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Introduction 
This article is an invitation, or advertisement, for readers to work on a problem 

which is apparently very difficult, yet certainly extremely important. The problem is 
known generically as the Ising model, named after Ernst Ising, who did the first 
work on it in the early 1920s. Although unpromising in its initial results, the Ising 
model has turned out to be an exceptionally rich idea. The number of papers written 
on the subject is staggering; the number which remain to be written is conceivably 
even more staggering. 

The Ising model is concerned with the physics of phase transitions, which occur 
when a small change in a parameter such as temperature or pressure causes a 
large-scale, qualitative change in the state of a system. Phase transitions are 
common in physics and familiar in everyday life: we see one, for instance, whenever 
the temperature drops below 3 2 O  F, and another whenever we put a kettle of water 
on the stove. Other examples include the formation of binary alloys and the 
phenomenon of ferromagnetism. The latter is also of interest historically: an 
understanding of ferromagnetism-and especially "spontaneous magnetization"- 
was the original purpose of the Ising model and the subject of Ising's doctoral 
dissertation. Partly for this historical significance, we shall use ferromagnetism as a 
reference point later on for interpreting various features of the model. 

In spite of their familiarity, phase transitions are not well understood. One 
purpose of the Ising model is to explain how short-range interactions between, say, 
molecules in a crystal give rise to long-range, correlative behavior, and to predict in 
some sense the potential for a phase transition. The Ising model has also been 
applied to problems in chemistry, molecular biology, and other areas where "coop- 
erative" behavior of large systems is studied. These applications are possible because 
the Ising model can be formulated as a mathematical problem. Although we shall 
refer frequently to the physics of ferromagnetism and use language from statistical 
mechanics, it is the mathematical aspects of the model which will concern us in this 
article. In particular we shall see that the Ising model has a combinatorial interpre- 
tation which is powerful enough in itself to establish some of the basic results 
concerning phase transitions. There are many other approaches and aspects to the 
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Ising model, but the combinatorial one makes an especially suitable introduction to 
the subject. 

1. Lattices and the Partition Function 
Our starting point for the Ising model is a lattice, which for us will be a finite set 

of regularly spaced points in a space of dimension d = 1,2, or 3. In dimension 1we 
simply have a string of points on a line, which we can enumerate from 1to N ("N" 
will always denote the number of lattice sites, regardless of dimension): 

In dimension 2 we shall consider the lattice of squares as below: 

In dimension 3 we shall consider the lattice whose repeating units are cubes: 
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In our pictures, each line segment between lattice sites is called a bond, and 
lattice sites are called nearest neighbors if there is a bond connecting them. In 
general, except for lattice sites on the "boundary" of the lattice, each lattice site in a 
d-dimensional lattice has 2d nearest neighbors: 

The difference between lattice sites on the "boundary" and those in the "interior" 
of the lattice is mildly annoying. One way to deal with this annoyance is to get rid 
of the boundary by adopting what might be called a "wrap-around" model: we 
simply introduce extra bonds connecting lattice sites on opposite sides of the 
boundary. This amounts to wrapping the one-dimensional lattice into a necklace, 
the two-dimensional lattice into a doughnut, .and the three-dimensional lattice into 
who knows what. 

Although this introduces physically unrealistic long-range interactions (or else 
requires us to bend a three-dimensional crystal in an impossible manner), physicists 
will be the first to go along with the idea: intuitively, an extra condition imposed on 
a "negligibly small" percentage of lattice sites should not affect the overall behavior 
of the system. (There is an important alternative which we shall mention again later: 
one can impose "boundary conditions" which do influence the behavior of the 
system, by establishing a preferred direction for the spontaneous magnetization.) 
Eliminating the boundary also introduces an appealing symmetry into the problem: 
i,n the wrap-around Ising model, there are dN bonds connecting the N lattice sites, 
and every lattice site "looks like" every other lattice site. Therefore we shall 
henceforth assume that the lattice has been wrapped around. 

