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Generalized linear mixed models (GLMM) are used in situations where a number
of characteristics (covariates) affect a nonnormal response variable and the responses are
correlated due to the existence of clusters or groups. For example, the responses in biological
applications may be correlated due to common genetic factors or environmental factors.
The clustering or grouping is addressed by introducing cluster effects to the model; the
associated parameters are often treated as random effects parameters. In many applications,
the magnitude of the variance components corresponding to one or more of the sets of
random effects parameters are of interest, especially the point null hypothesis that one or
more of the variance components is zero. A Bayesian approach to test the hypothesis is to
use Bayes factors comparing the models with and without the random effects in question—
this work reviews a number of approaches for estimating the Bayes factor. We perform
a comparative study of the different approaches to compute Bayes factors for GLMMs
by applying them to two different datasets. The first example employs a probit regression
model with a single variance component to data from a natural selection study on turtles.
The second example uses a disease mapping model from epidemiology, a Poisson regression
model with two variance components. Bridge sampling and a recent improvement known as
warp bridge sampling, importance sampling, and Chib’s marginal likelihood calculation are
all found to be effective. The relative advantages of the different approaches are discussed.

Key Words: Bridge sampling; Chib’s method; Importance sampling; Marginal density;
Reversible jump Markov chain Monte Carlo; Warp bridge sampling.

1. INTRODUCTION

Generalized linear mixed models (GLMMs), or, generalized linear models with random
effects, are used in situations where a nonnormal response variable is related to a set of
predictors and the responses are correlated due to the existence of groups or clusters. The
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groups or clusters are addressed by incorporating a set of random effects parameters in the
model. In many applications, the magnitude of the variance components corresponding to
one or more of the sets of random effects are of interest, especially the point null hypothesis
that the variance components in question are equal to zero. A Bayesian approach for testing
a hypothesis of this type is to compute the Bayes factor comparing the models suggested by
the null and the alternative hypotheses. The primary objective of this work is to apply and
evaluate the performance of different approaches for estimating the Bayes factor comparing
the GLMMs.

A number of related studies exist in the statistical literature. Albert and Chib (1997)
provided a broad survey of the use of Bayes factors for judging a variety of assumptions,
including assumptions regarding the variance components, in conditionally independent
hierarchical models (which include GLMMs as a special case). Han and Carlin (2001) pro-
vided a review and empirical comparison of several Markov chain Monte Carlo (MCMC)
methods for estimating Bayes factors emphasizing normal linear mixed model applica-
tions. Their study does not include importance sampling or warp bridge sampling. Pauler,
Wakefield, and Kass (1999) provided a number of analytic approximations for comput-
ing Bayes factors for variance component testing in linear mixed models. DiCiccio, Kass,
Raftery, and Wasserman (1997) compared several simulation-based approximation meth-
ods for estimating Bayes factors. Their study was quite general whereas the present work
focuses on GLMMs. The present study adds to the literature by focussing on GLMMs (more
specifically on testing variance components in GLMMs), incorporating complex GLMMs
with multiple variance components, and incorporating new developments like warp bridge
sampling (Meng and Schilling 2003). Our work should be of great interest to researchers
working with GLMMs but others will also find the results, especially the findings on warp
bridge sampling, useful.

Section 2 discusses a number of preliminary ideas regarding GLMMs. Section 3 re-
views the Bayes factor and approaches for estimating it. Section 4 compares the different
approaches in the context of a random effects probit regression model applied to data from
a natural selection study (Janzen, Tucker, and Paukstis 2000). Section 5 takes up a more
complex example, a Poisson-normal regression model with spatial random effects and het-
erogeneity random effects applied to Scotland lip-cancer data (Clayton and Kaldor 1987).
Section 6 provides a discussion of our findings and recommendations.

2. PRELIMINARIES

2.1 THE GENERALIZED LINEAR MIXED MODEL

In a GLMM, observations y1, y2, . . . , yn are modeled as independent, given canonical
parameters ξi’s and a scale parameter φ, with density

f(yi|ξi, φ) = exp{[yiξi − a(ξi) + b(yi)]/φ}.
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We take φ = 1 henceforth. The two examples we consider in detail do not have a scale
parameter. All of the methods described here can accommodate a scale parameter. Let
µi = E(yi|ξi) = a′(ξi). The mean µi is expressed as a function of a predictor vector xp×1

i ,
a vector of coefficients αp×1, and a random effects vector bq×1 through the link function
g(µi) = x′

iα + z′
ib, where zq×1

i is a design vector (typically 0/1) identifying the random
effects. Usually, for a vector of unknown variance components θm×1, f(b|θ) is assumed to
be N (0,D(θ)), where D(θ) is positive definite. The magnitude of θ determines the degree
of over-dispersion and correlation among yi’s. Typically, D(θ) = 0 iff θ = 0.

2.2 LIKELIHOOD FOR GENERALIZED LINEAR MIXED MODELS

The likelihood function L(α,θ|y) for a GLMM is given by

L(α,θ|y) =
∫

b

{
n∏

i=1

f(yi|ξi)

}
f(b|θ)db =

∫
b

{
n∏

i=1

f(yi|α,b)

}
f(b|θ)db · (2.1)

The integral is analytically intractable, making computations with GLMMs difficult. In
simple problems as the one in Section 4 (where the model has a single random effect
with 31 levels), it is possible to use numerical integration. Numerical integration techniques
(e.g., Simpson’s rule) or Laplace approximation (Tierney and Kadane 1986) are problematic
for high-dimensional b. For the more elaborate example of Section 5, we use importance
sampling to compute the likelihood (as in, e.g., Geyer and Thompson 1992).

