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Abstract

The integrated likelihood (also called the marginal likelihood or the normalizing constant)
is a central quantity in Bayesian model selection and model averaging. It is defined as
the integral over the parameter space of the likelihood times the prior density. The Bayes
factor for model comparison and Bayesian testing is a ratio of integrated likelihoods, and the
model weights in Bayesian model averaging are proportional to the integrated likelihoods.
We consider the estimation of the integrated likelihood from posterior simulation output,
aiming at a generic method that uses only the likelihoods from the posterior simulation
iterations. The key is the harmonic mean identity, which says that the reciprocal of the
integrated likelihood is equal to the posterior harmonic mean of the likelihood. The simplest
estimator based on the identity is thus the harmonic mean of the likelihoods. While this
is an unbiased and simulation-consistent estimator, its reciprocal can have infinite variance
and so it is unstable in general.

We describe two methods for stabilizing the harmonic mean estimator. In the first one,
the parameter space is reduced in such a way that the modified estimator involves a harmonic
mean of heavier-tailed densities, thus resulting in a finite variance estimator. The resulting
estimator is stable. It is also self-monitoring, since it obeys the central limit theorem, and so
confidence intervals are available. We discuss general conditions under which this reduction
is applicable. The second method is based on the fact that the posterior distribution of
the log-likelihood is approximately a gamma distribution. This leads to an estimator of the
maximum achievable likelihood, and also an estimator of the effective number of parameters
that is extremely simple to compute from the loglikelihoods, independent of the model
parametrization, and always positive. This yields estimates of the log integrated likelihood,
and posterior simulation-based analogues of the BIC and AIC model selection criteria, called
BICM and AICM.

We illustrate the proposed methods through several examples. One of these is the se-
lection of the dimension for the latent space social network model of Hoff, Raftery and
Handcock (2002). When applied to the well-known monks’ social network data of Sampson
(1968), our methods yield a surprising result: we find that the monks’ social network can be
well represented by a latent space model with just one dimension.
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1 Introduction

The integrated likelihood, also called the marginal likelihood or the normalizing constant, is

an important quantity in Bayesian model comparison and testing: it is the key component

of the Bayes factor (Kass and Raftery 1995; Chipman, George, and McCulloch 2001). The

Bayes factor is the ratio of the integrated likelihoods for the two models being compared.

When taking account of model uncertainty using Bayesian model averaging, the posterior

model probability of a model is proportional to its prior probability times the integrated

likelihood (Hoeting, Madigan, Raftery, and Volinsky 1999).

Consider data y, a likelihood function π(y|θ) from a model for y indexed by a parameter

θ, in which both y and θ may be vector-valued, and a prior distribution π(θ). The integrated

likelihood of y is then defined as

π(y) =
∫
π(y|θ)π(θ) dθ.

The integrated likelihood is the normalizing constant for the product of the likelihood and

the prior in forming the posterior density π(θ|y). Furthermore, as a function of y prior to

data collection, π(y) is the prior predictive density.

Evaluating the integrated likelihood can present a difficult computational problem. New-

ton and Raftery (1994) showed that π(y) can be expressed as an expectation with respect to

the posterior distribution of the parameter, thus motivating an estimate based on a Monte

Carlo sample from the posterior. By Bayes’s theorem,

1

π(y)
=
∫ π(θ|y)
π(y|θ)

dθ = E

{
1

π(y|θ)

∣∣∣∣∣ y
}
. (1)

Equation (1) says that the integrated likelihood is the posterior harmonic mean of the like-

lihood, and so we call it the harmonic mean identity. This suggests that the integrated

likelihood π(y) can be approximated by the sample harmonic mean of the likelihoods,

π̂HM(y) =

[
1

B

B∑
t=1

1

π(y|θt)

]−1

, (2)

based on B draws θ1, θ2, . . . , θB from the posterior distribution π(θ|y). This sample might

come out of a standard Markov chain Monte Carlo implementation, for example. Though

π̂HM(y) is consistent as the simulation size B increases, its precision is not guaranteed.

The simplicity of the harmonic mean estimator (2) is its main advantage over other

more specialized techniques (Chib 1995; Green 1995; Meng and Wong 1996; Raftery 1996;

Lewis and Raftery 1997; DiCiccio, Kass, Raftery, and Wasserman 1997; Chib and Jeliazkov

2001). It uses only within-model posterior samples and likelihood evaluations which are often
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available anyway as part of posterior sampling. A major drawback of the harmonic mean

estimator is its computational instability. The estimator is consistent but may have infinite

variance (measured by Var{[π(y|θ)]−1|y}) across simulations, even in simple models. When

this is the case, one consequence is that when the cumulative estimate of the harmonic mean

estimate (2) based on the first B draws from the posterior is plotted against B, the plot has

occasional very large jumps, and looks unstable.

In this article we describe two approaches to stabilizing the harmonic mean estimator. In

the first method, the parameter space is reduced such that the modified estimator involves a

harmonic mean of heavier-tailed densities, thus resulting in a finite variance estimator. We

develop general conditions under which this method works. The resulting estimator obeys

the central limit theorem, yielding confidence intervals for the integrated likelihood. In this

way it is self-monitoring.

The second approach is based on the fact that the posterior distribution of the loglike-

lihood is approximately a shifted gamma distribution. This leads to an estimator of the

maximum achievable likelihood, and also an estimator of the effective number of parameters

that is very simple to compute using only the likelihoods from the posterior simulation, inde-

pendent of the model parametrization, and always positive. This yields estimates of the log

integrated likelihood, and posterior simulation-based analogues of the BIC and AIC model

selection criteria, called BICM and AICM. We illustrate the proposed methods through

several examples.

In Section 2 we describe the parameter reduction method and in Section 3 we give

several examples. In Section 4 we describe the shifted gamma approach and we report a

small simulation study and an example. In Section 5 we discuss limitations and possible

improvements of the methods described here, and we mention some of the other methods

proposed in the literature.

2 Stabilizing the Harmonic Mean Estimator by Param-

eter Reduction

An overly simple but helpful example to illustrate our first method is the model in which

θ = (µ, ψ) records the mean and precision of a single normally distributed data point y. A

conjugate prior is given by

ψ ∼ Gamma(α/2, α/2)

(µ|ψ) ∼ Normal(µ0, n0ψ),
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where α, n0, and µ0 are hyperparameters (e.g., Bernardo and Smith, 1994, page 268 or

Appendix I). The integrated likelihood π(y) is readily determined to be the ordinate of a

t density, St(y|µ0, n0/(n0 + 1), α) in the notation of Bernardo and Smith (1994, page 122

or Appendix I). Were we to approximate π(y) using equation (2), instead of taking the

analytically determined value, we could measure the stability of the estimator with the

variance Var{[π(y|θ)]−1|y}. This variance, in turn, is determined by the second noncentral

moment E{[π(y|θ)]−2|y} which is proportional to

∫ ∫
ψα/2 exp

{
ψ

2
[(y − µ)2 − n0(µ− µ0)

2 − α]

}
dψdµ,

and which is infinite in this example owing to the divergence of the integral in µ for each

ψ. The reciprocal of the light-tailed normal density forms too large an integrand to yield a

finite posterior variance, and hence the harmonic mean estimator is unstable.

An alternative estimator, supported equally by the basic equation (1), is

π̂SHM(y) =

[
1

B

B∑
t=1

1

π(y|µt)

]−1

, (3)

which we call a stabilized harmonic mean. In (3), µt is the mean component of θt = (µt, ψt),

and thus is a draw from the marginal posterior distribution π(µ|y). The stabilized harmonic

mean is formed not from standard likelihood values, but rather from marginal likelihoods

obtained by integrating out the precision parameter ψ. It is straightforward to show that

this integrated likelihood has the form of a t ordinate,

π(y|µ) = St
{
y|µ, (α+ 1)/[α+ n0(µ− µ0)

2], α+ 1
}
.

