
Journal of Computational Physics151,114–134 (1999)

Article ID jcph.1998.6171, available online at http://www.idealibrary.com on
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We present a new extended phase space method for constant temperature (canoni-
cal ensemble) molecular dynamics. Our starting point is the Hamiltonian introduced
by Nosé to generate trajectories corresponding to configurations in the canonical
ensemble. Using a Poincar´e time-transformation, we construct a Hamiltonian sys-
tem with the correct intrinsic timescale and show that it generates trajectories in
the canonical ensemble. Our approach corrects a serious deficiency of the standard
change of variables (Nos´e–Hoover dynamics), which yields a time-reversible system
but simultaneously destroys the Hamiltonian structure. A symplectic discretization
method is presented for solving the Nos´e–Poincar´e equations. The method is explicit
and preserves the time-reversal symmetry. In numerical experiments, it is shown
that the new method exhibits enhanced stability when the temperature fluctuation
is large. Extensions are presented for Nos´e chains, holonomic constraints, and rigid
bodies. c© 1999 Academic Press

I. INTRODUCTION

Molecular dynamics computer simulation [1, 2] has become a standard tool in compu-
tational biophysics and chemistry. Traditional molecular dynamics samples configurations
from a constant energy or microcanonical distribution. This is often inappropriate because
experiments are usually performed at constant temperature (canonical ensemble). Although
Monte Carlo methods can be used for the canonical ensemble, these methods cannot be
used to recover dynamical quantities and time-correlated functions. Hybrid methods using
stochastics with molecular dynamics [3] can be used to generate the correct distributions,
but they fail to provide correct dynamical quantities due to the discontinuous, stochastic
changes in the flow. Methods usingad hocnonreversible temperature controls [4] and isoki-
netic constraints [5–7] have also been proposed in the literature. These methods succeed in
producing smooth trajectories, but they fail to yield the correct canonical fluctuations in the
kinetic energy [1]. This paper will focus on the newer dynamical methods derived from the
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NOSÉ–POINCAŔE METHOD 115

extended Hamiltonian proposed by Nos´e [8, 9]:

HNosé =
∑

i

p̃2
i

2mi s2
+ V(q)+ π2

2Q
+ g̃kT ln s. (1)

Hereg̃ = Nf + 1, whereNf is the number of degrees of freedom of the real system. The
constantsT andk are temperature and Boltzmann’s constant, respectively. An extended
position variable,s, is introduced along with its canonical momenta,π . The constantQ
represents an artificial “mass” associated withs. One should note that̃p is the canonical
momenta assosciated with the position variable,q. The tilde is used to distinguish it from
the from the real momenta given byp = p̃/s.

Nosé proved that this system generates configurations from the canonical ensemble, pro-
vided that the dynamics is ergodic. He also showed that the intrinsic time variable must
be rescaled to provide trajectories at evenly spaced points in real time. Using data at un-
evenly spaced points in time does not cause any difficulties in the computation of ensemble
averages, but it does significantly affect the computation of correlation functions. This dif-
ficulty is traditionally resolved using a real-variable formulation of the equations called
Nosé–Hoover [9, 10]. In this approach, the equations of motion are reformulated using a
noncanonical change of variables. (Note that, in this paper, the word canonical has two dif-
ferent meanings depending on context. With respect to statistical mechanical distributions,
canonical refers to constant temperature, whereas a canonical change of variables is one that
leaves the form of Hamilton’s equations invariant.) Although the Nos´e–Hoover equations
produce canonically distributed configurations, and the dynamics evolve with respect to
real time, the resulting system is not Hamiltonian. It does have a conserved quantity which
is similar to energy, but the equations of motion do not arise from a corresponding Poisson
bracket (see [11, p. 320]). Although the flow is time-reversible, it does not have a canonical
symplectic structure.

The importance of time reversibility and symplecticness in numerical integrators has
recently become a popular topic of discussion [12, 13]. A Hamiltonian system is time-
reversible if it is an even function of the momenta, which is the case in classical molecular
dynamics. One says the flow of a canonical Hamiltonian system is symplectic because the
solution operator preserves the wedge product of differentials,dp∧ dq= ∑dpi ∧ dqi .
In other words, the sum of oriented areas formed by projections of a 2-surface in phase
space onto thepi qi coordinate planes is a first integral of the flow [14]. Recently a volume-
preserving generalization of the Nos´e–Hoover method has been proposed [15]. Although
this was a significant achievement, one should note that symplecticness is a stronger property
than the (phase space) volume preservation provided by Liouville’s theorem. It is only in
the special case of one degree of freedom systems that symplecticness is equivalent to area
or volume conservation.

For a numerical integrator the symplectic property has important consequences. A nu-
merical method is a discrete map (actually a family of maps parameterized by a stepsize
1t) which can be viewed as a transformation of phase space. If one step of the method
maps the point(qn, pn) to (qn+1, pn+1), then the method is symplectic ifdpn∧ dqn=
dpn+1∧ dqn+1. One can apply backward error analysis to symplectic methods designed to
approximate the dynamics of Hamiltonian systems [16, 17]. In this case it can be shown
that the numerical solution is theexact solutionof a “nearby” Hamiltonian system, up to an
exponentially small error. The Hamiltonian corresponding to the nearby system is obtained
in the form of an asymptotic expansion.
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Time-reversal symmetry and symplecticness are both strong geometric properties of the
flow of a dynamical system. However, time-reversal symmetry of a numerical method does
not, in general, provide an approximate conserved energy integral obtainable through an
asymptotic expansion, as is available for symplectic methods [17]. Near conservation of
energy over long time intervals is a direct result of this approximately conserved quantity.
Although time-reversible methods will show the same type of stability near the symme-
try plane (p= 0), there is no guarantee that this will be the case far from the symme-
try plane (at high temperatures) [18]. In addition to stability issues, the use of algorithms
which are volume-preservingand time-reversible is required for hybrid Monte Carlo
methods [19].