Our first step is to assign an independent variable ai to each lattice site 
i = 1 , .  . . ,N. The variables ai take on only two values, ai = f1, which we shall call 
the two possible states of the lattice site. This reflects the physical assumption that 
only two possibilities exist at each lattice site, such as up/down or occupied/vacant, 
as we shall explain below. An assignment of values (a,, a,, ...,a,) to each lattice 
site is called a configuration of the system. An essential ingredient in the Ising model 
will be a sum over all possible configurations. Since there are 2Nconfigurations, this 
sum clearly has an enormous number of terms if N is at all large. For a macroscopic 
crystal, with N - one should not even contemplate carrying out such a 
calculation numerically! 
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In the model of ferr~magnetism- sing's original study-one thinks of the lattice 
sites as being occupied by atoms of a magnetic material. Each atom has a magnetic 
moment which is allowed to point either "up" or "down." In a model for binary 
alloys, the lattice sites are again occupied by atoms, which may be one or the other 
of the two constituents of the alloy. A third interpretation has the paradoxical name 
"lattice gas": the lattice sites are points in space which are either occupied or 
vacant. (The sought-for phase transition here is between a "solid," which has 
segregated regions of occupied and vacant space, and a "gas" for which the lattice is 
a homogeneous mixture of the two.) In all cases, the variable ai is used to designate 
which state the ith lattice site is in. Of course one of the many generalizations of the 
model is to increase the number of states, say to 1,0, and -1,or to a continuum of 
states. 

We next form what is called the Hamiltonian of the system. In mathematical 
physics, the Hamiltonian is the total energy of a system, and it governs the 
dynamics. For the Ising model, the Hamiltonian is defined after an ideal and 
apparently very severe assumption is made: we assume that only short-range, 
"nearest-neighbor" interactions and interactions of the lattice sites with an "exter- 
nal field" contribute to the energy level of the system. For each configuration 
u = (ul, . . . ,O N )  we have 

where E and J are parameters, the second sum is over all lattice sites, and the first 
sum is over all pairs of nearest neighbors in the lattice. The parameters E and , J  
correspond to the "energies" associated with nearest-neighbor interactions and 
interactions with the external field, respectively. For a ferromagnet, E is positive, so 
that a "magnetized" configuration (with most nearest-neighbor pairs having parallel 
moments, ai = uj) has a lower energy level than a non-magnetized configuration. 
The parameter J corresponds to the presence of an "external magnetic field", which 
will tend to line up the magnetic moments in the direction of the field, again 
"favoring" configurations with lower energy levels. Fighting against this, as we shall 
see below, is thermal agitation. At sufficiently low temperatures, there is not much 
random motion, and configurations lined up with an external field are highly 
favored, while at sufficiently high temperatures, the random thermal motion de- 
stroys much of the effect of the field. 

Partly for its historic interest, let us now explain the nature of the ferromagnetic 
phase transition which Ising originally sought in his dissertation. The phase transi- 
tion occurs with the appearance of what is called spontaneous magnetization. 

Suppose a lattice of magnetic material is placed in aLmagnetic field and held at a 
constant temperature. The field will induce a certain amount of magnetization into 
the lattice-i.e., it will create a tendency for the magnetic moments to point in, say, 
the "up" direction. The amount of magnetization depends on the strength of the 
external field and on the (constant) temperature. 
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Now suppose the external field is slowly turned off. What happens to the lattice? 
Not surprisingly, for high temperatures, the lattice returns to an unmagnetized 
condition. But for low temperatures, the lattice retains a degree of magnetism; there 
is a non-negligible residual tendency for the moments to stay in the "up" position. 
This is called spontaneous magnetization. (Note: it seems that "residual magnetiza- 
tion" would have been a better term, but so be it.) There is a critical temperature at 
which spontaneous magnetization begins to appear, and this is where the phase 
transition occurs. The figure below shows an (idealized) graph of induced magneti- 
zation versus external field strength for three temperatures, including the critical 
temperature. The curve for the critical temperature is characterized by its having a 
vertical tangent line at the origin. 

As we shall show later, the one-dimensional Ising model does not exhibit a phase 
transition at any temperature. This negative result, plus some arguments that the 
same thing would happen in three dimensions, discouraged Ising from pursuing the 
subject. The Ising model lay dormant for about a decade, until Rudolf Peierls [37]in 
1936 showed by a very simple argument that, in two dimensions, a phase transition 
was guaranteed for some temperature. In 1941, Hendrick Kramers and Gregory 
Wannier [26] located the phase transition precisely for the two-dimensional model, 
under the assumption that there is a unique such value. In 1944, Lars Onsager [36] 
gave a complete solution to the two-dimensional Ising model in the "zero-field" 
(J = 0) case. To date, no one has solved any three-dimensional model. 

Returning to the Ising model, our third step brings us to the central object in 
statistical mechanics: the partition function. This is formed by exponentiating the 
Hamiltonian and then summing over all configurations, which here involves 2, 
possible assignments of k1to the N variables a,, . . . , a,: 

Z = Z ( P ,  E, J, N )  = z e - P H ( " ) ,  (1.2)+ 1 
The parameter ,8 cancels whatever dimensions the Hamiltonian may have. In 
statistical mechanics, we typically have P = l/kT, where k is Boltzmann's constant 
and T is temperature (in absolute degrees). 