The intuition motivating (3) is that since π(y|µ) has a heavier tail than π(y|θ), averages

of reciprocal ordinates become averages of less variable quantities than in (2). Measuring

stability as above, we observe that

E
{

[π(y|µ)]−2
∣∣∣ y} ∝ ∫ {1 + [(y − µ)2 + n0(µ− µ0)

2]/α}α/2+1

{1 + n0(µ− µ0)
2/α}α+1 dµ (4)

is finite when α > 1 and n0 > 0. This result is proved in Appendix II.

Figure 1 compares the harmonic mean π̂HM(y) to the stabilized harmonic mean π̂SHM(y)

for various parameter settings of this simple normal example. For each case, both estimates

use a common sample of B = 5, 000 independent and identically distributed posterior draws

for the mean µ and precision ψ. Shown for each sample is the value of both estimators using

ever larger amounts of the sample. Figure 1 shows clearly how the infinite variance of the

harmonic mean estimator manifests itself in practice. Every so often a parameter value with
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a very small likelihood is generated from the posterior, and this yields a very large value

of the reciprocal of the likelihood, which in turn greatly reduces π̂HM(y). Subsequently,

π̂HM(y) increases gradually, until another very small likelihood is encountered. Improved

performance of the stabilized harmonic mean is evident in Figure 1. The t-based estimator

π̂SHM(y) converges much more rapidly than the standard estimator, and does not exhibit

the same pattern of occasional massive changes. To further validate this observation, we

recomputed both final estimators on 1000 independent posterior samples of size B = 1000

(Figure 2). Relative stability of the π̂SHM(y) is clearly indicated.

The reciprocal estimator {π̂SHM(y)}−1 is a sum of quantities that have finite variance,

and so it has a limiting normal distribution by the central limit theorem. This fact can be

used to obtain a confidence interval for the integrated likelihood. Table 1 gives the coverage

probabilities and the average length of the confidence intervals for the parameter values in

Figures 1 and 2, using 1000 independent Monte Carlo samples each of size B = 1000. The

empirical coverage probabilities are close to their nominal levels. This makes the method a

self-monitoring one, in that even if the estimate it provides is imprecise, this will be made

clear to the user.

The multivariate normal model is a direct extension of the univariate normal example

discussed above. The standard estimator, obtained using equation (2), is a harmonic mean

of multivariate normal densities. This can be easily shown to be an unstable estimator of

the prior predictive density. Integrating the precision parameter leads to a heavier tailed

multivariate t density, which can be used to obtain a stable estimator analogous to equation

(3).

The stabilized harmonic mean was first reported in a statistical genetics application in

which numerical stability of a t−based harmonic mean was observed (Satagopan, Yandell,

Newton, and Osborn 1996). Section 3.1 presents a detailed study of this case. Although

the genetical model used by these authors was rather specialized, the method to obtain

a more stable estimate is quite general: approximate π(y) by a harmonic mean of values

π[y|h(θt)], where θ1, θ2, . . . , θB form a sample from the posterior distribution π(θ|y). The

function h(θ) must reduce the parameter space as much as possible, while not making the

calculation of the marginal likelihood π[y|h(θ)] too difficult. In the examples we work out,

h(θ) is of lower dimension than θ, typically obtained by integrating out one or several of

the components. Taking h(θ) to be constant is an extreme case; π[y|h(θ)] then becomes the

integrated likelihood π(y). Of course, if this were computable there would be no need to

calculate an approximation, and in any case, the harmonic mean estimator would have zero

variance. To form harmonic means from reduced distributions is a general variance reduction

technique.
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Figure 1: Normal (bold line) and stabilized t-based (dotted line) harmonic mean estimates
of the log integrated likelihood compared with the true value (dashed line), when the data
y follow a univariate normal distribution as described in Section 2. The estimate based on
the first B values simulated from the posterior distribution is plotted against B for one set
of 5,000 values simulated from the posterior in each situation. The top row of the figure
displays the harmonic mean estimates when y = 5 and µ0 = 0. The second row corresponds
to y = 3 and µ0 = 0. The bottom row gives the figures for y = 0 and µ0 = 0. The three
columns correspond to α values of 2, 6 and 10. The value of n0 is 1. The plot shows that the
normal estimate is unstable but the stabilized estimate is much more stable and converges
rapidly to the correct value.
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Figure 2: Boxplots to assess the variability of the estimated integrated likelihood. Shown
are the true integrated likelihood, and the normal and stabilized t-based harmonic mean
estimators, both on the logarithmic scale. The estimates are obtained from 1000 Monte Carlo
samples of size 1000. These estimates are shown for various configurations of parameters as
in Figure 1.
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Table 1: Coverage Probabilities for 50%, 80%, 90%, and 95% Confidence Intervals for the
Stablilized Harmonic Mean Estimator, for the situations shown in Figures 1 and 2. The
average lengths of the confidence intervals for the reciprocal of the likelhood are shown in
parentheses. Column 1 shows the parameters used in the simulation, column 2 shows the
true value of {π(y)}−1, and columns 3, 4, 5, and 6 give the coverage probabilities.

(y, µ0, α) True {π(y)}−1 50% 80% 90% 95%
(5, 0, 2) 78.09 0.49 0.79 0.90 0.94

(5.46) (10.38) (13.32) (15.88)

(5, 0, 6) 190.19 0.50 0.81 0.90 0.95
(23.87) (45.36) (58.22) (69.37)

(5, 0, 10) 314.38 0.53 0.78 0.88 0.93
(62.44) (118.64) (152.27) (181.44)

(3, 0, 2) 23.44 0.49 0.82 0.90 0.95
(1.29) (2.44) (3.14) (3.74)

(3, 0, 6) 26.20 0.49 0.78 0.89 0.93
(2.41) (4.57) (5.87) (6.99)

(3, 0, 10) 28.05 0.48 0.79 0.88 0.93
(3.57) (6.78) (8.71) (10.37)

(0, 0, 2) 4.00 0.47 0.79 0.90 0.93
(0.17) (0.32) (0.41) (0.49)

(0, 0, 6) 3.70 0.48 0.77 0.87 0.93
(0.12) (0.22) (0.28) (0.34)

(0, 0, 10) 3.63 0.47 0.81 0.86 0.93
(0.12) (0.22) (0.28) (0.34)
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Theorem 1 If h is a measurable function of θ then

Var

{
1

π[y|h(θ)]

∣∣∣∣∣ y
}
≤ Var

{
1

π[y|θ]

∣∣∣∣∣ y
}
.

Either variance may be infinite. If the left hand side is infinite, then the right hand side is

infinite also.

To avoid measure-theoretic considerations, we prove Theorem 1 only under the additional

condition that h(θ) is a dimension-reducing transformation: i.e. θ = (α, β), h(θ) = α,

and both α and β range freely so that the prior density π(θ) = π(α)π(β|α) is well-defined.

See Appendix III for a proof. In certain hierarchical models, where analytical integration is

possible on one or two levels, it may be possible to identify useful reductions h(θ) to facilitate

stable harmonic mean calculations.

Gelfand and Dey (1994) noted an extension of the basic identity (1) which justifies

estimating the integrated likelihood by the harmonic mean of π(y|θt)π(θt)/f(θt) where, as

before, the θt’s are sampled from the posterior, but now π(θ) is the prior density and f(θ)

is any (normalized) density on the parameter space. The idea is to choose f carefully so as

to minimize Monte Carlo error. We show in Section 3.3 that our proposed stabilization can

be combined with this technique for improved performance. Indeed there is some synergy in

this combination because the proposed stabilization reduces the dimension of θ, thus making

it simpler to identify a useful f function.