In this paper we will show that it is possible to derive a time-reversible, real-time for-
mulation without sacrificing the symplectic structure. This approach uses a new extended
Hamiltonian which we callNośe–Poincaŕe,

H =
(∑

i

p̃2
i

2mi s2
+ V(q)+ π2

2Q
+ gkT ln s−H0

)
s. (2)

Now the constantg= Nf , the number of degrees of freedom of the real system. This
Hamiltonian system is related to the Nos´e system through a Poincar´e transformation of
time [20–22]. The value of the constantH0 is chosen such thatH is zero when evaluated
at the initial conditions. We will also show that the dynamics of the Nos´e–Poincar´e system
can be integrated explicitly using a symplectic, time-reversible integrator.

In Section II we discuss the Nos´e–Hoover approach to reformulating the Nos´e
Hamiltonian in real variables. We review two of the numerical methods which have been
previously proposed for solving the Nos´e–Hoover equations [1, 23–25]. In Section III we
introduce a new symplectic, time-reversible integrator for Nos´e–Poincar´e. We verify that it
generates configurations from the correct distribution and formulate an appropriate numer-
ical method for propagating the dynamics. Using numerical experiments in Section IV, we
compare the Nos´e–Poincar´e method with two popular methods for Nos´e–Hoover. These
experiments indicate that the Nos´e–Poincar´e method has better stability properties in sim-
ulations with large fluctuations of the thermostat variable,s. This situation arises when the
extended “mass,”Q, is made small to increase sampling speed or when the initial conditions
are not properly equilibrated to the simulation temperature. In the appendices we discuss
the extensions of the Nos´e–Poincar´e approach to Nos´e chains, holonomic constraints, and
rigid bodies.

II. THE NOS É HAMILTONIAN AND NOS É–HOOVER METHOD

Although the Nos´e Hamiltonian generates configurations from the canonical distribution,
it also introduces an unnatural scaling of the intrinsic time. This introduces computational
difficulties, because the configurations are not available at equally spaced points in real time.
A real-variable reformulation of the equations of motion was proposed by Nos´e [8, 9] to
remedy this problem. Simplifications to the real-variable system, resulting in the traditional
treatment of the Nos´e Hamiltonian called Nos´e–Hoover, were proposed by Hoover [10].
In this section we review the Nos´e–Hoover system of equations and discuss some of the
common numerical methods [1, 23–25] proposed for solving them.
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We begin with the equations of motion derived from the Nos´e Hamiltonian (1),

dqi

dτ
= p̃i

mi s2
,

ds

dτ
= π

Q
, (3)

d p̃i

dτ
= − ∂

∂qi
V(q),

dπ

dτ
=
∑

i

p̃2
i

mi s3
− g̃kT

s
. (4)

Nosé [9] has shown that the dynamics associated with this system generate canonically
distributed configurations,̃p/s andq. To convert to real configurations, a noncanonical
change of variables is used:

p = p̃

s
, π̂ = π

s
. (5)

This is followed by a Sundman time transformation [20] applied to the vector field,

dτ

dt
= s, (6)

resulting in a new system of non-Hamiltonian equations for the dynamics in the real
variables:

q̇i = pi

mi
, ṗi = − ∂

∂qi
V(q)− pi

sπ̂

Q
, (7)

ṡ = s2π̂

Q
, ˙̂π = 1

s

(∑
i

p2
i

mi
− gkT

)
− sπ̂2

Q
. (8)

Hoover [10] noted that the equations could be simplified considerably because ˆπ ands
always appear together. By making another change of variables from ˆπ to ξ = sπ̂/Q and
from lns to η, one not only eliminates the variable ˆπ , but also decouples the variables
from the system. This results in the Nos´e–Hoover equations for the dynamics in reduced
real-variable formulation:

q̇i = pi

mi
, ṗi = − ∂

∂qi
V(q)− pi ξ, (9)

η̇ = ξ, ξ̇ = 1

Q

(∑
i

p2
i

mi
− gkT

)
. (10)

In the reduced system the constantg= Nf (the number of degrees of freedom of the real
system) as opposed tõg = Nf + 1 in the Nosé formulation. This reduction in the degrees
of freedom is needed to recover configurations at the correct temperature [9]. Although
this system is not Hamiltonian, it does have a conserved quantity, which we call the total
extended energy:

Eext =
∑

i

p2
i

2mi
+ V(q)+ Qξ2

2
+ gkTη. (11)

The application of a Sundman time transformation necessarily destroys the canonical sym-
plectic structure [26]. It is for this reason that the Nos´e–Hoover system in (9)–(10) does not
have such a structure.
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This system is time-reversible, and it is advisable to solve the equations of motion
with a reversible integrator. We will now explore two of the more commonly used re-
versible methods, both of which are based on variants of the generalized leapfrog algorithm
[25].