A simple example may clarify some of the notation. Let's take a very small 
one-dimensional lattice, consisting of N = 3 lattice sites with no wrap-around: 
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u2 O 3  

FIG.6 .  
The Hamiltonian is 

H = -E(ala2 + a2a3)- J ( a l  + a, + a,). 
To simplify matters further, we shall set J = 0 (the "zero-field" case). The partition 
function is now 

z = e-PH(l . l . l )  + e-PH(l , l ,  -1) + e-PH(l,-l,l) + e-PH(l, -1, -1) 

+ e - P H ( - l , l . l )  + e-PH(-l , l .  -1) + e-PH(-l ,  -1,l) + e-PH(-l ,  -1, -1) 

-- e P E ( l + l )  + ePE(l- l)  + e P E ( - l - l )  + e P E ( - l + l )  

+ e P E ( - l + l )  + e P E ( - l - l )  + ePE( l - l )  + e P E ( l + l )  

= 2e2PE + 4 + Ze-2PE 

= 2,cosh2/3~. 
(The final formula in the example is suggestive of what is to come. The reader may 
want to pause at this point and work out the partition function for the one-dimen-
sional, zero-field model with N lattice sites.) 

The partition function plays a fundamental role in statistical mechanics. Essen-
tially, it is the "denominator" in the calculation of probabilities. More precisely, the 
probability of being in a particular configuration a = (a,, . . . , a,) is given by the 
formula 

The negative sign confers a higher probability on states with lower energy. A small 
value of p (corresponding to a high temperature, since /3 = l / kT)  tends to "flatten 
out" the distribution, making all configurations more or less equally likely, while a 
large value of /3 (corresponding to a low temperature) tends to accentuate the 
probabilities of the lowest energy states. 

From the partition function, one may in principle derive all of the important 
thermodynamical features of the physical system being modeled: internal energy, 
specific heat, magnetization and magnetic susceptibility, and so forth. For example, 
the internal energy is defined as 

1A  

and we easily see that this can be re-expressed as 

(For more on applications of the partition function, see [42] or [44].) 
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Many of the quantities one computes from the partition function turn out to 
depend on the logarithm of Z. This is natural, since Z, being a sum over 2N 
configurations, tends to grow exponentially with the size of the lattice. This brings 
us to our last step in setting up the Ising model; we define the "free energy per 
lattice site" to be 

1 
F = F(P ,  E ,  J )  = lim - l o g ~ ( P ,  E ,  J ,  N) .

N+m N (1.4) 
The limit as N + cc is called the "thermodynamic limit." The main problem of the 
Ising model is this: Find a closed-form, analytic expression for the function F. The 
idea is that phase transitions will show up as discontinuities in F or in one of its 
derivatives: a phase transition occurs when some aspect of the system changes 
radically at certain values of the parameters. 

There is, of course, no a priori guarantee that the thermodynamic limit F exists. 
There is also some question as to how the limit is meant to be taken in two or three 
dimensions, since the lattice can grow at different rates in different directions. We 
shall not consider these questions any further, but merely assume that the ap- 
propriate limits do exist. 

For the rest of this article, we shall introduce some elementary steps for analyzing 
the Ising model and describe what is known about the exact solutions. We shall also 
present the arguments due to Peierls and to Kramers and Wannier for the existence 
-of phase transitions in two dimensions. The results of these arguments were 
superseded by Onsager's complete solution (which we do not exposit here), but the 
techniques and ideas continue to be important. Peierls' argument, in particular, 
generalizes fairly easily to higher dimensions, where very little else is rigorously 
known. 

2. Elementary Analysis- Some Combinatorics 
We shall begin by converting the partition function from transcendental ex-

ponential~ into a polynomial in two variables with integer coefficients. This is based 
on the simple observation 

e*"  = coshx _f sinhx = coshx(1 _f tanhx). (2.1) 
Since the variables ai take on the values & 1,we have 

where B is the number of bonds, T =.tanh(PE) and U = tanh(PJ). If we use the 
"wrap-around" lattice, then B = dN where d = 1,2, or 3 is the dimension of the 
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model. It is also convenient to make the sum into an average over all configurations 
by introducing a factor 2,: 

Z = ( 2 c o ~ h ~ ( ~ E ) c o s h ( P J ) ) ~ ~( n (1 + oiujT)x + u ) ) .  (2.3) 
2, ki ( i , j )  

The thermodynamic limit is now viewed as consisting of two pieces: 
1 1 

F = lim -log Z = log(2 c o s h d ( ~ ~ ) c o s h ( ~ ~ ) )  -log Z', (2.4)+ lim 
N + m  N N+m N 

where 

The first piece, log[2 coshd(P~)cosh(PJ)], is always analytic for real (i.e., physical) 
values of p ,  E ,  and J; hence it is a "trivial" contribution exhibiting no discontinui- 
ties. We are left with the task of analyzing the "modified" partition function 2'. 