3 Stabilized Harmonic Mean Estimator: Examples

3.1 Statistical Genetics Example

Linear models are used frequently in quantitative genetics to relate variation in a measured

trait (phenotype) to variation in underlying genes affecting the trait (genotype); Doerge,

Zeng, and Weir (1997), for example, is a useful review from a statistical perspective. We

reconsider the particular model

yi = µ+
s∑

j=1

αjgi,j + εi, i = 1, · · · , n, (5)

used by Satagopan et al. (1996) to infer the genetic causes of variation in the time-to-

flowering phenotype in the plant species Brassica napus. In (5), the i indicates different

plants in a sample of size n = 105, the phenotypes y = (yi) are the logarithms of the

times to flowering, and the decomposition on the right-hand-side characterizes the expected

phenotype conditional on the genotype gi = (gi,j) at a set of s different genetic loci. Here εi
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is modeled as a mean zero normally distributed disturbance with variance σ2 independent

of genetic factors, µ is the marginal expected phenotype and αj is the genetic effect of the

jth quantitative trait locus (QTL). From the particular experimental design, each genotype

gi,j takes one of two possible values, coded as {−1, 1}, with equal marginal probability.

The model (5) would be rather standard except that the genotypes g = (gi) are unob-

served; in fact, for each i they represent the values of a random process defined over the whole

genome and evaluated at s distinct positions λ = (λ1, . . . , λs), the s putative QTLs. The

number of QTLs, s, is unknown, as are their positions λ and their effects α = (α1, . . . , αs).

Indirect information about the QTL genotypes comes through genotype data m = (mi),

obtained in this example from a panel of 10 molecular markers in the chromosomal region of

interest. The statistical problem is to infer the unknown parameters θ = (µ, α, λ, σ2) from

marker and phenotype data (m, y), and considering missing genotypes g.

Satagopan et al. (1996) presented a Bayesian solution in which Markov chain Monte Carlo

(MCMC) was used to sample the posterior distribution of all the unknowns conditional on

s, the number of QTLs, separately for a range of values of s. To infer s, the integrated

likelihood π(y|m, s) was approximated for each s via a harmonic mean, and this enabled

calculation of Bayes factors

BF(s1, s2) = π(y|m, s1)/π(y|m, s2). (6)

We reconsider this calculation in further detail. (Note that we can condition on marker in-

formation m because its marginal distribution π(m) is not dependent on any of the unknown

parameters.)

The prior for θ factorizes into a uniform prior over ordered loci λ = (λ1, . . . , λs) within

the chromosomal region under consideration and a conjugate prior for µ, α = (αj), and σ2:

π(µ|σ2) = Normal(µ0, σ
2/n0),

π(αj|σ2) = Normal(α0,j, σ
2/n0,j), j = 1, · · · , s

π(σ2) = Inverse Gamma(ζ/2, ζ/2),

where µ0 = 5, n0 = 1, α0,j = 5, n0,j = 1, for each j and ζ = 8. Fixing the number of loci

s, one complete scan of the MCMC sampler updates each element of θ and all the missing

genotypes in g. See Satagopan et al. (1996) for further details on the component updates. A

total of 3 chains, corresponding to s = 1, 2, and 3, were obtained. For a fixed s (= 1, 2, or 3),

we report results below based on a chain of length 400,000 complete scans, subsampled every

100 scans, with the first 100 saved states removed as burn-in; diagnostics indicated that the

resulting subsampled scans were close to being independent. Thus this corresponds to an

effective independent sample size of about 3,900 for estimating the genetic effect parameters.
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Unknowns (θt, gt) are sampled from their posterior distribution conditional on observed

phenotypes y, marker genotypes m and the model dimension parameter s. Invoking the

standard harmonic mean argument, as in (2), we approximate π(y|m, s) by

π̂HM(y|m, s) =

[
1

B

B∑
t=1

1

π(y|m, θt, gt, s)

]−1

. (7)

As in the simple normal example of Section 2, a problem arises with (7) because we are

averaging reciprocals of normal ordinates. To stabilize the estimator, we integrate out the

variance parameter σ2 and obtain

π̂SHM(y|m, s) =

[
1

B

B∑
t=1

1

π(y|m,h(θt), gt, s)

]−1

, (8)

where h() returns all components of θ except the variance parameter. In (8),

π(y|m,h(θt), gt, s) is a scaled t density, Stn(y|µ+ α
′
g, I, ζ).

Figure 3 shows the cumulative Bayes factor estimates obtained from three chains, (s =

1, 2, and 3), based on integrated likelihood estimates in either (7) and (8). Evidently the

stabilization has worked in this more complicated example: there are fewer massive changes

in the estimate. Numerically, we obtain BF (1, 2) = 0.368 using (7), and BF (1, 2) = 0.395

using the stabilized estimator (8). The estimates of BF (2, 3) are rather more disparate:

13.15 and and 4.39, respectively. In any case we would conclude that the two-locus model is

most likely a posteriori.

Figure 4 indicates the Monte Carlo sampling variability of the two estimators. The

above computations were replicated 75 times. To reduce the computational burden of the

simulation, we used a value of B equal to half of the earlier value. The side-by-side boxplots

further confirm the success of the stabilization in the present example.

We note that other dimension-reducing transformations h(·) could be used in this exam-

ple. For example, we could sum out the genotype values g and thus average reciprocals of

finite mixtures of normals (or t’s). It may also be possible to integrate the genetic effects α.

Neither of these has been attempted here.

3.2 Beta–Binomial Example

A naturally occurring hierarchical model has observable counts y = (yi), i = 1, . . . ,m, arising

as conditionally independent binomial random variables with numbers of trials (ni) and

success probabilities p = (pi). In turn, these (pi) are modeled as conditionally independent

beta variables with canonical hyperparameters a and b say, upon which some further prior

distribution π(a, b) is placed. To obtain the probability of y in this model, we must integrate

10
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Figure 3: Log Bayes factor Estimates for the Flowering Time Data, based on MCMC. The
log Bayes factor based on the first B saved scans of the MCMC run is plotted against B.
The comparison between one locus and two loci models is shown on the top. The bottom
figure corresponds to the comparison between the two and three loci models. The bold line
is the standard harmonic mean estimate of the log Bayes factor, and the dotted line is the
stabilized t-based estimate. The plot shows that the stabilized estimate is much more stable
than the standard one.
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Figure 4: Assessing the Variability of the Log Bayes Factor Estimates for the Flowering Time
Data, using 75 replications of the MCMC run. The top panel shows the comparison between
the one-locus and two-loci models, and the bottom panel shows the comparison between the
two-loci and three-loci models. In each panel, the variability among the stabilized t-based
estimates is shown on top, and that among the standard normal estimates is shown below.
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out both (pi) and the hyperparameters a and b. It is routine to sample the full parameter

set θ = (p, a, b) from its posterior distribution (Gelman, Carlin, Stern, and Rubin 1996).

For example, an MCMC simulation might update each pi from its Beta full-conditional

distribution, and then resort, perhaps, to a random-walk proposal to update a and b.

The basic harmonic mean combines reciprocals of binomial likelihoods from the posterior

sample, and, it turns out, can be quite unstable. As before, stability is determined by the

second noncentral moment

E
{
[π(y|θ)]−2|y

}
∝
∫ ∫ ∏

i

{∫
pa−1−yi(1− p)b−1−ni+yi dp

}
π(a, b) da db.

Unless we take an extreme prior π(a, b) which ensures a > max(yi) and b > max(ni − yi),

this integral can diverge. Typically, a prior extreme enough to avoid this divergence would

be unrealistically peaked. This is unsatisfactory, ruling out the standard (unstabilized)

harmonic mean estimator as a practical tool for the beta-binomial model.

It is straightforward to stabilize the harmonic mean by reducing the dimension of θ as

in previous examples. One possibility is to take h(θ) = (a, b); i.e. to integrate out all the

binomial success probabilities. In this conjugate structure, we have a closed form beta-

binomial expression for π{y|h(θ)}, namely

π{y|h(θ)} =
∏
i

Γ(ni + 1)

Γ(ni − yi + 1)Γ(yi + 1)

Γ(a+ b)

Γ(a+ b+ ni)

Γ(a+ yi)

Γ(a)

Γ(b+ ni − yi)

Γ(b)
. (9)

The harmonic mean of these beta-binomial probabilities, calculated from the (a, b)’s sampled

from their posterior, is consistent for the integrated likelihood. We may expect this to be

more stable since the beta-binomial distribution is more diffuse than the binomial, and so

the reciprocals of the probabilities may not be as extreme. The stability of this estimator is

determined by the second noncentral moment, which satisfies

E
{
[π(y|a, b)]−2|y

}
≤

∫
(a+ b+ nmax − 1)mπ(a, b) da db,

where nmax = maxni. Stability is ensured when prior moments of a and b exist.