The first is an implicit method [1] based on a modification of the velocity Verlet algorithm.
It consists of alternating explicit and implicit half-steps with the momenta variables, with
explicit whole-steps in the position variables. The method is given below in a whole-step
formulation, i.e., as a mapping from timetn to tn+1 = tn +1t :

pn+1/2
i = pn

i −
1t

2

(
∂

∂qi
V(qn)+ ξn pn

i

)
, (12a)

ξn+1/2 = ξn + 1t

2Q

(∑
i

(
pn

i

)2

mi
− gkT

)
, (12b)

qn+1
i = qn

i +1t
pn+1/2

i

mi
, (12c)

ηn+1 = ηn +1tξn+1/2, (12d)

pn+1
i = pn+1/2

i − 1t

2

(
∂

∂qi
V(qn+1)+ ξn+1 pn+1

i

)
, (12e)

ξn+1 = ξn+1/2+ 1t

2Q

(∑
i

(
pn+1

i

)2

mi
− gkT

)
. (12f)

Equations (12e) and (12f) are implicitly coupled and must be solved together. Tradi-
tionally, this step is solved with a(3N + 1)-dimensional Newton iteration [1]. This can be
simplified considerably by substitution, eliminatingpn+1 from the iteration. This results
in a scalar–cubic equation in terms ofξn+1 which can be solved either directly or using a
simple iterative method.

Several explicit time-reversible methods have been proposed for the Nos´e–Hoover
equations [23–25]. The second method which we consider in this paper [23, 25] is one
which is explicit and is based on the St¨ormer–Verlet method. We write it in its leapfrog
form for comparison purposes:

pn+1/2
i = pn

i −
1t

2

(
∂

∂qi
V(qn)+ ξn pn+1/2

i

)
, (13a)

qn+1
i = qn

i +1t
pn+1/2

i

mi
, (13b)

ξn+1 = ξn + 1t

Q

(∑
i

(
pn+1/2

i

)2

mi
− gkT

)
, (13c)

ηn+1 = ηn + 1t

2
(ξn+1+ ξn), (13d)

pn+1
i = pn+1/2

i − 1t

2

(
∂

∂qi
V(qn+1)+ ξn+1 pn+1/2

i

)
. (13e)
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III. THE NOS É–POINCARÉ METHOD

As we illustrated in the previous section, the traditional real-variable formulation of
Nosé–Hoover destroys the symplectic structure associated with the Nos´e Hamiltonian. In
this section we will outline a procedure for scaling time while preserving the Hamiltonian
structure. The method proposed in this paper is formulated through a Poincar´e transforma-
tion [20] of the HamiltonianH = H(q, p),

H̃ = f (q, p)(H−H0), f > 0, (14)

where f is a “time scaling” function, and the constantH0 is the initial value ofH. Along
the energy sliceH=H0, the dynamics of the transformed system will be equivalent to
those of the original system, up to a transformation of time. To see this, write the Hamilton
equations of motion

q̇i = f
∂

∂pi
H+ (H−H0)

∂

∂pi
f, (15)

ṗi = − f
∂

∂qi
H− (H−H0)

∂

∂qi
f ; (16)

then observe that whenH=H0, the equations are the same as the original equations ex-
pressed in the real-time variable,t , related toτ by

dτ

dt
= f. (17)

Now we consider the Poincar´e transformation,f = s, applied to a slightly modified
version of the Nos´e extended Hamiltonian in (1):

H̃ = (HNosé−H0) s, (18)

H̃ =
(∑

i

p̃2
i

2mi s2
+ V(q)+ π2

2Q
+ gkT ln s−H0

)
s. (19)

The modification comes in that we are using the constantg= Nf (as opposed tõg=
Nf + 1). We will see later that this small change is necessary for the correct distribution of
configurations. The constantH0 is chosen to be the initial value of the Nos´e Hamiltonian,
HNosé. We will show that this transformed Hamiltonian in (2) and (19), which we call
Nosé–Poincar´e, generates configurations from the canonical distribution in the variablesq
and p̃/s.

THEOREM. The Nośe–Poincaŕe system generates canonically distributed averages, given
the usual statistical mechanics assumptions of equal a priori probabilities and ergodicity.

The proof will involve derivation of the probability distribution, and partition function
for the Nosé–Poincar´e Hamiltonian.

Proof. Consider the probability of finding a particular configuration in the phase space
described by the real variables(q, p):

dq dpF(q, p) ≡
∫

dπ
∫

ds dp̃ dq Fext(q, p̃, s, π) . (20)
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For the Nos´e–Poincar´e Hamiltonian,H̃, we can write the probability of finding a particular
configuration of energyH̃0 as a microcanonical distribution in the extended phase space
(q, p̃, s, π):

dπ ds d̃p dq Fext(q, p̃, s, π) = dπ ds dp̃ dqδ[H̃− H̃0]∫
dπ
∫

ds
∫

dp̃
∫

dq δ[H̃− H̃0]
. (21)

In the above expression the usual statistical mechanical assumptions of equala priori
probabilities and ergodic (or quasi-ergodic) dynamics are made [27]. We now subsititute
(21) in the expression (20), resulting in

dq dpF(q, p) = 1

Z̃ N! hNf

∫
dπ
∫

ds d̃p dqδ[H̃− H̃0], (22)

where the Nos´e–Poincar´e partition function is given by

Z̃ = 1

N! hNf

∫
dπ
∫

ds
∫

dp̃
∫

dq δ[H̃− H̃0]. (23)

UsingH̃0= 0, and expanding̃H, we get

dq dpF(q, p) = 1

Z̃ N! hNf

∫
dπ
∫

ds dp̃ dqδ[s(HNosé−H0)]. (24)

If we let H(p,q)=∑i p2
i /2mi + V(q), this reduces to

dq dpF(q, p)= 1

Z̃ N! hNf

∫
dπ
∫

ds d̃p dqδ

[
s

(
H( p̃/s,q)+ π2

2Q
+ gkT ln s−H0

)]
.