Because a? = 1for all i, we may write 

= P(T, U )  + alPl(T, U, a,, . . .,a,) (2.6) 

+ u2P2(T,U,a3,..., a,) + . . .  +u,P,(T, U) 

for polynomials P ,and P,,. . . ,P,. Note that P is of degree dN in T and N in U, 
assuming again the wrap-around lattice. When we sum over all configurations, 
however, each a, P, term vanishes by trivial cancellation: 

..,0,) (x a k p k ( ~ ,u ,  ~ X + I , .  = a,)( x P,(T, U, a,+,, ...,a,))+1 o,=+l *1 

= (0) (whatever) = 0. 
This leaves the modified partition function 

which is a polynomial in two variables with integer coefficients. 
At this point, we shall simplify our discussion by setting U = 0. This is called the 

"zero magnetic field case." In this case the coefficients of the polynomial 

have a simple combinatorial interpretation. If the lattice is thought of as a graph 
with lattice sites as the vertices and bonds between nearest neighbors as the edges, 
then c(n) counts the number of "even" subgraphs with n edges, where "even" 
means that each vertex has positive, even degree. This can be seen by letting the 
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presence or absence of the bond (i, j )  in a subgraph correspond to the choice of 
aia,T or 1 in the expansion of n,,,,)(l + aiajT). Each subgraph corresponds to a 
term in the expansion: (I'IUS,)T", where 6, = degree of vertex i and n = $CSi = 
number of edges. Only even subgraphs raise each a, to an even power, hence only 
even subgraphs contribute to the modified partition function 2' = P(T) in the zero 
magnetic field case. 

Each connected component of an even subgraph is a closed path in the original 
lattice. T h s  enables us to solve completely the one-dimensional, zero-field Ising 
model: in the wrap-around model, there is only one closed path, namely, the 
complete circuit of length N. Thus Z' = 1+ TN, SO that 

= log(2 coshd(/?E)), 
since I TI = ltanh PEI < 1 implies limN,,(l/N)log(l + TN)= 0. (Note that in 
the "non-wrap-around" case, there are no closed paths, so that log(Zf) = 0 
directly.) 

In dimensions 2 and 3, closed paths obviously do exist, but they must be of even 
length, unless they are long enough to make use of wrap-around. Also, the shortest 
paths are of length 4, so we have 

Z' = 1+ c(4)T4 + c(6).T6 + c ( 8 ) ~ '+ 
if the lattice is sufficiently large. For any given n, we can also work out explicitly 
the coefficient c(n); however this is practical only for small values of n. We shall 
show this computation (really a counting and bookkeeping argument) for n = 4, 6, 
and 8, and leave n = 10, 12, and any higher degrees for the interested (and 
industrious) reader. 

To distinguish between dimensions, let us write 

for the modified partition function for the d-dimensional Ising model (d  = 1,2,3). 
As we pointed out before, c,(n) = 0 for all n << N. We shall henceforth consider 
only dimensions d = 2 and 3. 

An even subgraph with n = 4 edges is simply a square. For d = 2, the square 
may be located with a specified (say, lower-left-hand) corner at any lattice site 
(using again the wrap-around model), so that ~ ~ ( 4 )  = N. For d = 3, we have in 
addition a choice of orientation, so that c3(4) = 3N. 

For d = 2, an even subgraph with n = 6 edges is a 2 x 1rectangle, which can be 
located at any of the N lattice sites and oriented in two possible ways. Hence 
~ ~ ( 6 )= 2N. For d = 3, in addition to 6N "flat" rectangles, there are another 12N 
"bent" rectangles and 4N more "twisted" rectangles, for a total ~ ~ ( 6 )  22N.= 

For n = 8, the situation becomes more complicated. For one thing, the subgraphs 
no longer need to be connected. A disconnected subgraph, however, must consist of 
two disjoint squares. For d = 2, the "first" square may be placed with its lower- 
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left-hand corner at any of the N lattice sites, while the same corner of the "second" 
square need only avoid nine lattice sites (see Figure 7). 

Thus for d = 2, there are N(N - 9)/2 disconnected even subgraphs with 8 edges. 
(We divide by 2 to eliminate the distinction between the "first" and "second 
square.) For d = 3, a similar argument shows that there are 3N(3N - 33)/2 
disconnected subgraphs with 8 edges. 