Data on free-throw percentages from the National Basketball Association (NBA) provide

an interesting demonstration of the harmonic mean calculations. On March 9, 1999, there

were 414 active NBA players of whom 374 had attempted at least one free throw by that

point in the season. Among these 374 players, the numbers of attempts (ni) ranged from 1

to 205, with a mean of about 35. We model yi, the number of made free throws by player

i, to be Binomial with ni trials and unknown success probability pi. The average free throw

percentage yi/ni is about 70% in the data reported at www.yahoo.com (and available from

the authors).
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We consider the problem of evaluating the integrated likelihood π(y) under the hierar-

chical beta–binomial model given above. This would be useful when comparing this model

with other hypothesized models for these data. We place independent standard exponential

priors on a − ε and b − ε where ε = 1 is a lower truncation point of the prior. MCMC

was used to simulate the posterior. The following numerical results are based on a single

chain of length 2.5 million complete scans, subsampled every 50 scans, and with the first

100 saved states removed as burn-in. Significant trends were not detected in the output and

standard MCMC diagnostics indicated that little dependence remained in the saved states.

Computations were done separately on a second run and we saw no appreciable differences.

We calculated natural logarithms of the product binomial likelihood and the product

beta-binomial likelihood (9). From these values we obtained the standard harmonic mean

estimate and the stabilized one. The log estimates were -817.0 and -942.9 respectively; these

are quite different. The standard estimate is known to be unstable. Indeed the variance

of the sampled loglikelihood values was 146.3 while that of the sampled log beta-binomial

values was only 4.1. Variance on the log scale does not tell the whole story because we are

averaging on the anti-log scale; it is outliers (having very low likelihood) that are particularly

influential, but still variance gives some indication.

Suspecting that some additional improvements could be made, we combined the sta-

bilization technique with the method of Gelfand and Dey (1994) discussed at the end of

Section 2, using a Gaussian approximation to the posterior π(a, b|y) as the density f . The

estimate becomes a harmonic mean of the values π(y|a, b)π(a, b)/f(a, b), with (a, b)’s sam-

pled from their posterior. The main advantage of this adjustment is that now the influence

of individual sample points is greatly diminished. The estimated log integrated likelihood

is -951.4, which matches a brute force grid-based numerical integration of π(y|a, b)π(a, b)

almost exactly. Thus we see that the initial stabilization method worked fairly well and was

easily improved.

3.3 Other Reductions: A Simple Poisson-Gamma Model

Sometimes useful reductions are hard to find, and the natural approach we have considered

of integrating out a parameter does not work. A simple example is when y has a Poisson

distribution with mean γλ, and γ is exponentially distributed with mean 1 and independent

of λ a priori. The standard harmonic mean estimator of π(y) uses samples θi = (λi, γi)

from π(θ|y), and averages the reciprocals of Poisson probabilities. Stability depends on the

second noncentral moment

E
{

[π(y|θ)]−2
∣∣∣ y} ∝

∫ ∫ 1

(γλ)y
exp{−γ(1− λ)}π(λ) dγdλ.
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Note that the inner integral diverges for any λ > 1, so that the standard harmonic mean is

unstable. The natural reduction would be to take h(θ) = λ. Thus the marginal likelihood

π[y|h(θ)] = π(y|λ) is a geometric distribution λy/(1 + λ)(y+1). Stability here hinges upon

E
{

[π(y|λ)]−2
∣∣∣ y} ∝

∫ (
1 + λ

λ

)y

(1 + λ)π(λ) dλ.

For small λ, the dominant term of the integrand is π(λ)/λy, and so stability of the modified

harmonic mean depends on the prior, though for a standard Gamma prior, for example,

this integral can diverge. In other words, both variances in Theorem 1 equal infinity. Thus

integrating out γ does not produce a stabilized harmonic mean estimator in this case.

Another, further reduction does work, however. Consider the case where λ, like γ, has a

prior exponential distribution with mean 1. Suppose that h(θ) = 0 if λ ≤ ε, and h(θ) = λ

if λ > ε, where ε is a small predetermined constant. Then π[y|h(θ) = 0] ≈ εy+1/(y +

1) (better approximations are readily available if necessary), and it is easily shown that

E{π[y|h(θ)]−2|y} < ∞. Thus, with this refinement, the modified harmonic mean estimator

is stable.

4 Shifted Gamma Estimator of the Integrated Likeli-

hood

4.1 Shifted Gamma Estimator

We now consider a different approach to stabilizing the harmonic mean estimate. If MCMC

is used to simulate from the posterior, we suppose that the the output has been thinned in

such as way that we have an approximately independent sequence of loglikelihoods {`t : t =

1, . . . , B}.
We use the fact that asymptotically (as the amount of data underlying the likelihoods

increases to infinity, not the number of samples from the posterior), the posterior distribution

of the loglikelihoods is given by

`max − `t ∼ Gamma(α, 1), (10)

where `max is the maximum achievable loglikelihood, and α = d/2 where d is the dimension

of the parameter θ, i.e. the number of parameters in the underlying model (Bickel and

Ghosh 1990; Dawid 1991). In (10), a Gamma(α, λ−1) distribution with shape parameter α

and scale parameter λ has the density

fX(x) =
xα−1 exp(−x/λ)

Γ(α)λα
. (11)
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With this definition, E(X) = αλ, and Var(X) = αλ2. This can also be viewed as a scaled

χ2 distribution with d = 2α degrees of freedom. Fan, Hung, and Wong (2000) showed that

(10) holds under more general conditions than the usual Wald-type conditions required for

the likelihood ratio test statistic to be asymptotically χ2.

In principle, we could use the asymptotic approximation (10) directly to approximate

the posterior harmonic mean and hence the integrated likelihood. There are three main

difficulties with this, however. First, in general we will not know `max from a posterior

sample, because the maximum likelihood will typically not be reached. In practice, the

difference between `max and the maximum observed loglikelihood in the MCMC sample can

be quite large when the number of parameters is big. Second, in general, we will not know

the effective number of parameters, d, especially in hierarchical and other random effects

models of the kind often estimated using MCMC. Third, with the posterior distribution (10)

of the loglikelihoods, the posterior harmonic mean, and hence the integrated likelihood, is

infinite.

The first two difficulties can be resolved by noting that simple moment estimators of

`max and α are available. Under the assumption (10), E[`max − `t] = α and Var(`t) = α.

Replacing the expectation and variance of `t by their sample equivalents and solving, we

thus get the moment estimators α̂ = s2
` and ˆ̀

max = ¯̀+ s2
` , where ¯̀ and s2

` are the sample

mean and variance of the `t’s.

It is clear that `max is at least as big as the largest observed loglikelihood, maxt `t.

Thus so we could refine the moment estimator of `max to take account of this, as ˆ̀∗
max =

max{ˆ̀max,maxt `t}, or ˆ̀∗∗
max = max{ˆ̀max,maxt `t + δ}, where δ is some small positive number

that is small on the typical scale of loglikelihoods, such as 0.01. We have found, however,

that it rarely happens that maxt `t > ˆ̀
max and that even when it does, the difference is very

small. Thus we have not found this refinement of much use in practice.

The third difficulty implies that the approximation (10) is not accurate enough for any

actual data that would be encountered. One possibility is to modify it by allowing a scale

parameter that is not exactly equal to 1, so that the approximate posterior distribution

becomes

`max − `t ∼ Gamma(α, λ−1). (12)

In practice, λ will be close to 1, but slightly less than 1.