(25)

Becauses is strictly positive, we can make the change of variablesp← p̃/s, yielding

dq dpF(q, p)= 1

Z̃ N! hNf

∫
dπ
∫

ds dp dq sNf δ

[
s

(
H(p,q)+ π2

2Q
+ gkT ln s−H0

)]
.

(26)

Whenever a smooth function,r (s), has a single simple root ats= s0, one can write the
relationδ[r (s)] = δ[s− s0]/|r ′(s0)|. This relation can be directly applied to (26), resulting
in

δ

[
s

(
H(p,q)+ π2

2Q
+ gkT ln s−H0

)]
= 1

|gkT|δ
[
s− exp

( −1

gkT

(
H (p,q)+ π2

2Q
−H0

))]
. (27)

These substitutions transform (26) into

dq dp F(q, p)

= 1

Z̃ N!hNf

∫
dπ
∫

ds dp dq
sNf

gkT
δ

[
s− exp

( −1

gkT

(
H(p,q)+ π2

2Q
−H0

))]
. (28)
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Integrating overs, and substituting for the roots0, results in

dq dpF(q, p) = 1

Z̃ N! hNf gkT
exp

(
NfH0

gkT

)∫
dπ dq dpexp

(−Nf

gkT

(
H(p,q)+ π2

2Q

))
.

(29)

Finally, letg= Nf , and integrate overπ to reduce the equation to

dq dpF(q, p) = C

Z̃ N! hNf
dq dpexp

(
− 1

kT
H(p,q)

)
, (30)

whereC is a positive constant. The above procedure can also be applied toZ̃, which can
be then substituted along with (30) into (22). After canceling the prefactorC/(N! hNf ) we
have shown that

dq dpF(q, p) = dq dpexp(−(1/kT)H(p,q))∫
dq
∫

dpexp(−(1/kT)H(p,q))
. (31)

Because the right-hand side of the expression is the probability of finding a configuration
in the canonical ensemble, this completes the proof. If, as is the usual case in molecular
dynamics, total linear momentum is conserved, then an additional restriction ofzerototal
linear momentum is required [9, 10, 28, 29].j

The disadvantage of the general Poincar´e transformation in (14) is that it mixes the
variables so that an explicit symplectic treatment of the extended Hamiltonian is not, in
general, possible and one is compelled to use implicit symplectic methods (see [21, 22]).
However, this is not always the case for transformation functions,f , which depend only on
a reduced number of the phase-space variables (i.e.,f (q) or f (s)). In these special cases,
the variables are sufficiently decoupled, and we can easily formulate explicit symplectic
methods [16, 30].

Returning to the Nos´e–Poincar´e Hamiltonian,H̃, we write the equations of motion

q̇i = p̃i

mi s
, ˙̃pi = −s

∂

∂qi
V(q), (32)

ṡ= s
π

Q
, π̇ =

∑
i

p̃2
i

mi s2
− gkT−1H(q, p̃, s, π), (33)

1H(q, p̃, s, π) =
∑

i

p̃2
i

2mi s2
+ V(q)+ π2

2Q
+ gkT ln s−H0. (34)

The value ofH0 is chosen such that1H(q0, p̃0, s0, π0) = 0. A simple method for numeri-
cally solving the Nos´e–Poincar´e equations of motion is the generalized leapfrog algorithm
[16, 30]. Because we are treating a Hamiltonian system, the resulting method is symplectic
and time-reversible [13, 21, 22]:

p̃n+1/2
i = p̃n

i −
1t

2
sn ∂

∂qi
V(qn), (35a)
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πn+1/2 = πn + 1t

2

(∑
i

1

mi

(
p̃n+1/2

i

sn

)2

− gkT

)

− 1t

2
1H(qn, p̃n+1/2, sn, πn+1/2), (35b)

sn+1 = sn + 1t

2
(sn+1+ sn)

πn+1/2

Q
, (35c)

qn+1
i = qn

i +
1t

2

(
1

sn+1
+ 1

sn

)
p̃n+1/2

i

mi
, (35d)

πn+1 = πn+1/2+ 1t

2

(∑
i

1

mi

(
p̃n+1/2

i

sn+1

)2

− gkT

)

− 1t

2
1H(qn+1, p̃n+1/2, sn+1, πn+1/2), (35e)

p̃n+1
i = p̃n+1/2

i − 1t

2
sn+1 ∂

∂qi
V(qn+1). (35f)

Due to the special structure of the system, the resulting method is also explicit. Note that
(35b) requires the solution of a scalar quadratic equation forπn+1/2,

1t

4Q
(πn+1/2)2+ πn+1/2+ C = 0, (36)

where

C = 1t

2

(
gkT(1+ ln sn)−

∑
i

(
p̃n+1/2

i

)2

2mi (sn)2
+ V(qn)−H0

)
− πn. (37)

In this simplified formulation,C is a constant which can be easily computed. This equation
can be solved explicitly using the quadratic formula, but one should be careful to solve for
the correct root. To avoid subtractive cancellation in the computation, we use a variant of
the quadratic formula to solve (36):

πn+1/2 = −2C

1+√1− C1t/Q
. (38)

The remaining steps in the algorithm are completely explicit and can be solved sequentially.