2.3 TESTING HYPOTHESES ABOUT VARIANCE COMPONENTS FOR GLMMS

Inferences about the contribution of the random effects to a GLMM are mostly obtained
by examining point (or interval) estimates of the variance parameters in D. In many practical
problems, scientific investigators may like to test whether a particular variance component
is zero. The classical approaches for testing in this context are the likelihood ratio test
(LRT) using a simulation-based null distribution or the score test (Lin 1997). Our study
concentrates on the Bayes factor, a Bayesian tool to perform hypothesis testing or model
selection.

3. BAYES FACTORS

3.1 INTRODUCTION

The Bayesian approach to test a hypothesis about the variance component(s) is to
compute the Bayes factor BF01 = p(y|M0)

p(y|M1)
, which compares the marginal densities (also

known as marginal likelihoods) of the data y under the two models, M0 (one or more of the
variance components is zero) and M1 (variance unrestricted) suggested by the hypotheses,
where p(y|M) =

∫
p(y|ω,M)p(ω|M)dω is the marginal density under model M and ω

denotes the parameters of model M . Kass and Raftery (1995) provided a comprehensive
review of Bayes factors including information about their interpretation.
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The Bayes factor is also the ratio of posterior and prior odds,

BF01 =
p(M0|y)
p(M1|y)

/
p(M0)
p(M1)

. (3.1)

This expression is useful in forming an estimate of the Bayes factor via reversible jump
Markov chain Monte Carlo as described in the following.

3.2 APPROACHES FOR ESTIMATING THE BAYES FACTOR

The key contribution of our work is to bring different computational methods to bear on
the problem of estimating the Bayes factor to test for the variance components for GLMMs.
For these models, the marginal densities required by the Bayes factor cannot be computed
analytically for either M1 or M0. For the remainder of this section, ω = (α,θ), implying
that the random effects parameters b have been integrated out. The final part of this section
discusses an alternative parameterization.

Different approaches exist for estimating the Bayes factor. This work briefly reviews a
number of such approaches that have been applied in other models and then explores their
use for GLMMs. We will use the notation p(ω|y,M) to denote the posterior density under
model M , and q(ω|y,M) ≡ p(y|ω,M)p(ω|M) to denote the unnormalized posterior
density.

We consider the following approaches in our work: (1) Importance sampling (see,
e.g., DiCiccio et al. 1997); (2) Markov chain Monte Carlo based calculation of the marginal
likelihood (Chib 1995; Chib and Jeliazkov 2001); (3) bridge sampling and its enhancements
(Meng and Wong 1996; Meng and Schilling 2003); and (4) reversible jump MCMC (Green
1995). The methods are briefly reviewed later in this section. The first three of the above
approaches estimate the marginal density of the data separately under each model, the ratio
of the estimated marginal densities giving the estimated Bayes factor. Reversible jump
MCMC approaches estimate the Bayes factor directly.

3.2.1 Importance Sampling

Importance sampling estimates of the marginal density are based on the identity

p(y|M) =
∫

p(y|ω,M)p(ω|M)
d(ω)

d(ω)dω

for any density function d(.). Then given a sampleωi, i = 1, 2, . . . , N from the “importance
sampling distribution” d(.), an estimate of the marginal density of the data under model M
is

p(y|M) ≈ 1
N

N∑
i=1

q(ωi|y,M)
d(ωi)

.

The choice of importance sampling density is crucial; the density d(.) must have tails as
heavy as the posterior distribution to provide reliable estimates of the marginal likelihood.
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Common choices are normal or t-distributions with suitable location and scale. We discuss
the choice of importance sampling density further in the section that discusses warp bridge
sampling (Meng and Schilling 2003).

3.2.2 Chib’s Method

Chib (1995) suggested estimating p(y|M) by estimating at any ω = ω∗ the right hand
side of

p(y|M) =
p(y|ω,M)p(ω|M)

p(ω|y,M)
· (3.2)

The computation of p(y|ω∗,M) and p(ω∗|M) are straightforward. Given a sample from the
posterior distribution, kernel density approximation may be used to estimate the posterior
ordinate p(ω∗|y,M) for low-dimensional ω∗. Alternatively, Chib (1995) and Chib and
Jeliazkov (2001) gave efficient algorithms to estimate the posterior ordinate when Gibbs
sampling, Metropolis-Hastings or both algorithms are used to generate a sample from the
posterior distribution. A number of points pertain specifically to the use of Chib’s methods
for GLMMs.

A key to using Chib’s method is doing efficient blocking of the parameters. For most
GLMMs, partitioningω into two blocks, one containing the fixed effects parameters and the
other containing the variance parameters is convenient. For a few simple GLMMs, Gibbs
sampling can be used to generate from the posterior distribution and the marginal density
evaluated using the approach of Chib (1995). However, some Metropolis steps are generally
required with GLMMs, necessitating the use of the Chib and Jeliazkov (2001) algorithm.

For increased efficiency of estimation, ω∗ in (3.2) is generally taken to be a high
density point in the support of the posterior distribution. Popular choices of ω∗ include the
posterior mean or posterior median. For GLMMs, the posterior distribution of the variance
parameter(s) is skewed; hence the posterior mode will probably be a better choice of ω∗.