Given the approximation (12), we can find the integrated likelihood using the fact that

if X ∼ Gamma(α, λ−1), then the moment generating function of X is

mX(t) = E[etX ] = (1− λt)−α. (13)

Combining the harmonic mean identity (1) with equations (12) and (13), we see that the
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integrated likelihood is given by

log π(y) = logE[e−`t|y] = `max + α log(1− λ). (14)

This has an interesting similarity to the BIC approximation to the log integrated likeli-

hood,

log π̂BIC(y) = `(θ̂)− d

2
log(n), (15)

where θ̂ is the maximum likelihood estimator, so that `(θ̂) = `max, the maximum achievable

loglikelihood. In general, under regularity conditions,

log π(y) = log π̂BIC(y) +OP (1), (16)

(Schwarz 1978). so that the relative error in log π̂BIC(y) tends to zero asymptotically. If the

prior π(θ) is a normal unit information prior, then the approximation is more accurate and

the OP (1) term in (16) is replaced by OP (n−1/2) (Kass and Wasserman 1995; Raftery 1995).

We have that α = d/2, and so − log(1− λ) in (14) corresponds to log(n) in (15).

We already have estimates of `max and α in (14), and so to obtain an estimate of the

integrated likelihood it remains only to estimate λ. Unfortunately this is difficult, because λ

is typically very close to 1, and the value of π(y) is sensitive to its precise value. On the other

hand, the loglikelihoods {`t} typically do not allow us to distinguish well between values of

λ close to 1. We have experimented with Bayesian and other estimators of λ, but so far the

estimates we have tried have not been very accurate. This is a topic of ongoing research.

In the meantime we suggest a posterior simulation-based version of BIC. BIC is defined

by

BIC = 2`(θ̂)− d log(n),

and by analogy we define

BICM = 2ˆ̀
max − d̂ log(n),

where BICM stands for BIC–Monte (Carlo). This yields the following approximation to the

log integrated likelihood:

log π̂BICM(y) = ˆ̀
max −

d̂

2
log(n) (17)

= ¯̀− s2
` (log(n)− 1) . (18)

One difficulty with this criterion is that the sample size n is not always well-defined,

particularly in the kind of models commonly estimated by MCMC. Volinsky and Raftery

(2000) have shown in another context that when different choices are possible, they each give

valid approximations to the integrated likelihood, corresponding to different unit information
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priors, that differ in the definition of a “unit”. Thus a reasonable choice may follow by

considering what a reasonable definition of a “unit” is. Volinsky and Raftery (2000) give

an example of one way of determining this, and another example in a hierarchical model is

given in Section 4.3. Pauler (1998) in her equation (11) has proposed a modified definition for

hierarchical models, called SM , and showed its validity in her Theorem 2. In this approach

each parameter has potentially has a different “n” associated with it, corresponding to the

number of data points involved in estimating it.

In a similar way, we can write down a posterior simulation-based version of AIC (Akaike

1973). AIC can be defined as

AIC = 2`max − 2d, (19)

which we can estimate by

AICM = 2ˆ̀
max − 2d̂ (20)

= 2ˆ̀
max − 4s2

` (21)

= 2(¯̀− s2
`). (22)

Thus AICM is seen to be a very simply computed penalized version of the posterior mean

of the loglikelihoods, using only the loglikelihoods from the posterior simulation. There

is a substantial literature on the relative merits of AIC and BIC, and many of the same

arguments could probably be made about AICM and BICM. Our derivation of BICM is

as an approximation to the log integrated likelihood, but AICM does not have such an

interpretation.

As we have noted, the moment estimator of α implies that d̂ = 2s2
` can be viewed as an

estimator of the effective number of parameters. Spiegelhalter, Best, Carlin, and van der

Linde (2002) proposed a different estimator of the effective number of parameters from

posterior simulation, pD = 2(log π(θ̄|y) − ¯̀). In our limited experience, we have found that

pD and d̂ are similar and that both work well in situations where the number of parameters

is known.

However, Spiegelhalter et al. (2002) have pointed out that pD is not invariant to the

model’s parameterisation because it involves the posterior mean of the parameters, θ̄, and

that this noninvariance can be consequential. They also pointed out that pD can be negative.

In addition, pD may not be well defined in situations where the meaning of θ̄ is not clear, such

as multinomial parameters, or finite mixture models where the unobserved group member-

ships are included in the MCMC scheme (Diebolt and Robert 1994). A similar problem arises

when there is near posterior nonidentifiability such as label-switching in mixture models or

random effects without identifying constraints (Celeux, Hurn, and Robert 2000; Stephens
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2000). One way around this is to use a posterior mode of θ instead of θ̄, but Richardson

(2002) gives several examples of mixture models where pD with this definition inadequately

penalizes model complexity. The estimator d̂ is defined simply and unambiguously in all

those cases.

When our estimator d̂ is replaced by pD, ˆ̀
max is equivalent to the estimator given in

equation (19) of Spiegelhalter et al. (2002), and AICM becomes equivalent to DIC as defined

by Spiegelhalter et al. (2002), although the derivations are different.

An interesting observation follows from the results of Fan et al. (2000). They consider

the situation where, roughly speaking, the level-w contour of the likelihood function has the

form θ̂+anw
rS, where θ̂ is the maximum likelihood estimator, r > 0 is a constant, an → 0 is

a sequence, and S is a surface in Rd. The standard situation where the likelihood contours

are elliptical has r = 1
2
, an = O(n−

1
2 ), and S = {θ : θT Σθ} where Σ is the Fisher information

matrix, so that S is an ellipse. When this is not the case they say that the distribution is

“fan-shaped.” They show that in general under these conditions

`max − `t ∼ Gamma(rd, 1). (23)

In the standard, elliptical situation with r = 1
2
, this reduces to (10) as before.

They give several simple examples where this is not the case. One is inference about the

minimum of a shifted exponential distribution whose scale parameter is known. In that case

they show that r = 1. Thus the “effective number of parameters” in that case is 2, even

though there is only 1 actual parameter. This illustrates the fact that the term “effective

number of parameters” is really just a figure of speech. It suggests that what is important

for estimating the integrated likelihood is the shape parameter of the approximating gamma

distribution, not a literal count of the parameters in the model. The arguments above

suggest that the former may continue to be well approximated by 2s2
` even when this does

not coincide with a simple count of the number of parameters.

Finally, we note that when the number of parameters (not necessarily data points) be-

comes large, the shifted gamma approximation to the posterior distribution of the loglike-

lioods (12) becomes approximately normal. The posterior distribution of the reciprocal of

the likelihood is then approximately lognormal, leading to the estimator

log π̂LN(y) = ¯̀− 1

2
s2

` . (24)

This was proposed by Pritchard, Stephens, and Donnelly (2000), who also noted that a

better approximation might be available by using a gamma distribution for the loglikelihoods,

thus prefiguring the present work, although they did not develop their observation further.

Pritchard et al. (2000) proposed and used log π̂LN(y) as a model choice criterion rather than
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an estimator of the log integrated likelihood. It is interesting to note that

log π̂LN(y) = ˆ̀
max −

3

4
d̂,

so that log π̂LN(y) is a penalized version of the estimated maximum loglikelihood, with a

penalty similar to but smaller than that of AICM, equal to 3
4
d̂ rather than d̂ as for AICM.

4.2 Multivariate Normal Simulation Experiment

In order to assess our estimates d̂, ˆ̀
max and πBICM(y), we first carried out a small simu-

lation study using a canonical multivariate normal situation. The data y1, . . . , yn are in-

dependent and identically distributed MVNd(µ, I) random vectors, and the prior for µ is

µ ∼ MVNd(0, I). The sufficient statistic is then just the d-dimensional ȳ ∼ MVNd(µ, I/n).

We simulated values of µ from its posterior distribution µ|y ∼ MVNd(nȳ/(n+1), I/(n+1)).

The loglikelihoods are then given by

`t = log p(ȳ|µt) =
d

2
log(n/2π)− n

2

d∑
j=1

(ȳj − µj)
2.

The true maximum likelihood is d
2
log(n/2π) and the true log integrated likelihood is

π(y) =
d

2
log

(
n

(n+ 1)2π

)
− 1

2

n

n+ 1

d∑
j=1

ȳ2
j .