The connected paths of length 8 in dimension 2 are easy to count. There are four 
different types, with a total of 9 orientations, giving, in all, 9N connected subgraphs 
with 8 edges. Thus, 

~ ~ ( 8 )N(N - N ( N  + 9)/2.= 9)/2 + 9N = 

The real complication appears for d = 3: there are suddenly a lot of different 
paths of length 8. Classifying them in a manner analogous to the paths of length 6, 
we have 27N (= 3 x 9N) "flat" graphs, 108N graphs with one "bend", 48N with 
two bends, and 48N "twisted graphs, for a total of 231N possibilities. Adding in 
the disconnected subgraphs, we find 

The reader is invited to look for simpler means of computing these coefficients. This 
is as far as we shall pursue the matter. 

Knowing the first few terms of the partition function allows us to compute 
corresponding terms in the power series for the thermodynamic limit. We proceed as 
follows. Since 



AN INTRODUCTION TO THE ISING MODEL 

we have 

From our computations above, we find 

and 

Note how the lattice size N has vanished on the right-hand side (at least for the 
terms we have shown-we expect it to happen for all terms). Taking the limit as 
N + co gives us a power series expansion for the (modified) free energy F'. 

The reader who has had an introductory course in hard analysis should be 
appalled at what we've just done. In particular, we have not proved the validity of 
truncating the power series expansion for log(1 + x )  and then letting N tend to 
infinity. We've also not proved that the N has vanished from all terms on the 
right-hand side. These objections can be dealt with, however, by taking a formal 
power series point of view. 

That leaves the question of the radius of convergence of the power series as an 
analytic function around T = 0. This is an important question, because it is 
non-analytic behavior that we look for as the defining characteristic of a phase 
transition. What we hope will happen is that there will be a phase transition 
corresponding to some "physical" value of T in the interval (0, I), and that this will 
be the closest singularity to the origin. Of course we have no right to think this is 
what's going to happen. But for d = 2 it does. 

3. Exact Solutions 
To review, we have set T = tanh(PE) and U = tanh(PJ), and defined 

for the modified partition function of the d-dimensional Ising model. Let us also 
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introduce the "modified free energy" function 
1 

F,'(T, U )  = lim -log~,;(T,  U, N )  
N + m  N 

(Recall that the original free energy is 

We have seen that ZJ is a polynomial in T and U with integer coefficients (of 
degree dN in T and N in U, for the wrap-around model). Assuming that the limit 
exists, F,' is, therefore, a power series (at least formally) in T and U, with rational 
coefficients. If we fix E and J ,  we may consider T and U as functions of the 
parameter ,8. Our objective here is to realize F,' as an analytic function of ,8 for 
small /?. (Note that T and U are small if /? is small.) Remembering that /? is 
inversely proportional to temperature in the physical model, we call the power series 
in T and U a "high-temperature expansion" for F,'. Phase transitions occur at the 
positive real values of ,8 at which F,' is nonanalytic. 

This objective has been met only "halfway." The results are given below, 
organized according to the dimension of the model and the absence or presence of 
an "external magnetic field" U. 

F,'(T,o) = 0. 

(Onsager,1944) 

In the next section we shall derive Ising's result for F;(T, U). A derivation of 
Onsager's famous result for F,'(T, 0) is beyond the scope of this article. It has been 
written up in many forms, and we refer the reader to any or all of [12], [33], and [42]. 
We shall, however, present the beautiful arguments of Peierls [37] and Kramers and 
Wannier [26], which establish the existence of spontaneous magnetization in two 
dimensions and the precise location of the phase transition for F;(T, 0) under a 
mild (and physically reasonable) assumption. 

4. Ising's Result-The Transfer Matrix Method 
In this section we shall obtain the complete solution to the one-dimensional Ising 

model. We begin by looking at the "'linear" rather than the "wrap-around" model. 
(As remarked earlier, it should make no difference in the thermodynamic limit 
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anyway.) Then 

Suppose we write Z:(N) for that portion of the partition function summation for 
which a, = + 1, and ZL for that portion for which a, = -1. Clearly Z ' (N) = 
Z;(N) + ZL(N). But also, 

1 
= -[(I + U)(I + T)z:(N- 1) + (1 + U)(I - T ) Z L ( N - I)] ,

2  
and, likewise,  

'We can put this in matrix form: 

Iterating this, and paying careful attention to the initial case N = 2, we obtain the 
formula 

The matrix in these expressions is called the transfer matrix. If we denote it by M, 

then we have 

We have derived this expression for Z ' (N)  using the "linear" model because the 
derivation is especially simple to explain. However, we now prefer to replace it with 
the corresponding formula for the "wrap-around" model, but shall leave the 
derivation of that formula as an exercise for the reader. To distinguish the two 
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models, we shall write ZU(N)  for the wrap-around model in this section: 

where it is understood that a,+, = a,. The analogue to equation (4.7) is much 
nicer: 

Z U ( N )  = T~(M,) ,  (4.9) 
where "Tr" denotes the trace and M is still the transfer matrix. 

