-057 0-041

MPLE, maximum pseudolikelihood estimate; MmcMmc, Markov chain
Monte Carlo.
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the true values of 0, or 0; by at most two times the posterior standard deviation. These results are
consistent with adequate convergence. The Markov chain Monte Carlo standard errors were
computed using the ‘CODA’ package described in a technical report by N. G. Best, M. K. Cowles
and S. K. Vines, from the MRC Biostatistics unit at the University of Cambridge.

Figure 1 shows traces of parameters 6, and 0, for the first 20 000 iterations of the Markov chain
Monte Carlo posterior simulations. Some stickiness is apparent in isolated areas of the traces, and
this becomes increasingly prevalent for higher parameter values of 0;.

In Table 2 we show results for lattice sizes of up to 100 x 100. While we cannot compare these
Markov chain Monte Carlo posterior summaries with an analytical equivalent, the histograms
of the posteriors and the parameter traces of Fig. 2 appear consistent with an adequate degree of
convergence.

O(a) McMc draws for 0, (b) Histogram for 0,
[ 1 16000
0-16¢ 1
0 12' , | ‘ﬂ' M 12000
. _ =
o, AN e =
0-08 | { ©
0-04! J 4000 | I
ooob—i— o 5 0 o 5 g | 0 ..'II II_h
0 04 08 12 16 2 0-08 0-1 0-12 0-14 0-16
Iteration (x107) 0,
(c) Mmcmc draws for 6, (d) Histogram for 0,
r 16000
0-26} 1
| 12000
0-22¢ =
: Olgwww il WI S 8000
0-14! | 4000 | I
0.1f ok .-_-ll Il-. L
0 04 08 12 16 2 0-18 0-2 0-22 0-24
Iteration (x107%) 0,

Fig. 2. Traces of the first 20000 iterations, (a) and (c), and posterior histograms, (b) and (d),
for 0, and 0, based on 100000 iterations. Data were simulated for an Ising model with
0, =0-1, 6, =02, and lattice size 100 x 100, Case 1 of Table 2.

4. DISCUSSION

A characteristic of this algorithm appears to be the occasional appearance of long runs where
no proposal is accepted, as for example in the vicinity of iteration 11000 in Fig. 2. The results
presented in Table 2 and Fig. 2 suggest that the tendency to produce these long runs becomes
worse for large lattices, and for increasing values of the association parameter 6;. One expects the
acceptance rate to fall as the dimensionality of the Metropolis—Hastings step increases, as is typically
the case with block updates. The dependence on the association parameter is perhaps explained
by the mismatch between the auxiliary variable distribution f(x|0, y) and the likelihood g¢,(.)/Z,,



Miscellanea 457

which with our choice of auxiliary variable distribution becomes worse as ; increases towards
criticality. This is because the maximum pseudolikelihood parameter estimate is increasingly poor
as 0, increases (Geyer & Thompson, 1992), and, as 0; becomes larger, the fixed parameter value
may be less effective at approximating both the current and proposed 6 values. Replacing the
maximum pseudolikelihood estimate of the parameters with the maximum likelihood estimate,
based on stochastic estimation of the normalising constants, may lead to improvement, although
this introduces a substantially greater computational burden. An auxiliary variable distribution
which better approximates the likelihood ¢,(.)/Z, may also lead to improvement.

Partly as a consequence of long runs of nonacceptance, and partly as a consequence of requiring
a small proposal standard deviation for the parameters in order to keep these long runs to a
minimum, the autocorrelations of the parameter samples can be quite high. For example, in Table 2,
Case 2, corresponding to a 50 x 50 lattice, with a proposal standard deviation of 0-005, has lag-100
autocorrelations of 0-50 and 0-43. This indicates a need for a large number of iterations in order
to be assured of convergence.

In the symmetrical case 6,=0, as 6; approaches the critical value of about 0-44 for the Ising
model, the perfect sampling algorithm becomes time-consuming. While more sophisticated
perfect sampling algorithms avoid this critical slowdown (Propp & Wilson, 1996), the region near
criticality, in which the Ising model tends toward a predominance of one value over the other, is
generally not particularly useful in statistical models for studying spatial association.

The ability to draw perfect samples of the auxiliary variable from the likelihood ensures that
the posterior for the parameters of interest arises exactly from marginalising the equilibrium
distribution of the Markov chain. It is not necessary to use Markov chain methods such as coupling
from the past and its developments for this, if simpler, direct methods are available. Any method
of drawing from the likelihood is acceptable, with the proviso that Markov chain methods must
have converged adequately to the equilibrium distribution to avoid introducing additional
undesirable stochasticity.

The technique proposed in this paper is applicable to Markov chain Monte Carlo methods for
inference in which a normalising constant is unknown, whenever samples may be drawn from the
likelihood without approximation, by perfect simulation for example. It overcomes the need to
resort to some computationally demanding approximate analysis, such as stochastic estimation of
normalising constant ratios. Our method eliminates such sources of error in posterior inference,
as well as being more easily implemented for those problems for which it is applicable.

Recent research explores connections with approximate Bayesian computation in which an
auxiliary variable is used to eliminate intractable likelihoods from a Metropolis—Hastings algorithm
(Reeves & Pettitt, 2005). This is an example of the method in a hierarchical model setting as
suggested in an unpublished Aalborg University technical report by the authors.
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