Our goal was to see how the method worked under a wide range of values of d and n,

so we fixed µ at (0.15, . . . , 0.15). We simulated values of the number of parameters d from

a discrete uniform distribution on the integers from 1 to 100, and we simulated values of

the sample size n from a discretized log-uniform distribution with log(n) ∼ U [3, 9], so that

approximately, n ranged from 20 to 8,000, with a median of 400, subject to the constraint

that d < n. Thus the simulation encompassed standard situations with a small number of

parameters and a large sample size, and also situations where there were almost as many

parameters as data points, ranging up to moderately large numbers of parameters (100).

For each pair of values of d and n sampled, a dataset consisting of ȳ was drawn, and then

the posterior distribution was simulated. Altogether, 1000 datasets were simulated, and for

each dataset a sample of size 100,000 was drawn from the posterior.

The results are shown in Figure 5. The upper left panel shows the histogram of loglikeli-

hoods for one dataset with d = 10 and n = 100, together with the fitted gamma distribution

superimposed. The fit is extremely good, and this was the case for all the datasets that

we examined. The upper right panel shows the estimated maximum achievable loglikeli-

hood plotted against the true maximum likelihood for the 1000 simulated datasets. The
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estimation was extremely good, even in cases with larger number of parameters, where the

largest loglikelihood among those sampled, maxt `t, was much smaller than the true maxi-

mum loglikelihood. The lower left panel shows the estimated number of parameters plotted

against the true number; again the estimation was almost perfect. Finally, the lower right

panel shows the approximated and true log integrated likelihoods; again the estimation was

extremely good.

In the simulated situation, the prior used was a unit information prior, so it is of interest

to see what happens if a different prior is used. We experimented with situations where the

prior was µ ∼ MVNd(0, σ
2) where σ2 6= 1. Note that the unit information prior corresponds

to σ2 = 1. The good results for d̂ and ˆ̀
max remained unchanged. As long as σ2 was larger

than about 0.2, i.e. as long as the prior was not highly informative, the value of log π̂BICM(y)

remained very highly correlated with the true value of log π(y). The slope of the line in the

lower right panel of Figure 5 was no longer unity, but the fact that the correlation remained

very high means that model comparisons based on the estimated log integrated likelihoods

would remain accurate. A more accurate approximation to the absolute value of π(y) could

be obtained by replacing log(n) by log(σ2n) in the expression (17) for π̂BICM(y). However,

this would be a model-specific adjustment and take us beyond the generic estimates that we

are aiming for here.

4.3 Example: Latent Space Models for Social Networks

Social network data consists of observations on relations between actors, for example whether

one individual says she likes another. Often such data are binary, in which a directed or

undirected relation between actor i and actor j either exists or does not. In this case, the

data consist of values of yij for i, j = 1, . . . , n, where i and j index the n actors, and yij = 1

if the relation from i to j exists and yij = 0 if it does not.

Hoff, Raftery, and Handcock (2002) introduced the latent position model for data such

as these. In this model, each actor i is assumed to be associated with an observed or latent

position in an unobserved q-dimensional Euclidean “social space”, denoted by zi. Then the

model says that the yij are conditionally independent given the latent positions, with

log

(
Pr(yij = 1)

Pr(yij = 0)

)
= β − |zi − zj|, (25)

zi
iid∼ MVNq(0, σ

2I). (26)

There are just two parameters for which priors are needed, β and σ2, and we use the priors

β ∼ N(0, 102) and σ2 ∼
√

10 Inverseχ2
3. These priors are proper but reasonably spread out.

Estimation is carried out by MCMC on β, σ2 and the zi’s.

21



Histogram of loglikelihoods

Loglikelihood

P
ro

ba
bi

lit
y

−5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●

●
●

●●●●
●●●
●

●●
●●
●●

●

●●
●●

●

●
●●●●

●●
●

●●

●●
●

●●
●

●●

●●
●●●●

●
●

●
●

●●
●●●

●
●

●
●

●
●●●

●

●●

●

●●

●
●●

●

●
●●●

●

●●
●

●

●●●

●●

●●
●

●
●

●
●

●●●
●

●

●
●

●●
●●

●●
●

●

●●

●

●
●

●●
●

●

●
●

●●

●

●

●

●

●
●●
●

●

●
●

●●
●

●

●

●

●
●

●
●

●
●

●
●

●●●
●

●
●

●

●

●●
●

●

●

●●
●●

●●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●●
●

●●

●
●

●
●

●●

●●

●●

●

●

●
●

●

●
●

●
●●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●●

●●
●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●
●●

●
●

●
●

●
●

●

●●●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

0 50 100 150 200 250 300 350

0
50

10
0

15
0

20
0

25
0

30
0

35
0

True vs estimated max loglikelihood

True max loglikelihood
E

st
im

at
ed

 m
ax

 lo
gl

ik
el

ih
oo

d

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●
●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●

●●●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●
●●●●●
●●●

0 20 40 60 80 100

0
20

40
60

80
10

0

True vs estimated number of parameters

True no of parameters

2 
V

ar
 (

lo
gl

ik
)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●

●●●●●●●●●
●●●●
●●●●●●●●●●●

●●●●
●
●
●●●●●●●●●●●

●●●●●●●
●
●●●●●●●●●●●●●●●●●●

●●
●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●

●
●●●●●●●●●●

●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●
●
●●
●●
●●●●●
●●●
●●
●●●●●●●
●●
●●●●●

●●●●●●●●●●●●●●●●●●
●
●

●
●●●●●

●
●●●●●●●●
●

●●
●●
●●●●
●
●●●

●
●●●●
●●●

●●●
●
●
●●●●●●●●●

●
●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●
●●●
●
●●●●●●●

●
●●
●●●●●

●●
●
●
●●●

●●●
●●●
●
●●●

●
●●●
●●●●
●●●

●●
●●
●
●
●
●●●●●

●
●●●
●●●●
●
●
●
●
●●●
●
●
●●●●●●●
●
●
●
●
●●●●●
●
●●●●

●●●●●●
●●●
●
●

●

●
●
●
●●●●

●
●●●●●●
●
●●

●●
●●●●
●●
●●●●

●
●
●
●●
●●
●
●●●●●●●
●
●●●

●●
●●●
●
●
●
●

●●
●
●●
●
●
●●●

●●
●●●

●
●●●●●●●

●●
●●●
●●

●●●●
●
●
●
●●
●

●
●●●●
●
●●●
●●●●●●

●
●●
●●●

●●●●●
●

●
●
●

●

●
●
●
●
●
●●●

●

●●●●
●●
●
●●
●●

●●
●

●
●●
●●

●●

●●
●●●●
●
●
●
●●●●●●●●●
●

●●●●●
●●

●
●●●●●

●●
●
●●
●●●●●

●●●●
●
●
●
●
●●●●●●●●
●
●●
●
●●●●

●●●●●
●●
●
●●●
●●
●●
●
●●●
●
●●
●●

●
●●●●
●
●●
●

●●●●
●●●●●●

●
●●
●
●●
●
●●●●
●●
●
●●
●

●●
●●●●●

●●●
●
●
●
●●●●●●
●●
●
●

●●
●
●
●
●●●
●●
●
●●●●
●
●
●
●
●

●●●
●●●
●●
●●●

●●●●
●●
●
●●●

●
●●●●●●●
●
●●●●●
●●
●●
●●

●
●●●
●
●●
●●●●

●●
●●●●
●●
●
●
●●
●

●
●●●
●

●
●
●●●●●●●●●

●●●●●
●

●
●●●●●●

●
●
●
●
●●●●●●●●
●

●
●●

−80 −60 −40 −20 0

−
80

−
60

−
40

−
20

0

True vs estimated log integrated likelihood

True log integrated likelihood

B
IC

M
 / 

2

Figure 5: Multivariate normal simulation study of the shifted gamma estimates. Upper
left: Histogram of the loglikelihoods for one dataset with d = 10 parameters and n = 100
data points, with the fitted gamma density superimposed. Upper right: The estimated
maximum achievable loglikelihood, ˆ̀

max, plotted against the true maximum loglikelihood for
the 1000 simulated datasets. Lower left: The estimated number of parameters, d̂, plotted
against the true number of parameters for the 1000 datasets. Lower right: The estimated
log integrated likelihood, log π̂BICM(y), plotted against the true log integrated likelihood for
the 1000 simulated datasets. In the last three plots, the solid line is the y = x or identity
line.
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Table 2: Comparing Dimensions in the Latent Space Model Using the Integrated Likelihood.
q is the dimension of the latent space. `max is the maximized loglikelihood from a numerical
optimisation routine, and # par is the total number of parameters estimated, including the
latent position coordinates.

q ˆ̀
max d̂ log π̂BICM(y) `max # par

1 –128.6 20.4 –158.1 –129.1 20
2 –109.6 38.0 –164.6 –110.3 38
3 –87.8 66.1 –183.4 –89.9 56
4 –79.3 78.6 –192.9 –73.3 74

Here we consider a well-known dataset on the relations among 18 monks collected by

Sampson (1968). Each monk was asked with which other monks he had positive relations.