It is now clear from elementary linear algebra what to do: we diagonalize M, by 
finding its eigenvalues, A, and A,, and conclude that 

z"(N) = A: + A;. (4.10) 
Furthermore, assuming that the eigenvalues are positive real numbers with A, > A,, 
then 

1 
F,' = lim -log z"(N) 

N - + w  N 
1 

= N - r w  -log(A~(1 + ( A ~ / A ~ ) ~ ) )lim N 

= log(A,). 
(Note: the main idea here is to diagonalize .M, this leads to the result F,' = log(A,) 
even if one sticks with the "linear" model. Our reason for preferring the wrap-around 
model is purely aesthetic.) 

The rest of the solution is routine: One easily sees that Tr(M) = 1+ T and 
det(M) = T(l - U2), and, therefore, M has the characteristic equation 

so that the eigenvalues are 

1+ T f  [(1 + T)" 4T(l - U U ] " ~
A = -i

L  

Note that I UI = I tanh(PJ)I < 1for real values of the parameters, and therefore, 

In any case, the eigenvalues are positive real numbers when 0 < T < 1. 
The partition function is of less interest at this point than the free energy. We 

find 

1+ T +  [(I + T)'- 4T(1 - u2) ] l I2
F; = log (4.12)

2 

As a function of p, F,' is analytic on the positive real axis. We interpret this as 
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meaning that the one-dimensional Ising model does not exhibit a phase transition at 
any temperature: a string of iron atoms will not spontaneously magnetize (according 
to this model, anyway). 

That was the discouraging result of Ising's doctoral dissertation. The lack of a 
phase transition can be understood by thinking of spontaneous magnetization as a 
cooperative phenomenon of the lattice, which requires "communication" between 
lattice sites. But in the one-dimensional lattice, a single defect destroys the only line 
of communication. For example, a configuration . + + + + - - -- is only 
negligibly more energetic (i.e., less "favorable") than . + + + + + + + + . . : 
only one term in the Hamiltonian changes. 

According to Brush [4], Ising "gave some approximate calculations purporting to 
show that his model could not exhibit a phase transition in three dimensions either." 
However, the higher-dimensional models do have phase transitions. The "single- 
defect" argument does not apply: there are many "lines of communication" 
connecting each pair of lattice sites. 

5. Spontaneous Magnetization in Two Dimensions 
In this section we shall present a proof originally due to Peierls [37], which shows 

that the two-dimensional Ising model does have a phase transition-i.e., it exhibits 
spontaneous magnetization at sufficiently low temperatures. For this purpose we 

-shall forsake some of our previous notation and also return to the "flat" model 
which has a boundary. We shall exploit the boundary to create a preference for the 
magnetic moments throughout the lattice. 

Recall that sponetaneous magnetization is the tendency for the magnetic mo- 
ments to remain in, say, the "up" position after an external magnetic field has been 
turned off. One way to imagine turning off the field is to "impose" a magnet on the 
boundary of the lattice by setting all ai = +1 on the boundary-then letting the 
boundary "move off to infinity," which is what happens anyway when N + co.We 
can then ask the following question: For a lattice site "0""deep in the interior", 
what is the probability that 0, = - l ?  

If there were no magnetic field, this probability would simply be 1/2. But the 
fixed "+" signs on the boundary tend to make the lattice sites near them be positive 
also, and this creates a "ripple effect" that goes some distance into the lattice. When 
the temperature is high, this effect is quickly dissipated, but for low temperatures it 
is possible that the "ripple" will travel a considerable distance inward. What we 
shall show is that the effect can in fact travel all the way through the lattice; i.e., for 
sufficiently low temperatures, the probability that 0, = -1is less than 1/2 by an 
amount which is independent of the lattice size. The proof is quite beautiful in its 
elegant use of crude estimates to bound the probability. 