IV. NUMERICAL EXPERIMENT: LENNARD–JONES FLUID

As a numerical experiment, we compare the two proposed Nos´e–Hoover methods with the
Nosé–Poincar´e method. As a test problem, we consider 108 particles in cubic periodic box,
using the minimum image convention. A truncated, shifted, and smoothed Lennard–Jones
potential is used. It is important that the potential be smoothly truncated to zero to prevent
artificial energy jumps [31]. Our experiments have indicated that the potential function
should be at leastC2; i.e., it has a continuous second derivative. We find this higher degree
of smoothness to be important in some systems for verifying the order of the numerical
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methods. The resulting smoothed pair potential function is

ṼLJ(r ) =
{

S(r )(VLJ(r )− VLJ(rc)) r ≤ rc

0 r > rc
, (39)

where

VLJ(r ) = 4ε

((
σ

r

)12

−
(
σ

r

)6
)
. (40)

The smoothing functionS(r ) is defined by

S(r ) = 1− 3

(
r

rc

)2

+ 3

(
r

rc

)4

−
(

r

rc

)6

. (41)

We give all of the results of our numerical experiments in reduced units. Specifically,
we will useσ , ε, andm as the basic units of length, energy, and mass, respectively. In
addition to the basic units, we will be using reduced temperature (T∗ = kTε−1), density
(ρ∗ = ρσ 3), and time (t∗ = tσε1/2m−1/2). All of our simulations are performed with total
linear momenta set to zero; hence we setg= Nf with Nf = 3N− 3 (see [8, 28]). In all
of the numerical experiments, we set the initial conditions of the extended variables to be
s0= 1 andπ0= 0. For this reason, the initial extended energy of the system is the same as
the initial energy of the real system. We define the relative extended energy error at time
t as ∣∣∣∣E(t)− E(0)

E(0)

∣∣∣∣, (42)

where the quantityE is determined byH , Eext, andHNosé when using the Verlet, Nos´e–
Hoover, and Nos´e–Poincar´e methods, respectively (see Sections II and III for details).

In our first experiment, we start the simulation equilibrated toT∗ = 1.5, withρ∗ = 0.95,
and Q= 1.0. The timestep is set relatively low (1t∗ = 0.005), to verify the qualitative
behavior of the methods in a numerically stable regime. In Fig. 1 the distribution of the

FIG. 1. Comparison of momenta and temperature distributions for a Lennard–Jones fluid (N= 108,T∗ = 1.5,
ρ∗ = 0.95). The squares, triangles, circles, and pluses represent trajectories generated by the implicit Nos´e–Hoover,
explicit Nosé–Hoover, Nos´e–Poincar´e, and traditional Verlet methods, respectively. To the left, the momenta
distribution is compared with the Maxwell–Boltzmann distribution (solid line). To the right, the distribution of the
instantaneous temperature is shown. A Gaussian is fit to each curve to highlight the statistical similarities.
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FIG. 2. Comparison of time-correlated quantities for a Lennard–Jones fluid (N= 108,T∗ = 1.5, ρ∗ = 0.95).
The dotted, dashed, dashed–dotted, and solid lines represent trajectories generated by the implicit Nos´e–Hoover,
explicit Nosé–Hoover, Nos´e–Poincar´e, and traditional Verlet methods, respectively. To the left, the normalized
velocity autocorrelation function〈v(t) · v(0)〉〈v(0) · v(0)〉 is shown. To the right, the mean-square displacement is shown as a
function of time.

momenta is compared with the Maxwell–Boltzmann distribution for this temperature. We
also show the results from the Verlet method (traditional molecular dynamics), which does
not use a temperature control. For this method, the simulation temperature cannot be de-
termined until the simulation is complete. A tedious trial-and-error process had to be used
to find initial conditions which would yield the correct temperature. This is why the Nos´e
methods are preferred to traditional molecular dynamics for generating configurations at
constant temperature. As expected, all four methods generated Boltzmann distributed mo-
menta, because the system is ergodic. We also show the distribution of the instantaneous
temperature for the Nos´e methods. All three generate Gaussian distributed temperatures
with the same mean and variance.