Based on extensive analyses of these and much other data, the 18 monks are traditionally

classified into three groups: the Loyal Opposition, the Young Turks, and the Outcasts. Hoff

et al. (2002) analyzed a subset of these data, and the fuller dataset we analyze here was

previously analyzed by Handcock, Raftery, and Tantrum (2005).

Interest focuses here on the choice of dimension, and MCMC estimation is carried out for

each dimension q = 1, 2, 3, 4. In forming π̂BICM(y), n is taken to be the number of actors, 18,

rather than the number of links (88), or the number of possible links (306). This corresponds

to a unit information prior, where a unit of information is thought of as the information that

would be gleaned by observing all the links of one actor. See Volinsky and Raftery (2000)

for analogous reasoning in a different setting. In fact, the same model would be chosen no

matter which of these values of n was chosen.

The results are shown in Table 2. In addition to our estimates, estimates of the maximized

loglikelihood by numerical optimization are shown. These agree reasonably closely with our

estimates. Also, the number of parameters involved in the MCMC simulation is shown, and

this corresponds fairly well with d̂,the estimated number of parameters. There is no reason

to expect the effective number of parameters to be exactly the same as the number involved

in the MCMC in this kind of hierarchical latent variable model, but in this case they do

seem to line up rather well.

According to the π̂BICM(y) estimate of the integrated likelihood, the preferred latent space

model for these data is a one-dimensional one. This is somewhat surprising at first sight, as

these data have usually been represented in two dimensions for visualization purposes. But

Figure 6 helps to show why this might be a reasonable choice for these data. The left panel

shows the estimated two-dimensional positions. The three well-known groups are clearly

delineated. It is clear that the density of links is highest within each group. However, the
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Figure 6: Estimated Latent Positions of Monks in Social Network Example. Left panel:
Two-dimensional latent positions with links also shown. Right panel: One-dimensional
latent positions. In both plots, the known groupings of the monks are shown: Red = Loyal
opposition; Green = Young Turks; Blue = Outcasts. Both the one-dimensional and the two-
dimensional latent position models give results that are consistent with the known groupings.

Young Turks have some links to both of the other groups, while the loyal opposition and the

outcasts are joined by very few links. This suggests that a one-dimensional arrangement with

the young Turks in the middle might represent the main features of the data adequately.

The right panel of Figure 6 shows the one-dimensional estimated latent positions. The

three main groups are as well identified by the one-dimensional model as by the two-

dimensional model. Again it seems reasonable that the Young Turks have a more central

position, suggesting that a one-dimensional latent space captures the main features of the

data, as suggested by the integrated likelihoods. This one-dimensional representation of the

data has not been noted before as far as we know, and in a personal communication Mark

Handcock pointed out to us that it is in line with the detailed ethnographic description of

the monks’ dynamics in Sampson (1968).

5 Discussion

Our final goal is a generic method that estimates the integrated likelihood using only the

likelihoods given a set of draws from the posterior. In this article we have investigated

approaches to this based on the harmonic mean identity, which says that the integrated

likelihood is the posterior harmonic mean of the likelihood. The most obvious esimator from

this, the sample posterior harmonic mean of the likelihoods, is unbiased and simulation-
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consistent, but does not have finite variance in general and so is often unstable (Newton and

Raftery 1994).

We have investigated two approaches to more stable estimation of the integrated likeli-

hood using the harmonic mean identity. The first is to reduce the parameter space and then

use the sample posterior harmonic mean; by judiciously choosing the likelihood to be used

this can yield stable and finite variance estimators. The second approach involves modeling

the posterior distribution of the likelihood by a gamma distribution. This leads to estimates

of the effective number of parameters and the true maximum likelihood that seem to work

well, and hence to posterior-simulation-based analogues of the well-known BIC and AIC

criteria, called BICM and AICM.

Our first approach takes advantage of dimension-reducing transformations on the pa-

rameter space. The proposed variance stabilizing method extends a very simple tool into a

range of widely used hierarchical statistical models. As illustrated in Section 3, dimension

reduction is straightforward in certain hierarchical models. Sometimes the natural approach

of integrating out a nuisance parameter does not yield a stabilized estimator, however, and

one must search farther. We have given one example in Section 3.3, a simple Poisson-Gamma

model, where the natural approach does not work directly, but a slight refinement of the h(·)
function does yield a stabilized estimator. The trick used there to find this refined h function

was based on the fact that the estimator is stable if and only if E{π[y|h(θ)]−2|y} <∞. We

wrote this expectation as an integral, identified the part of the range of integration responsi-

ble for the integral being infinite, and effectively carried out the integration over that small

part of the space via analytic approximation, thus defining a new h function. Dimension

reduction for variance stabilization may not be an effective method to compute normalizing

constants in certain very hard problems. In the cases we have studied, we have shown that

it is possible to stabilize the harmonic mean estimator and obtain estimates that are much

more accurate, but still easy to calculate.

Another application of our first stabilization approach includes robust linear models (An-

drews and Mallows 1974; Carlin and Louis 1996). The robust linear model has an error term

distributed as Z/
√
U , where Z and U are independent, Z has a centered normal distribu-

tion, and U has a χ2 distribution. The standard harmonic mean estimator can have infinite

variance. A stabilized harmonic mean estimator can then be obtained by integrating out the

denominator U .

Hierarchical models that involve standard distributions may be good candidates for our

first approach. For one thing, MCMC is well understood for within-model posterior simula-

tion. Furthermore, the integrations required for dimension reduction may be solved analyt-

ically. The simplicity of the resulting stabilized harmonic mean is its main advantage.
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Our second approach involves modeling the posterior distribution of the loglikelihoods

by a shifted gamma distribution. This fits the observed distribution of loglikelihoods well in

some applications, and leads to very simple estimates of the effective number of parameters

and the true maximum likelihood that seem of good quality. This in turn yields posterior-

simulation-based analogues of the BIC and AIC criteria, BICM and AICM.

The BICM criterion we have defined requires the specification of sample size, and this

may be problemmatical in some applications. The analogies with the results of Volinsky

and Raftery (2000) suggests that acceptable choices may be possible by considering what a

reasonable choice of a unit of information for a unit information prior would be. It would be

desirable, however, to have a fully automated solution where this parameter could be esti-

mated from the posterior simulation output. We have investigated various possible solutions

to this, mostly Bayesian estimates of the gamma distribution parameters that exploit the

prior information that the scale parameter is less than 1, but not much less than 1. The

results did not satisfy us fully, however, and so we did not present them here.

The general idea explored here, of estimating the posterior harmonic mean of the like-

lihood by modeling the loglikelihoods, may yield progress by using models other than the

shifted gamma distribution. For example, it may be possible to make progress by recognizing

that in regular models the posterior distribution of the loglikelihood can be approximated

asymptotically by a shifted and scaled noncentral chi-squared distribution with a small non-

centrality parameter, perhaps better than by the (central) shifted and scaled gamma distri-

bution we have been using so far. The estimation of the scale and noncentrality parameters

is delicate, however.