Recall that the probability for a given configuration o = (a,, . . . ,a,) is given by 
the formula 
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where H is the Hamiltonian and 
z = C e-PH(~), 

o€a 
where Q is the set of all configurations which are positive on the boundary. (The 
"-+1" notation is not sufficient here; the heart of Peierls' proof is to consider the 
sum over various subsets of configurations.) Suppose we label the lattice so that a, 
corresponds to a lattice site somewhere in the "middle" of the lattice. Then 

where Q, c Q is the set of configurations a for which a, = -1. 
Consider a typical configuration in the set Q O ,  such as the one shown in Figure 9: 

Because of the boundary condition, we can think of any configuration as consisting 
of "islands" of negative signs in a positive "ocean." Some of the islands may have 
interior "lakes", but they all have "shcrelines." Finally, one of the islands contains 
the site "0." B 

Now a "shoreline" is a closed path consisting of line segments connecting the 
midpoints of adjacent squares in the lattice. The main characteristic is that each 
segment of shoreline separates a positive sign (ocean) from a negative sign (land). 
Thus a given shoreline corresponds to a set of bonds (i, j )  for which a,a, = -1. 

Suppose now we draw a shoreline S, creating an island around "0," and say that 
its length is n(S). Let's consider the set !ds of configurations in !do having S as a 
shoreline. Then 
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Given a E a,, we can form another configuration, a', by changing all the signs 
inside the shoreline S. For a fixed shoreline S, the map a + a '  is one-to-one. We 
shall let denote the image of 0, under this mapping. One easily sees that 

and, therefore, 

Plugging this inequality into the previous computation (noting that BE > 0), we 
have 

(We have also used the fact that a -t a '  is one-to-one, so that the sum over as can 
be replaced by the sum over ilk.) But now, since e-pH(") > 0 for all configurations 
a, we can replace the sum over by a sum over all configurations! Thus, 

since Z = Xu, ,e-pH(")! 
Now consider the set Y of all shorelines which surround the lattice site "0." 

Then 

where s(n) denotes the number of shorelines of length n which surround the lattice 
site "0." Thus we have one last chore before the denouement: we have to bound 
s(n). We shall do this in a wonderfully crude manner. 

A shoreline, remember, is simply a path in the lattice connecting the midpoints of 
adjacent squares. Since we required aur shorelines to surround the lattice site "0," 
the path cannot wander too far away from "0": if the shoreline is of length n, it 
must be contained in a square with sides of length n/ a.(See Figure 10.) 
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Now let r(n) denote the number of "random walks" of length n which originate 
inside this square. (Minor remark: the random walk, like the shoreline, goes from 
midpoint to midpoint, not lattice site to lattice site.) It is easy to see that 

(The factor l /n  comes from the fact that each shoreline gets counted n times as a 
random walk, since any point along it can be considered as the origin.) But the -. random walk has (n/ = n2/2 possible starting points, and then 4" possible 
paths. (This can be reduced to 4 . 3"-' if you disallow "backtracking," but there's 
no real gain in doing so.) Thus 

1 
s(n)  < 2n4",  (5.11) 

and, therefore, 

The denouement is at hand: recall that 

Hence, by differentiating and multiplying by x, 
X  w 

= x ( l  + 2x + 3x2+ . ) = nxn. 
( I  - x ) ~   n = l  
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Thus, letting x = 4e-PE, we have 

The conclusion is clear: by taking /3 sufficiently large (which corresponds to low 
temperature), the right-hand side of the inequality can be made arbitrarily small, in 
a way which is independent of the size of the lattice. Thus spontaneous magnetiza- 
tion is guaranteed at some temperature. 

6. The Critical Point in Two Dimensions 
Peierls' proof that a phase transition exists for the two-dimensional model can 

put a lower bound on the critical temperature, but cannot locate it exactly. In this 
section we shall present a lovely combinatorial argument due to Kramers and 
Wannier [26]which proves the following result for the two-dimensional Ising model 
in the zero-field case: if there is a unique phase transition for F,'(T,O) on the 
interval (0, I), then it occurs precisely at Tc = fi - 1. (The historical progression of 
results is thus Peierls' 1936 proof that a phase transition exists; Kramers and 
Wanniers' 1941 proof that it occurs at Tc = fi - 1; and Onsager's complete 
solution in 1944.) 

The starting point is the combinatorial interpretation of c2(n) as the number of 
.''even subgraphs with n edges," whose connected components are closed paths on 
the lattice. In this section it will be convenient to refer to such subgraphs as "closed 
paths of length n," even when the "path" has several components. 

In general, a closed path of finite length in the plane may be associated with the 
bounded region which it encloses or, alternatively, with the unbounded region 
outside of it. If we consider the set of bounded regions and their complements, there 
is a two-to-one correspondence between such "shaded" regions and closed paths in 
the plane. (See Figure 11.) 