3.2.3 Bridge Sampling

Meng and Wong (1996) described the use of bridge sampling for computing the ratio
of normalizing constants when: (1) there are two densities each known up to a normalizing
constant; and (2) we have draws available from each of the two densities. Though bridge
sampling can sometimes be used to directly compute the BF (as a ratio of two normalizing
constants), it may be difficult to do so when the two models contain parameters that are not
directly comparable or of different dimension. Instead, we use bridge sampling to compute
the normalizing constant for a single density by choosing a convenient second density (with
known normalizing constant one). Let r = p(y|M) be the normalizing constant for the
posterior distribution under model M (which is the marginal density or marginal likelihood
needed for our Bayes factor calculations). Bridge sampling is based on the identity

r =
∫
q(ω|y,M)α(ω)d(ω)dω∫
α(ω)d(ω)p(ω|y,M)dω

(3.3)
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for any probability density d(.) and any function α(.) satisfying fairly general conditions
given by Meng and Wong (1996). Then if we have a sample ωi, i = 1, 2, . . . , n1 from the
posterior distribution and a sample ω̃j , j = 1, 2, . . . , n2 from d, the Meng-Wong bridge
estimator of r is

r ≈
1
n2

∑n2

j=1 q(ω̃j |y,M)α(ω̃j)
1
n1

∑n1

j=1 d(ωj)α(ωj)
·

Meng and Wong showed that if the draws are independent, the optimal choice of α
(for minimizing the asymptotic variance of the logarithm of the estimate of r) for a given d
is proportional to {n1q(ω|y,M) + n2rd(ω)}−1, which depends on the unknown r. They
propose an iterative sequence to estimate r

r(t+1) =
1
n2

n2∑
j=1

l2j

s1l2j + s2r(t)

/
1
n1

n1∑
j=1

1
s1l1j + s2r(t)

, (3.4)

where sk = nk

n1+n2
, k = 1, 2, l1j = q(ωj |y,M)/d(ωj), and l2j = q(ω̃j |y,M)/d(ω̃j).

Starting with 1/r(0) = 0 yields r(1) = 1
n2

∑n2

j=1
q(ω̃ωωj |y,M)

d(ω̃ωωj)
, which is the importance sam-

pling estimate with importance density d(.). Also, starting the sequence with r(0) = 0
results in the reciprocal importance sampling (DiCiccio et al. 1997) estimate after the first
iteration. Meng and Schilling (2003) also showed how Chib’s method can be derived using
bridge sampling.

The choice of α given above is no longer optimal if the draws are not independent
(they are not generally independent for MCMC). Meng and Schilling (2003) recommended
adjusting the definition of α in that situation by using in it the effective sample sizes,
ñi = ni(1 − ρi)/(1 + ρi), where ρi is an estimate of the first-order autocorrelation for the
draws from the posterior or d, respectively.

We apply bridge sampling with d ≡ N (0, I) or d ≡ t(0, I) to obtain the marginal
likelihoods. Before doing so, however, we make use of a relatively new idea, warp bridge
sampling (Meng and Schilling 2003). Meng and Schilling (2003) showed that applying (3.3)
after transforming the posterior density to match the first few moments of an appropriate d
(e.g., a N (0, I) density), a transformation which does not change the normalizing constant,
results in a more precise estimate of the marginal density. They refer to their transformation
as “warp”-ing the density. A Warp-I transformation would shift the posterior density to
have location zero; this was proposed by Voter (1985) in physics. Matching the mean and
variance (or related quantities like the mode and curvature), that is, applying (3.3) with
|S| q(µ − Sω|y,M) in place of q(ω|y,M) for suitable choices of µ and S, is a Warp-
II transformation. Matching the mean (mode), variance (curvature) and skewness, that is,
applying (3.3) with |S|

2 [q(µ − Sω|y,M) + q(µ + Sω|y,M)] in place of q(ω|y,M) is a
Warp-III transformation.

Application of warp bridge sampling does not require more computational effort than
ordinary bridge sampling. We only need draws from the posterior density and the importance
density. For Warp-II, (3.4) is applied with l1j and l2j replaced by

l̃1j = |S|q(ωj |y,M)/d(S−1(ωj − µ)), and l̃2j = |S|q(µ+ Sω̃j |y,M)/d(ω̃j).
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For Warp-III, the corresponding expressions are:

l̃1j =
|S|
2

[q(ωj |y,M) + q(2µ− ωj |y,M)]/d(S−1(ωj − µ)),

and

l̃2j =
|S|
2

[q(µ− Sω̃j |y,M) + q(µ+ Sω̃j |y,M)]/d(ω̃j)·

Meng and Schilling (2003) suggested analytical and empirical ways of finding optimal val-
ues ofµ and S to use in warp bridge sampling. For example, for the Warp-III transformation,
optimal values can be found by maximizing over µ and S the quantity

∑
j

√
1

φ(ωj)
|S| (q(µ− Sωj |y,M) + q(µ+ Sωj |y,M)

)

for a sample ωj , j = 1, 2, . . . n from a N (0, I) distribution, where φ(.) denotes the multi-
variate normal density. Empirical studies suggest good estimates of r even for suboptimal
choices of the warping transformation (e.g., using sample moments rather than optimizing
over µ and S).

Note that it is also possible to use the idea of warping transformations to develop
importance sampling methods. In other words, one can choose the importance sampling
density as N (0, I) and then transform the posterior distribution (with Warp-II or Warp-III
transformations) before applying importance sampling.

3.2.4 Reversible Jump MCMC

A very different approach for computing Bayes factor estimates requires constructing
an “extended” model in which the model index is a parameter as well. The reversible
jump MCMC method suggested by Green (1995) samples from the expanded posterior
distribution. This method generates a Markov chain that can move between models with
parameter spaces of different dimensions. Let πj be the prior probability on model j, j =
0, 1, . . . J . The method proceeds as follows:

1. Let the current state of the chain be (j,ωj),ωj=nj-dimensional parameter for model
j.

2. Propose a new model j′ with probability h(j, j′), where
∑

j′ h(j, j′) = 1.
3. a. If j′ = j, then perform an MCMC iteration within model j. Go to Step 1.

b. If j′ /= j, then generate u from a proposal density qjj′(u|ωj , j, j
′) and set

(ωj′ ,u′) = gj,j′(ωj ,u), where g is a 1-1 onto function, nj + dim(u) = nj′ +
dim(u′).

4. Accept the move from j to j′ with probability

min

{
1,
p(y|ωj′ ,M = j′)p(ωj′ |M = j′)πj′h(j′, j)qj′j(u′|ωj′ , j′, j)
p(y|ωj ,M = j)p(ωj |M = j)πjh(j, j′)qjj′(u|ωj , j, j′)

.