Another approach might take advantage of the work that has been done on approximating

the posterior distribution of the loglikelihood using Edgeworth expansions. Bickel and Ghosh

(1990) proposed such an expansion where the leading term is of the form (10). This expansion

would not in itself be useful for the present purpose because the leading term still yields an

infinite log integrated likelihood, but the basic idea may be fruitful in a modified form. Other

expansions that have been proposed might also be useful; many of these are reviewed by Reid

(2003).

A range of other methods for computing integrated likelihoods from posterior simula-

tion have been proposed. Most of these methods are not generic algorithms that use only

the output of the posterior simulation; in most cases they require additional simulations

or model-specific calculations. Other methods have been proposed for estimating Bayes

factors or posterior model probabilities, but not the underlying integrated likelihoods them-

selves. Subsets of the different methods have been reviewed and compared by DiCiccio,

Kass, Raftery, and Wasserman (1997), Han and Carlin (2001), Bos (2002), Clyde and George
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(2004), Sinharay and Stern (2005), and Rossi et al (2005, chapter 6).

Newton and Raftery (1994) proposed modifications of the harmonic mean estimator using

real or imaginary draws from the prior, and these have been applied, for example by Zijlstra,

van Duijn, and Snijders (2005), with some success, but they are still somewhat unstable. As

we discussed in Section 2, Gelfand and Dey (1994) proposed a method that can be viewed as

a generalization of the harmonic mean estimator. It requires the careful choice of a function

of the entire parameter vector, tailored for each application, and so is not as generic as the

methods we have been discussing, although with a good choice of function it can perform

well. As we have shown in Section 3.2, it can be combined with our approach to achieve

further improvements.

The method of Chib (1995) was developed for the specific case where posterior simula-

tion is done by Gibbs sampling. It is based on the conditional probability formula for the

normalizing constant, and requires running specially designed auxiliary conditional MCMC

samplers. Chib and Jeliazkov (2001) extended this to the case of the Metropolis-Hastings

algorithm, in which case it requires a different auxiliary simulation algorithm additional to

the main MCMC algorithm. These methods have been successfully applied to specific mod-

els, for example by Albert and Chib (2001), Chib, Nardard, and Shephard (2002), and Basu

and Chib (2003). However, Neal (1999) showed that Chib (1995)’s application of the idea

to mixture models was incorrect, and Rossi et al (2005, Section 6.9) showed the instability

of the method due to large outliers in the posterior simulation.

Oh (1999) proposed a method based on an identity that requires knowledge of full con-

ditional posterior densities. Lockwood and Schervish (2005) proposed two methods, one a

brute force method, and the other a sequential approach that is related to the method of Oh

(1999). Chen (2005), building on Chen (1994), proposed a method that uses another iden-

tity. It involves the use of latent variables and the proposed optimal version of the method

requires knowledge of the full conditional posterior distribution of the parameters given the

latent variables, including all normalizing constants.

A version of the Laplace method in which the required posterior modes and Hessian ma-

trices are estimated from posterior simulation output, called the Laplace-Metropolis method,

was proposed by Raftery (1996) and Lewis and Raftery (1997). This is a generic method

but can depend on the model’s parameterization, and may not work well for very high-

dimensional models. Importance sampling based methods have also been proposed (Nan-

dram and Kim 2002; Steele, Raftery, and Emond 2006), but these can also require model-

specific computations.

Several methods have been proposed for estimating Bayes factors, or ratios of integrated

likelihoods, but not the integrated likelihoods themselves. These include the Savage-Dickey
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ratio and a generalization of it (Verdinelli and Wasserman 1995), and bridge sampling (Meng

and Wong 1996; Mira and Nicholls 2004). Johnson (1999) has proposed a method for esti-

mating the integrated likelihood that involves simulating from a second density as well as

the posterior; it seems that for its performance to be good the second density needs to be

carefully chosen taking account of the situation at hand.

A general approach to estimating posterior model probabilities is to use transdimensional

MCMC, pioneered by Green (1995) with his introduction of reversible jump MCMC; a review

of this area is given by Sisson (2005). These methods can be used to estimate Bayes factors,

but not the underlying integrated likelihoods. Bayes factors can be read off the output of

transdimensional MCMC directly, and more efficient approaches to estimating Bayes factors

from transdimensional MCMC have been discussed by Bartolucci, Scaccia, and Mira (2006).

Godsill (2001) has pointed out that integrating out parameters analytically can improve the

efficiency of transdimensional MCMC; this is analogous to our proposal here to stablize the

harmonic mean estimator by parameter reduction.
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Appendix I: Student’s t

Student t

Copying Bernardo and Smith (1994, page 122),

St(x|µ, λ, α) = c

[
1 +

λ

α
(x− µ)2

]−(α+1)/2

where

c =
Γ((α+ 1)/2)

Γ(α/2) Γ(1/2)

(
λ

α

)1/2

.

Multivariate Student t

Using the notation of Bernardo and Smith (1994, page 139),

Stn(x|µ, λ, α) = c
[
1 +

1

α
(x− µ)Tλ(x− µ)

]−(α+n)/2

,
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where

c =
Γ((α+ n)/2)

Γ(α/2) (απ)n/2
det(λ)1/2.

x and µ are of dimension n. λ is a symmetric, positive-definite n× n matrix, and α > 0.

Appendix II: Proof of equation 4

Define

f(µ) = n0
α (µ− µ0)

2 and g(µ) = 1
α(y − µ)2 .

Set

a(µ) = 1 +
g(µ)

1 + f(µ)
.

It can be easily shown that the maxima of the continuous function a(µ) occurs at µ∗ =

µ0 − α/[n0(y − µ0)], and the maximum value of the function is

a(µ∗) = 1 +
1

n0

+ g(µ0) .

Further a(µ) → 1 + 1/n0, as µ→ ±∞. The expected value of interest can be written as

E

{
1

[π(y|µ)]2
|y
}

∝
∫

[a(µ)]α/2+1[1 + f(µ)]−α/2dµ ,

where [1 + f(µ)]−α/2 is proportional to a t-density of the form

St(µ|µ0, n0(α− 1)/α, α− 1) .

Since 1 ≤ a(µ) ≤ a(µ∗), the integral on the right hand side is finite by dominated convergence

theorem when α > 1 and n0 > 0.

Appendix III: Proof of Theorem 1

Define α = h(θ), write θ = (α, β), and set

a = E

{
1

[π(y|α)]2

∣∣∣∣∣ y
}

and b = E

{
1

[π(y|θ)]2

∣∣∣∣∣ y
}
.

Since both 1/π(y|α) and 1/π(y|θ) have common expectation 1/π(y), it suffices to show that

a ≤ b. Expanding b, we have

b =
∫ ∫ 1

[π(y|α, β)]2
π(α, β|y) dβ dα

=
∫ ∫ 1

[π(y|α, β)]2
π(β|α, y) p(α|y) dβ dα

=
∫
b(α)π(α|y) dα

29



where

b(α) =
∫ 1

[π(y|α, β)]2
π(β|α, y) dβ.

By contrast,

a =
∫
a(α)π(α|y) dα

where

a(α) =
1

[π(y|α)]2
.

Therefore, it is sufficient to prove that a(α) ≤ b(α) for all α. Simplifying b(α), we have

b(α) =
∫ 1

[π(y|α, β)]2
π(β|α, y) dβ

=
∫ 1

[π(y|α, β)]2
π(y|α, β)π(β|α)π(α)

π(y|α)π(α)
dβ

=
1

π(y|α)

∫ π(β|α)

π(y|α, β)
dβ.

Cancelling one factor 1/π(y|α), we have a(α) ≤ b(α) if

1

π(y|α)
≤
∫ π(β|α)

π(y|α, β)
dβ.

This follows by Jensen’s inequality using the distribution π(β|α). In the event that one or

another of the integrals diverges, a(α) ≤ b(α) must continue to hold.
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