We now investigate the behavior of the methods with respect to dynamical quantities
associated with time-correlated functions. In Fig. 2 we show the velocity autocorrelation
function and mean-square displacement as functions of time. All four methods give almost
identical results for both of these functions. This indicates that the dynamics associated
with Nosé–Hoover and Nos´e–Poincar´e evolve with the correct scale of time. We use the
mean-square displacement curve to measure the diffusion coefficient and note that all four
curves asymptotically approach straight lines of equal slope. Fitting a line to the curves in
the asymptotic regimet∗> 2.0, we calculate the diffusion coefficientD∗ ≈ 0.03. To check
the reliability of this estimate, we calculated the same value by numerical integration of
the normalized autocorrelation curve. The two curves are related to eachother through the
Einstein and Green–Kubo relations [32],

D = 1

2d
lim

t→∞
1r 2(t)

t
= kT

m

∫ ∞
0

〈v(t) · v(0)〉
〈v(0) · v(0)〉 dt. (43)

The parameterQ plays an interesting role in determining the characteristics of Nos´e
dynamics. In the limit asQ goes to infinity the extended variables remains constant, and we
recover traditional molecular dynamics. Similarly, one can verify that both the Nos´e–Hoover
and Nosé–Poincar´e methods reduce to Verlet in this same limiting case. A drastically
different situation arises whenQ is small. This case is of practical interest because the rate
at which configurational space is sampled can be increased by decreasing the size ofQ.
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FIG. 3. Comparison of extended energy conservation as a function of stepsize for a Lennard–Jones fluid
(N= 108 andρ∗ = 0.95). The maximum relative error in extended energy conservation is shown as a function of
stepsize. A relatively large value for the “extended mass” is used (Q= 10.0). To the left, the curves are generated
using a temperature ofT∗ = 1.5. To the right, a larger value,T∗ = 6.0, is used.

However, one must be cautious not to makeQ too small because this leads to high-frequency
oscillations ins. This can lead to sampling problems, in addition to the computational
difficulties. The best value forQ is problem dependent, and many authors have suggested
that Q should be chosen in resonance with the real system to reduce “artificial effects”
introduced by the thermostat [8–10, 29, 33, 34].

As a second test, we consider the effects of changes in the extended mass,Q, on the
stability of the algorithms. We start with the case of a relatively large extended mass,Q = 10.
Since the Nos´e–Hoover and Nos´e–Poincar´e methods reduce to Verlet asQ becomes large,
we expect similar behavior for all of the methods. Each simulation is started with the system
properly equilibrated to the simulation temperature. We follow the dynamics for a range of
stepsizes between 0.002 and 0.02 while the final time is held fixed at 10 units. In Fig. 3,
the maximum relative error in the extended energy deviation is shown as a function of
stepsize for two different temperatures,T∗ = 1.5 andT∗ = 6.0. For clarity, only the values
in the stable regime of each method are shown in the diagram. The method was considered
unstable if the simulation temperature deviated by more than 5% from the target value of
T∗ = 1.5 or T∗ = 6.0. For this particular case, there is no clear difference in the efficiency
of the methods. All four of the methods perform nearly the same for small stepsizes, as
expected. However, for large stepsizes the implicit Nos´e–Hoover method shows better
stability properties. However, the magnitude of the error in the energy at the larger stepsizes
is a concern, as it can be an indication of nonphysical behavior in the computed trajectory.

In Fig. 4, the same efficiency diagrams are shown forQ= 0.1. Since the Verlet method
does not use the parameterQ, its results are the same as in the previous figure. For this
smaller value ofQ, the Nosé–Poincar´e method is slightly more efficient than the explicit
Nosé–Hoover method. Although the implicit Nos´e–Hoover method shows better stability
at large stepsizes, it is more inefficient than the other methods at smaller stepsizes. Our
results indicate that the Nos´e–Hoover methods are less efficient when the parameterQ is
small. This could be a result of the more rapid fluctuations in the thermostat.

To further investigate the effect of fluctuations in the thermostat, we now consider the
same system with a jump in the target temperature. The parameterQ is set to 0.1, and
the simulation is started with the system equilibrated toT∗ = 1.5 andρ∗ = 0.95. At t∗ = 0
the Nosé thermostat is turned on, and the temperature is increased toT∗ = 6.0. Due to the
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FIG. 4. Comparison of extended energy conservation as a function of stepsize for a Lennard–Jones fluid
(N= 108 andρ∗ = 0.95). The maximum relative error in extended energy conservation is shown as a function of
stepsize. A relatively small value for the “extended mass” is used (Q= 0.1). To the left, the curves are generated
using a temperature ofT∗ = 1.5. To the right, a larger value,T∗ = 6.0, is used.

change in the system temperature, we are unable to use traditional molecular dynamics
algorithms (i.e., Verlet) for this simulation. In Fig. 5, the relative error in extended energy
is shown as a function of stepsize. We also show the relative energy error for a particular
stepsize,1t = 0.006, near the stability limit. For all three of the algorithms, there is a large
initial jump due to the increase in the imposed temperature. However, for large stepsizes the
Nosé–Poincar´e method is the most stable during this initial equilibration phase and shows
the smallest jump in energy. For very small stepsizes, the explicit Nos´e–Hoover method
appears to be slightly more efficient than Nos´e–Poincar´e.