∣∣∣∣∂g(ωj ,u)
∂(ωj ,u)

∣∣∣∣
}
.
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Step 3b is known as the dimension-matching step in which auxiliary random variables are
introduced (as needed) to equate the dimension of the parameter space for models j and j′.
If the above Markov chain runs sufficiently long, then p(Mj |y)/p(M ′

j |y) ≈ Nj/Nj′ , where
Nj is the number of times the Markov chain reaches model j. Therefore, the Bayes factor

BFjj′
for comparing models j and j′ can be estimated using (3.1) as BFjj′ ≈ Nj

Nj′

/
πj

πj′ ·

3.2.5 Other Methods

The methods described here do not exhaust all possible methods. Although our goal
is to try and provide general advice, the best approach for any specific application may be
found outside our list. The methods summarized in this work represent the set that we have
found most applicable to GLMMs. We have omitted Laplace’s method (see, e.g., Tierney
and Kadane 1986), a useful approximation in many problems, but increasingly unreliable
as the number of random effects parameters increase in the GLMMs (Sinharay 2001). The
approach of Verdinelli and Wasserman (1995) for nested models works well in our first
example but requires density estimation and thus is less practical in higher dimensional
settings like our second example (Sinharay and Stern 2003; Sinharay 2001). Other methods
for computing Bayes factors which can be used in the context of GLMMs include the
ratio importance sampling approach by Chen and Shao (1997), path sampling (Gelman and
Meng 1998), and product space search (Carlin and Chib 1995). Han and Carlin (2001) find
methods based on the idea of creating a product space (that is a space that encompasses the
parameter space of each model under consideration) problematic for models where random
effects cannot be analytically integrated out from the likelihood, which is typically the case
with the GLMMs.

3.3 PARAMETERIZATION

A number of the methods for estimating Bayes factors require computing the GLMM
likelihood p(y|ω,M) for one or more values ofω. If the accurate computation of p(y|ω,M),
which involves integrating out the random effects, is time-consuming, some of the methods
become impractical. This especially affects those like importance sampling and bridge
sampling that require more than one marginal likelihood computation. Chib’s method is
more likely to succeed in such cases.

One approach for circumventing this difficulty is to consider applying our various
approaches with ω = (b,α,θ) rather than assuming that b has been integrated out. Chib
(1995) suggested this idea in the context of his approach and it applies more generally to
the other methods considered here. For this choice of ω the marginal density p(y|M) for
the GLMM is

p(y) =
∫ ∫

p(y|α,θ)p(α,θ)dαdθ

=
∫ ∫ ∫

p(y|α,b)p(b|θ)p(α,θ)dbdαdθ.
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Figure 1. Scatterplot with the clutches sorted by average birthweight.

The advantage of the expanded definition of ω is that the computation of the likelihood
function p(y|ω) = p(y|α,b,θ) = p(y|α,b) is straightforward. However, as a price to
pay for this simplification of the likelihood, the dimension of the parameter space increases
by the number of components in b, which is usually high, even for simple GLMMs.

4. EXAMPLE: A NATURAL SELECTION STUDY

4.1 THE DATA AND THE MODEL FITTED

A study of survival among turtles (Janzen et al. 2000) provides an example where a
GLMM is appropriate. The data consist of information about the clutch (family) mem-
bership, survival and birth-weight of 244 newborn turtles. The scientific objectives are to
assess the effect of birth-weight on survival and to determine whether there is any clutch
effect on survival. Figure 1 shows a scatterplot of the birthweights versus clutch number
with survival status indicated by the plotting character “0” if the animal survived and “x” if
the animal died. The clutches are numbered in increasing order of the average birthweight
of the turtles in the clutch. The figure suggests that the heaviest turtles tend to survive and
the lightest ones tend to die. Some variability in the survival rates across clutches is evident
from the figure.

Let yij denote the response (indicator of survival) and xij the birthweight of the jth
turtle in the ith clutch, i = 1, 2 . . .m = 31, j = 1, 2, . . . ni. The probit regression model
with random effects fit to the dataset is given by:

• yij |pij ∼ Ber(pij), where pij = Φ(α0 + α1xij + bi), i = 1, 2 . . .m = 31, j =
1, 2, . . . ni;

• bi|σ2 iid∼ N (0, σ2), i = 1, 2, . . . ,m.

The bi’s are random effects for clutch (family). There is no clutch effect iff σ2 = 0.
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4.2 ESTIMATING THE BAYES FACTOR

The marginal likelihoods under the null model (M0) and full model (M1) are

p(y|M0) =
∫

p(y|α,b = 0)p(α)dα,

and

p(y|M1) =
∫

p(y|α,b)p(b|σ2)p(α)p(σ2)dbdαdσ2.

Our work uses the shrinkage prior distribution (see, e.g., Daniels 1999) for the variance
components, p(σ2) = c

(c+σ2)2 , where c is the median of p(σ2). We fix c at 1. We set
p(α) = N2(0, 10 I).

Each of the methods (except reversible jump MCMC) requires that we evaluate the
likelihood p(y|α, σ2) (i.e., we must integrate out b in the full model). For this relatively
small problem we do so using Simpson’s rule to perform the needed numerical integration.
The methods also require samples from the posterior distribution, p(α, σ2|y). This is done
using an MCMC algorithm. There is significant autocorrelation in the Markov chain and
the Gelman-Rubin convergence diagnostic (see, e.g., Gelman et al. 2003) suggests that
using five chains of 1,000 iterations after burn-ins of 200 iterations is sufficient to provide
a summary of the posterior distribution. This results in a final posterior sample size of
5,000. Therefore, all simulation-based estimates use posterior samples of size 5,000 for
each model.