On the lattice, a "shaded" region can be designated by enumerating all the 
squares of the lattice, i = 1,2,3, ..., and assigning an independent variable, say, T ~ ,  
to each square: T~ = 1if the square i is shaded, and T~= -1if square i is unshaded. 
Unfortunately, when we restrict regions to a finite lattice, the correspondence is no 
longer precisely two-to-one: the "zero" path and the path around the boundary 
both correspond to both the "empty" region and the full lattice region. This can be 
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fixed by eliminating the boundary with the wrap-around lattice, but then even worse 
things happen: a simple loop around the lattice does not correspond to any region 
(much less to two of them). One should note, however, that such paths are of very 
long length- fi,if one takes the overall lattice to be a square. The contribution of 
these paths to the partition function is thus far out in the power series, and hence we 
expect it to vanish in the thermodynamic limit. In keeping with our disregard for 
mathematical rigor (but only when its safe to do so!) we shall take it for granted 
that this is what happens. 

In spite of these drawbacks, we shall use the wrap-around model since it 
simplifies some of the notation. In particular, there are as many squares as there are 
lattice sites, and we can enumerate them according to, say, the lattice site i in the 
lower left-hand comer. Each square has four "nearest neighbors" with which it 
shares an edge: squares i and j are nearest neighbors if and only if lattice sites i 
and j are nearest neighbors. 

Suppose we are given a configuration for the squares, T = ('TI,.. . ,T,). How long 
is the closed-path boundary of the corresponding shaded region on the lattice? We 
answer this by first noting that the edge joining squares i and j is part of the 
boundary if and only if T ~ ?  = -1-i.e., if and only if one square is shaded and the 
other is not. Thus the length, n, of the closed path is given by 

1 if^.^.= -1 
8 Jn(7) = x 6(i, j )  where 6(i,  j )  = 0 if 'Tiq=1.

(i, J )  

Our interest is actually in Tn. We write Tn(') = Il(i, to begin with, but j ) ~ S ( i g j )  

then notice that we can rewrite 

Therefore, 

Now remembering the combinatorial interpretation of c2(n), remembering that 
there is a two-to-one correspondence between closed paths and shaded regtons, and 
forgetting that this correspondence breaks down at some point, we have 

w 1 

where the sum is now over all configurations T = (T,, . . . ,T,). (The approximate 
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equality ( = ) reflects the breakdown of the correspondence between closed paths 
and shaded regions; more precisely, it means that the formal power series are 
identical out to a power determined by the size of the lattice.) Plugging in (6.1), we 
have 

The partition function reappears on the right-hand side! When we now take the 
limit N -t co,the approximate equality becomes exact, and we obtain the result 

Recall that values of T near 0 correspond to high temperatures, while values near 
1 correspond to low temperatures. Observe now that when T is near 0, (1 - T)/ 
(1 + T) is near 1 and vice versa: T + (1 - T)/(l + T) maps the interval onto 
,itself. Thus (6.4) is a formula-or functional equation, if you will-relating high 
and low temperatures. Viewing Ff as an 'analytic function, (6.4) provides an 
analytic continuation of Ff.In particular, if Ff is nonanalytic at. T, then it is also 
nonanalytic at (1 - T)/(l + T); i.e., phase transitions will occur in pairs. Thus if 
we assume that there is a unique (physical) phase transition in the interval (0, I), 
then it can only occur at the solution of the equation 

which is obviously at T = T,.= 6- 1. 
We conclude by observing that this result is in agreement with Onsager's solution 

1 1 1
Ff(T,O) = -1 1 log[(^' + 1)' - 2T(1 - + cos(2ry)]] dxdy. T ~ ) [ C O ~ ( ~ T X )

2 0 0  

For 0 < T < 1, we have 

with equality only when cos(2rx) = cos(2ny) = 1.Thus the integrand in Onsager's 
solution has a singularity if and only if T' + 2T - 1 = 0-i.e., T = fi - 1. 
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7.  Concluding Remarks 
The Ising model has become a vast subject. This article has touched only on 

portions of it, and the simplest ones at that. We have not spoken, for instance, of 
critical exponents, correlation functions, or renormalization. We have adhered 
rather strictly to a combinatorial approach, ignoring important algebraic and 
representation-theoretic techniques. Our purpose here has been to introduce the 
Ising model to a wider audience, not to expound on what the experts already know; 
the combinatorial interpretation seems to be the most accessible avenue, and has 
indeed led to several of the advances in the subject. The author hopes that this 
article may encourage some of its readers to dig more deeply into the Ising model. 
There is a lot of gold left in the mine. 

The author would like to thank Lynn Steen at St. Olaf and the referee for their helpful comments. 
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