The posterior mode and the information matrix at the mode, which are used in some
of the methods, are found using the Newton-Raphson method. The posterior mean and
variance, required by some methods, are computed from a preliminary MCMC run. For
importance sampling and bridge sampling, we transform the variance to log(σ2) in the
posterior distribution to improve the similarity of the normal (or t) importance sampling
density. Additional details concerning the implementation of the individual approaches
follow.

4.2.1 Chib’s Method

The conditional distribution of σ2 is not of known form, necessitating the use of the
Metropolis algorithm for sampling from the joint posterior distribution of the parameters
under the mixed model. The use of data augmentation by incorporating latent normal vari-
ables in the probit model (Albert and Chib 1993) allows the use of Gibbs sampling for the
fixed effects, but did not improve the precision here. The Metropolis algorithm is also used
to generate a sample from the null model.

4.2.2 Importance and Bridge Sampling

We tried several variations of bridge and importance sampling. We apply Warp-II
transformations with (1) posterior mode and square root of the curvature matrix as µ and
S, respectively, (mode-curvature matching) and (2) posterior mean and a square root of the
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posterior variance matrix as µ and S (mean-variance matching). The use of d ≡ t4(0, I)
resulted in more precise Bayes factor estimates than d ≡ N (0, I), probably because the
former has more overlap than the latter with the skewed transformed posterior. Thus, we
report only the results for the t importance sampling or bridge sampling density. It typically
took three or four iterations for the bridge sampling iterative process to reach convergence.
Recall that the first iteration of bridge sampling with sampling distribution d yields the
importance sampling estimate that corresponds to using d as importance sampling density
for the transformed posterior.

We also apply Warp-III transformations with mode-variance matching, mean-variance
matching, and mode-curvature matching. In this case d ≡ t4(0, I) does not result in im-
proved estimates relative to d ≡ N (0, I), probably because after accounting for skewness
the posterior distribution has been transformed into a distribution well-approximated by a
normal distribution.

Because there exists a significant autocorrelation in the posterior sample (e.g., first-
order autocorrelations are in the range .8–.9 for most parameters in the alternative model),
we adjustα using the effective sample size approach for both Warp-II and Warp-III, taking ρ̂
to be the sample lag-1 autocorrelation of 1/(l̃1j + r), as in Meng and Schilling (2003). This
adjustment, requiring only a few lines of additional computer coding, results in a significant
increase in precision.

4.2.3 Reversible Jump MCMC

Using the notation from Section 3.2.4, we seth(j, j′) = πj = .5 ∀ j, j′. Here, parameter
vectors under the two models are ω0 = α and ω1 = (α, σ2). When we try to move from
model 0 to model 1, there is an increase in dimension as model 1 has a variance component
while model 0 does not. We use the current value of α in model 0 as candidate value of α
in model 1, and generate a candidate value of σ2 from an inverse gamma distribution with
mean and variance as the posterior mode and curvature of σ2 under model 1. These choices
amount to, using notations from Section 3.2.4, u = σ2, u′ = 0, g(x) = x and q(σ2) ≡ the
above-mentioned inverse gamma distribution. When we try to move from model 1 to model
0, there is a reduction in dimension. Therefore, in generating candidate values under model
0, we ignore the variance component for model 1 and use the current value ofα in model 1
as candidate value of α under model 0. These amount to u = 0, u′ = σ2 and g(x) = x. To
move within a model, we take a Metropolis step with a random walk proposal distribution.

4.3 RESULTS

Numerical integration over all parameters provides us the true value of the Bayes factor
of interest, although the program takes about 62 hours of CPU time to run on an Alpha station
500 workstation equipped with 400MHz 64-bit CPU and a gigabyte of RAM. The true value
of the Bayes factor up to three decimal places is 1.273.

To learn about the precision of the different estimation approaches, we compute the BF
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Table 1. Estimates of the Bayes factor (along with their standard deviations and time taken to run the
program) for the Turtles Dataset

Method Bayes factor estimate Std. dev. CPU time (min)

True value 1.273 – –

Bridge Warp-III (optimal µ-curvature) 1.273 .0059 20.3
Bridge Warp-III (mode-curvature) 1.273 .0063 20.3
Bridge Warp-III (mode-variance) 1.273 .0076 20.3

Imp. samp. (Warp-III, optimal µ-curvature) 1.275 .0066 8.0
Imp. samp. (Warp-III, mode-curvature) 1.274 .0068 8.0
Imp. samp. (Warp-III, mode-variance) 1.275 .0086 8.0

Bridge Warp-II (mean-variance) 1.273 .0094 13.1
Bridge Warp-II (mode-curvature) 1.274 .0145 13.2

Imp. samp. Warp-II (mean-variance) 1.272 .0108 6.0
Imp. samp. Warp-II (mode-curvature) 1.274 .0156 6.2

Chib’s (at mode) 1.275 .0492 16.1
Chib’s (at mean) 1.266 .0724 16.0

RJ MCMC 1.302 .2032 18.0

a number of times with different random seeds. Table 1 summarizes the mean and standard
deviation (sd) of 100 Bayes factor estimates obtained by the various methods. The use of
100 trials allows us to have confidence in the reported standard deviations (according to
traditional sampling theory the reported standard deviations are accurate to within 15%).
Also shown in the table are the CPU times required for one computation of the Bayes factor
estimate by each of the methods on the above-mentioned workstation.

Table 1 indicates that all of the methods are effective, with reversible jump Markov
chain Monte Carlo having a much larger standard deviation. We next discuss the results for
importance and bridge sampling. The Warp-III transformation results in very efficient esti-
mates (for both bridge sampling and importance sampling), even without the optimal choice
of µ and S. Bridge sampling with Warp-III (using the effective sample size in computation
of α(.)) is more efficient for this example than Warp-III importance sampling. Running
bridge sampling to convergence reduces the standard error by about 10% relative to stop-
ping after the first iteration (which is importance sampling). Warp-II bridge sampling and
Warp-II importance sampling perform respectably as well, especially for mean-variance
matching. Again, bridge sampling seems to be more precise than importance sampling.
Figure 2, showing contour plots for the two-dimensional marginal posterior distributions
(obtained using S-Plus functions “kde” and “contour”), demonstrates the effect of warping
on the posterior distribution. The application of the Warp-III transformation takes the orig-
inally nonnormal two-dimensional posteriors (the top row) into ones quite close to N (0, I)
(the bottom row). Therefore, it is no surprise that Warp-III provides such precise estimates.

Chib’s method provides good results as well. The standard deviation is larger than
for the bridge and warp sampling. Chib’s method does, however, have one advantage over
importance and bridge sampling in that it does not require that a matching or importance
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Figure 2. Effect of warping on posterior distributions for the turtles data. The first row shows the three bivariate
marginal posterior distributions for the original untransformed posterior distribution (showing the highly non-
normal nature). The second row shows the effect of the Warp-II (mean-variance matching) transformation after
taking the logarithm of σ2. The third row is for the Warp-III transformation with mode-curvature matching.

sampling density be selected. If the posterior distribution has features, like an unusually
long tail, not addressed by our warping transformations, then it is possible that the standard
deviation of importance and bridge sampling may be underestimated.

A second factor in comparing the computational methods is the amount of compu-
tational time required. This has two dimensions, the amount of time required to run the
program, and the time required to write the program. The relative importance of these two
dimensions depends on a user’s context—if one will frequently analyze data using the same
model, then programming time is less important.

Programming time of course depends on the programmer. Our experience was that im-
portance sampling (with transformations) takes considerably less time than bridge sampling
to program. Chib’s method builds on the existing MCMC code (required by all methods);
however, to us, modifying it to compute the Bayes factor was more time consuming than
developing importance sampling methods. The programming time for Chib’s method is
comparable to that for warp bridge sampling.

Naturally, the run time for importance sampling is less than that of bridge sampling. In
the present case the added precision of bridge sampling may not be worth the extra time.
Importance sampling was also faster than Chib’s method but there are several mitigating
factors that affect that comparison. Importance (and bridge) sampling requires extensive
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Table 2. Part of the Scotland Lip Cancer Dataset

County y p (in ’000) AFF E Neighbors

1 9 28 16 1.38 4 5 9 11 19
2 39 231 16 8.66 2 7 10
3 11 83 10 3.04 2 6 12
4 9 52 24 2.53 3 18 20 28
...

...
...

...
...

...
54 1 247 1 7.03 5 34 38 49 51 52
55 0 103 16 4.16 5 18 20 24 27 56
56 0 39 10 1.76 6 18 24 30 33 45 55

calculations of the likelihood function; in problems where that is more complicated, the time
advantage of importance sampling will dissipate. Also, more efficient MCMC algorithms
might make Chib’s method more competitive on speed. Although all methods work well
here, our preference is for warp-transformed importance sampling for these data based on
speed and efficiency.

5. EXAMPLE: SCOTLAND LIP CANCER DATA

This section considers a more complex example with more than one variance compo-
nent. The computations become much more difficult and time-consuming for such models.

5.1 DESCRIPTION OF THE DATASET

Table 2 shows a part of a frequently analyzed dataset (see, e.g., Clayton and Kaldor
1987) regarding lip cancer data in the 56 administrative districts in Scotland from 1975–
1980. The objective of the original study was to find any pattern of regional variation in the
disease incidence of lip cancer. The dataset contains {yi, pi, Ei,AFFi, Ni}, i = 1, 2, . . . 56,
where, for district i, yi is the observed number of lip cancer cases among males from 1975–
1980, pi is the population at risk of lip cancer (in thousands), Ei is the expected number of
cases adjusted for the age distribution, AFFi is the percent of people employed in agriculture,
forestry, and fishing (these people working outdoors may be under greater risk of the disease
because of increased exposure to sunlight), and Ni is the set of neighboring districts.

5.2 A POISSON-GAUSSIAN HIERARCHICAL MODEL

The yi’s are assumed to follow independent Poisson distributions, yi|λi ∼
Poisson(λiEi), i = 1, 2, . . . , n, where λi is a relative risk parameter describing risk af-
ter adjusting for the factors used to calculate Ei. As in Besag, York, and Mollie (1991),
we use a mixed linear model for log(λ), log(λ) = Xβ + η + ψ, where X is the covari-
ate matrix; β = (β0, β1)′ is a vector of fixed effects; η = (η1, η2, . . . , ηn)′ is a vector of
spatially correlated random effects; and ψ = (ψ1, ψ2, . . . , ψn)′ is a vector of uncorrelated
heterogeneity random effects.
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For known matrices C and diagonal M, we take the prior distribution forη as a Gaussian
conditional autoregressive (CAR) distribution, that is, η|τ 2, φ ∼ N (0, τ 2(I−φC)−1M), as
in Cressie, Stern, and Wright (2000), where τ 2 andφ are parameters of the prior distribution.
The parameter φ measures the strength of spatial dependence, 0 < φ < φmax, where φ = 0
implies no spatial association andφmax is determined by the choice of C and M. The elements

of the matrices C and M used here are mii = E−1
i , and cij =

(
Ej

Ei

) 1
2
I[j∈Ni], where I[A]

is the indicator for event A. For these choices of C and M, φmax = .1752.
The ψ’s are modeled as ψ|σ2 ∼ N (0, σ2D), where D is a diagonal matrix with dii =

E−1
i , and σ2 is a variance parameter. In practice, it appears often to be the case that either
η or ψ dominates the other, but which one will not usually be known in advance (Besag et
al. 1991).

The model above contains three covariance matrix parameters (τ 2, σ2, and φ) and 112
random effects parameters, making it a more challenging data set to handle computationally
than the turtle dataset. The joint maximum likelihood estimate of ξ = (β0, β1, φ, τ

2, σ2)′

is ξ̂MLE = (−.489, .059, .167, 1.640, 0)′. The fifth component of the posterior mode is 0 as
well.

5.3 ESTIMATING THE BAYES FACTORS

Because of the presence of more than one variance component in the model, several
Bayes factors are of interest. These correspond to comparing any two of the four possible
models:

• “full model” with σ2 and τ 2 (and φ)
• “spatial model” with τ 2 only as a variance component (also includes φ)
• “heterogeneity model” with σ2 only as a variance component
• “null model” with no variance component.

We focus on the three Bayes factors obtained by comparing any one of the three reduced
models to the full model. Any other Bayes factor of interest here can be obtained from these
three.

Using a transformation ν = η + ψ, the likelihood for the full model (with random
effects integrated out), L(β, φ, τ 2, σ2|y), can be expressed as

L(β, φ, τ 2, σ2|y) ∝
∫ {

n∏
i=1

exp
(
−Eie

x′
iβββ+νi

)
eyi(x′

iβββ+νi)

}

1
|V|1/2

· exp

{
−1

2
ν′V−1ν

}
dν,

where V = τ 2(I − φC)−1M + σ2D. To estimate the likelihood, we use importance sam-
pling (Section 3.2.1) with a t4 importance sampling distribution. Note that the Warp bridge
sampling method could be used here as well. The mean and variance of the importance
sampling distribution are the corresponding moments of ν = η+ψ computed from a pos-
terior sample drawn from the conditional posterior distribution of (η,ψ) given β, φ, τ 2, σ2.
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This procedure estimates the likelihood with reasonable precision within reasonable time.
We assume independent prior distributions, β ∼ N2(0, 20I), p(φ) =

Uniform(0, φmax), p(σ2) = 1
(1+σ2)2 , p(τ 2) = 1

(1+τ 2)2 · Posterior samples are obtained
using a Metropolis-Hastings algorithm. The large number of parameters result in high au-
tocorrelations and hence, we use 5 chains of 10,000 iterations of the MCMC after a burn-in
of 2,000 each (enough to achieve convergence according to the Gelman-Rubin convergence
criterion). Additional details about specific methods follow.

5.3.1 Chib’s Method

Each of the conditional posterior distributions is sampled from using a Metropolis step
and thus the Chib and Jeliazkov (2001) approach is required. As for the fixed point at which
the posterior density is evaluated, we use the sample mean of the posterior sample rather
than the posterior mode because the latter is on the boundary of the parameter space and
one of the terms required by Chib’s method is not defined there.

5.3.2 Bridge and Importance Sampling

We apply Warp-II transformations with d ≡ t4(0, I) and Warp-III transformations
with d ≡ N (0, I). In both cases we use the sample mean and variance of the posterior
sample as the location and scale parameters of the transformation. It may be possible to do
better by optimizing over µ and S but the efficiency achieved by the mean-variance choice
was sufficient. As in the turtle example, because of strong dependence of the draws, we use
the effective sample size (rather than the actual MCMC sample size) in the bridge sampling
iteration.

5.4 REVERSIBLE JUMP MCMC

It is possible in principle to compute all the Bayes factors from one reversible jump
MCMC that allows jumps among the four models. We use three separate programs to
compute the three Bayes factors (and even then had trouble getting this approach to work
well). We set h(j, j′) = πj = .5 ∀ j, j′. When we try to move from model j to model j′,
we generate auxiliary variable u to correspond to all of the parameters of model j′, that is
we do not retain values of the parameters from model j that are in model j′ as well. This
was the approach of Han and Carlin (2001) as well. For example, when we try to move
from the “full model” to the “spatial model,” we generate u from a 59-dimensional normal
independence proposal density, whose mean and variance are determined by an earlier run
of the MCMC algorithm for the “spatial model.” The reasoning is that it would not be
appropriate to just zero out the heterogeneity random effects because the remaining spatial
effects are not likely to represent the posterior distribution under the spatial model. It was
difficult to obtain reliable results from reversible jump MCMC apparently because of the
large number of random effects which cannot be integrated out from the likelihood. Han and
Carlin (2001) found similar results. As we show below, the Bayes factor for comparing the
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Table 3. Estimates of Bayes Factors (along with their standard deviations and time taken to run the
program) for the Scotland Lip Cancer Dataset

Comparing Method Estimated BF Std. dev. CPU time(min)

“spatial True value 1.42 – –
model” Bridge W-III (mean-variance) 1.42 .029 88.3

vs Imp. samp. W-III (mean-variance) 1.41 .032 45.2
“full Bridge W-II (mean-variance) 1.43 .040 65.2

model” Imp. samp. W-II (mean-variance) 1.44 .065 30.5
Chib’s (at mean) 1.44 .132 81.1

RJMCMC 1.21 .265 49.9

“heterogen. True value .066 – –
model” Bridge W-III (mean-variance) .066 .0017 66.3

vs Imp. samp. W-III (mean-variance) .066 .0018 32.4
“full Bridge W-II (mean-variance) .066 .0020 43.4

model” Imp. samp. W-II (mean-variance) .067 .0028 20.6
Chib’s (at mean) .067 .0086 57.2

RJMCMC .032 .182 30.9

“null True value 1.15 × 10−23 – –
model” Bridge W-III (mean-variance) 1.15 × 10−23 1.52× 10−25 55.4

vs Imp. samp. W-III (mean-variance) 1.15 × 10−23 1.66 × 10−25 28.2
“full Bridge W-II (mean-variance) 1.14 × 10−23 2.66 × 10−25 37.2

model” Imp. samp. W-II (mean-variance) 1.16 × 10−23 3.64 × 10−25 18.2
Chib’s (at mean) 1.21 × 10−23 1.46 × 10−24 48.1

“full model” to the “heterogeneity model” or the “spatial model” could not be estimated to a
reasonable degree of accuracy, even after trying a variety of Metropolis proposal densities.
The Bayes factor favoring the “full” model over the “null” model is so large that we were
never able to accept a single step to the null model for any of our proposal densities.

5.5 RESULTS

We use the importance sampling method with sample size one million to compute the
“true value” of the three Bayes factors. Examining the variability of the importance ratios
for the sampled one million points, we conclude that the Bayes factor is determined up to
a standard error of about .5% for the Bayes factor comparing the spatial model to the full
model and about .25% for the other two Bayes factors. Warp-III bridge sampling with a
sample size of half million results in the same values. These values serve as the true Bayes
factors for comparing the methods.

Table 3 shows the average and standard deviation of 100 Bayes factors (with different
random seeds) obtained using each method, and the CPU time taken for one computation
of the Bayes factor estimate by each of these methods on the workstation mentioned in the
previous example. The results here are completely consistent with those of the first example.
Warp bridge sampling, importance sampling, and Chib’s marginal likelihood approach yield
good estimates. The reversible jump MCMC approach performs unsatisfactorily, even after
considerable tuning. The standard deviation of the Bayes factor estimate is much smaller
for the Warp-III bridge sampling and importance sampling than the other methods. Figure 3
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Figure 3. Effect of warping on posterior distributions for the lip cancer data. The first row shows four bivariate
marginal posterior distributions for the original untransformed joint posterior distribution (showing the highly
non-normal nature). The second row shows the effect of the Warp-II (mean-variance matching) transformation.
The third row is for the Warp-III (mean-variance matching) transformation.

shows how the warp transformations work in this higher dimensional problem by examining
contour plots for some two-dimensional marginal posterior distributions.

Han and Carlin (2001, p. 1131) suggested that Chib’s method might not be effective in
spatial models using Markov random field priors. Our results indicate that it does provide
acceptable Bayes factor estimates, although as Han and Carlin pointed out one is required to
sample the random effects individually which may become prohibitive in larger applications.

6. DISCUSSION AND RECOMMENDATIONS

GLMMs are applied extensively and their use is likely to increase with the widespread
availability of fast computational facilities and the increased sophistication of data analysts
in a variety of disciplines. In many applications of these models, question arises about the
necessity of the variance components in the model. One way to answer the question, in fact
our preferred way, is to examine the estimates of the variance components under the full
model. This article arose as a result of several problems in which formal model comparisons
were desired by scientific investigators. The objective of this study is to learn more about
the performance of different methods for computing the relevant Bayes factor estimates.

The computation of the likelihood p(y|ω,M) (averaging over the random effects) is
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a nontrivial task for GLMMs. If the model is simple and the dataset is small, it is possible
to apply numerical integration. For larger problems, importance sampling is a possible
approach (Geyer and Thompson 1992); our work finds that importance sampling with a t4
sampling distribution works well.

The computation of the Bayes factor involves integrating over the parameters ω in
p(y|ω,M). Typically, for a GLMM, the parameter vector ω consists of the regression
parameters α and the variance component parameters θ. However, in computing Bayes
factors for GLMMs, including the random effects in the parameter vector, for example, in
the manner suggested in the context of the method of Chib (1995), is often convenient. This
approach makes the application of bridge sampling and importance sampling possible for
the second example.

Our results indicate that warp bridge sampling (Meng and Schilling 2003), importance
sampling (also based on warp transformations), and Chib’s (1995) marginal likelihood ap-
proach are all effective. In both applications each finds the correct Bayes factor. Reversible
jump MCMC is more difficult to apply and did not produce accurate results even after
significant effort was applied to create an effective algorithm. This is not necessarily sur-
prising; Gelman and Meng (1998) pointed out that bridge sampling can be viewed as a form
of average in place of the accept/reject model transitions that characterize reversible jump
MCMC. The averaging provides a kind of “Rao-Blackwellization” (see, e.g., Gelman and
Meng 1998) that improves efficiency.

Among the three effective methods the choice for a particular problem depends on
tradeoffs among a number of factors. For our two examples importance sampling based
on warp transformed distributions was quick, accurate, and had a small standard error.
One disadvantage of this approach is that one must ensure somehow that the tails of the
importance sampling density are at least as long as the tails of the warp transformed posterior
distribution. Warp bridge sampling was accurate and had the lowest standard error of the
methods over repeated computations. It required more computational time than importance
sampling; the importance sampling estimate is the first iterate in our algorithm for carrying
out bridge sampling. Bridge sampling is less sensitive to the choice of the matching density
as long as there is good overlap between the matching density and the warp transformed
posterior distribution. Chib’s method gave accurate results but had the largest standard error
among the three methods (though the standard error is still quite small in absolute terms).
Chib’s method has a couple of compensating advantages in that it does not require the choice
of an importance sampling or matching density, and it requires only a single evaluation of
the likelihood. For our two examples the repeated evaluations of the likelihood did not
make bridge sampling and importance sampling inefficient but it is possible that in larger
problems such evaluations would be prohibitive.

The efficiency of Chib’s method is closely related to the efficiency of the underlying
MCMC algorithm. Therefore, the standard deviation for the Chib’s method and its run time
may be reduced by reducing the autocorrelation of the generated parameter values in the
MCMC algorithm, for example, by the use of a tailored proposal density (Chib and Jeliazkov
2001). Of course, improved MCMC algorithms will also result in improved precision for
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the bridge sampling and reversible jump MCMC estimates as well.
Perhaps the most noteworthy finding from our two examples is the effectiveness of

warp bridge sampling, a method with which some readers may not be familiar. Warp bridge
sampling makes use of transformations to match the posterior distribution with a suitably
chosen (and simple to sample from) matching density. The choice of matching density is
less critical than with importance sampling. Warp bridge sampling should work as long as
the transformed posterior and matching density overlap.
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