Over longer time intervals, the difference becomes even more pronounced. In our final
experiment, we follow the dynamics for 500,000 steps at a stepsize of1t∗ = 0.006. The
parameterQ is set to 0.1, and the simulation is started with the initial conditions equilibrated
to the thermostat temperature ofT∗ = 6.0. In Fig. 6, the relative energy error is shown as
a function of time. All of the methods show some drift in the energy for this long time
simulation. However, the extended energy is conserved much better by the Nos´e–Poincar´e

FIG. 5. Simulation of a temperature jump in a Lennard–Jones fluid (N= 108,T∗ = 6.0,ρ∗ = 0.95, Q= 0.1).
The system was first equilibrated toT∗ = 1.5 before the temperature was increased toT∗ = 6.0 at t∗ = 0. To the
left, the maximum relative error in the extended energy is shown as a function of stepsize. To the right, the relative
error in the extended energy is shown for a large stepsize (1t∗ = 0.006).
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FIG. 6. Long time simulation of a Lennard–Jones fluid (N= 108,T∗ = 6.0,ρ∗ = 0.95,Q= 0.1). The dynam-
ics was followed for 500,000 steps, at a stepsize of1t∗ = 0.006, with initial conditions equilibrated toT∗ = 6.0.
The relative error in the extended energy is shown as a function of stepsize for the various methods.

and Verlet methods. The Nos´e–Hoover methods, which are not symplectic, are destabilized
by the large fluctuations in temperature due to the small value ofQ.

V. CONCLUSIONS

We have presented a new method for constant temperature (canonical) molecular dy-
namics, called Nos´e–Poincar´e. The new method has a wide range of applications, including
rigid bodies and Nos´e chains, while providing a symplectic framework for a real time for-
mulation of the Nos´e Hamiltonian. Although the traditional Nos´e–Hoover approach also
provides a real-variable system, it does so through a noncanonical change of variables. Both
approaches are time reversible, but only Nos´e–Poincar´e has a canonical symplectic struc-
ture. Both time-reversible symmetry and symplecticness are strong geometric properties of
a dynamical flow. The difference is in that the reversible symmetry of a numerical method
does not, in general, provide an approximate integral obtainable through an asymptotic ex-
pansion of a “nearby Hamiltonian.” Near conservation of energy over long time intervals is
a direct result of this approximately conserved quantity. Although time-reversible methods
will show the same type of stability near the symmetry plane (p= 0), there is no guarantee
that this will be the case far from the symmetry plane (|p|À0). This is one of the clear
qualitative distinctions between symplectic and reversible methods.

Our numerical experiments have indicated that the Nos´e–Poincar´e formulation provides
improved stability in simulations with large fluctuations in the thermostat variable. This sit-
uation arises when the initial temperature does not correspond to the simulation temperature
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and when the parameterQ is small. In this case, the Nos´e–Hoover methods show larger
jumps in the extended energy for moderately large stepsizes. One should also note that our
experiments have shown no clear difference between the explicit Nos´e–Hoover method and
Nosé–Poincar´e for very small stepsizes, and when the system is properly equilibrated. The
implicit Nosé–Hoover method is more stable at large stepsizes than the explicit form, but it
is not as efficient in achieving a given degree of accuracy. Our observation is that for moder-
ately large stepsizes the Nos´e–Poincar´e method can be a substantially better method and is
certainly no worse than the Nos´e–Hoover formulation. Because the Nos´e–Poincar´e method
is symplectic, as well as time-reversible, we recommend its use for constant temperature
simulations.

APPENDIX A: NOSÉ CHAINS

It has been shown that the Nos´e Hamiltonian generates configurations from the canonical
ensemble if the dynamics is ergodic [9, 10, 29]. The hypothesis of ergodicity can be violated
in special cases [29, 34] (i.e., small systems and systems with stiff springs). A simple
extension of the Nos´e-Hoover equations has been developed, called Nos´e–Hoover chains
[33], which alleviates this ergodicity problem. This method involves introducing a sequence
of new thermostats, each one coupled to the previous, resulting in a chain. The Nos´e–Hoover
chain equations are implicitly coupled, but can be solved explicitly using an even–odd
splitting [24, 25]. To derive the equations for the chains, one starts with the Nos´e–Hoover
equations as defined in (9)–(10),

q̇i = pi

mi
, ṗi = −

∂

∂qi
V(q)− pi

ϕ

Q
, (A1)

η̇ = ϕ

Q
, ϕ̇ =

∑
i

p2
i

mi
− gkT. (A2)

Here the variableϕ is equivalent toQξ in Eqs. (9)–(10). NowJ− 1 new thermostats are
introduced, each one coupled to the previous, resulting in a Nos´e–Hoover chain:

q̇i = pi

mi
, ṗi = −

∂

∂qi
V(q)− pi

ϕ1

Q1
, (A3)

η̇1= ϕ1

Q1
, ϕ̇1=

∑
i

p2
i

mi
− gkT− ϕ1

ϕ2

Q2
, (A4)

η̇ j = ϕ j

Q j
, ϕ̇ j =

ϕ2
j−1

Qj−1
− kT − ϕ j

ϕ j+1

Qj+1
, j = 2 · · · J− 1, (A5)

η̇J= ϕJ

QJ
, ϕ̇J= ϕ2

J−1

QJ−1
− kT. (A6)

While this system of equations is not Hamiltonian, there is a conserved quantity,

Eext =
∑

i

p2
i

2mi
+ V(q)+

J∑
j=1

ϕ2
j

2Qj
+ gkTη1+

J∑
j=2

η j

β
. (A7)
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This system is based on the time-reversible Nos´e–Hoover system and is thus time-
reversible. However, due to the noncanonical change of variables introduced by Nos´e–
Hoover, the resulting system has no Hamiltonian or symplectic structure. It has been rigor-
ously proved [33] that the Nos´e–Hoover chain equations generate configurations from the
correct distribution, given that the dynamics is ergodic. This needed ergodicity is provided
by the additional degrees of freedom in the chain of thermostats. The same idea can be
applied directly to the Nos´e Hamiltonian, resulting inNośe chains:

Hchain=
∑

i

p̃2
i

2mi s2
1

+ V(q)+
J−1∑
j=1

π2
j

2Qj s2
j+1

+ π2
J

2QJ
+ gkT ln s1+ kT

J∑
j=2

ln sj . (A8)

It is not obvious whether one can derive the Nos´e–Hoover chain equations directly from
the Nosé chain system. As in the case of a single thermostat, the real and intrinsic scales
of time in the Nos´e chain system are related by the scalingdτ/dt= s1. Because we are
interested in capturing the correct timescale for the real variables,q and p̃/s1, we apply a
Poincaré transformation (see Section III) of the form

f = s1 (A9)

to the Nosé chain Hamiltonian in (A8). This results in a new Hamiltonian system which we
call the Nosé–Poincar´e chain,

H = (Hchain−H0) s1. (A10)

The constantH0 is chosen as the initial value ofHchain. Since the rescaling variables1

is strictly positive, the quantityHchain will be approximately conserved along the flow of
H. To formulate a numerical integrator for the Nos´e–Poincar´e chain system, we begin by
writing out the equations of motion:

q̇i =
p̃i

mi s1
, ˙̃pi = −s1

∂

∂qi
V(q), (A11)

ṡ1 = π1s1

Q1s2
2

, π̇1 =
∑

i

p̃2
i

mi s2
1

− gkT−1H(q, p̃, Es, Eπ), (A12)

ṡ j = π j s1

Qj s2
j+1

, π̇ j =
π2

j−1 s1

Qj−1 s3
j

− kT s1
sj

, j = 2 · · · J− 1, (A13)

ṡJ = πJs1

QJ
, π̇J = π2

J−1 s1

QJ−1 s3
J

− kT s1
sJ

, (A14)

1H(q, p̃, Es, Eπ) = Hchain(q, p̃, Es, Eπ)−H0. (A15)

The new thermostats have introduced an implicit coupling to the equations of motion.
One could solve this system using the generalized leapfrog algorithm, but in this case it
would be an implicit method. To formulate an explicit method, we use a splitting of the
Hamiltonian and corresponding Liouville operator. Although many choices for this splitting
are possible, we will use an even–odd splitting [25] of the extended variables. For an odd



130 BOND, LEIMKUHLER, AND LAIRD

number of thermostats,J, this splitting results in three Hamiltonians:

H = H1+H2+H3 (A16)

H1 =
(∑

i

p̃2
i

2mi s2
1

+
∑
j=1

π2
2 j

2Q2 j s2
2 j+1

+ gkT ln s1+ kT
∑
j=1

ln s2 j+1

)
s1 (A17)

H2 =
(

π2
1

2Q1 s2
2

−H0

)
s1 (A18)

H3 =
(

V(q)+
∑
j=2

π2
2 j−1

2Q2 j−1 s2
2 j

+ π2
J

2QJ
+ kT

∑
j=1

ln s2 j

)
s1. (A19)

To get a symplectic, time-reversible method, we use a symmetric splitting of the Liouville
operator.

i LH = {·,H} = {·,H1} + {·,H2} + {·,H3} = i L 1+ i L 2+ i L 3 (A20)

In terms of the solution operator, this splitting introduces an error of order1t3 at each step,
resulting in a second-order method:

9H(1t) = e(i LH1t) (A21)

= e(i L 31t/2)e(i L 21t/2)e(i L 11t)e(i L 21t/2)e(i L 31t/2) + O(1t3). (A22)

Solving the dynamics ofH1 andH3 for one step is straightforward because eachsj has
been decoupled from its canonical momenta,π j . On the other hand, the HamiltonianH2

requires the solution of a quadratic, scalar differential equation forπ1 (which can be solved
analytically). Once this is solved, its solution can be substituted into the equations fors1 and
π2. Alternatively, one could solveH2 using the generalized leapfrog algorithm. Because
the composition of symplectic maps is a symplectic map, this modification does not destroy
the symplectic structure.

APPENDIX B: HOLONOMIC CONSTRAINTS AND RIGID BODIES

The formulation of Nos´e–Poincar´e with respect to a set ofarbitrary holonomic con-
straints can be treated using an elementary modification of SHAKE discretization. Let us
illustrate the treatment with the case of a single constraint, described in compact form by
the Hamiltonian

H =
(∑

i

p2
i

2mi s2
+ V(q)+ π2

2Q
+ gkT ln s+ λψ(q)−H0

)
s. (B1)

Hereψ(q) = 0 represents a constraint, andλ is the corresponding Lagrange multiplier.
The equations of motion of a general Hamiltonian system subject to constraints can be

discretized using an extension of the SHAKE discretization [35], a natural generalization
of the Verlet method. This method is second order and symplectic on the extended phase



NOSÉ–POINCAŔE METHOD 131

space (see [36, 37]),

pn+1/2
i = pn

i −
1t

2
sn

(
∂

∂qi
V(qn)+ λn ∂

∂qi
ψ(qn)

)
, (B2)

πn+1/2 = πn + 1t

2

(∑
i

(
pn+1/2

i

)2

2mi (sn)2
− V(qn)− (π

n+1/2)2

2Q
− gkT(1+ ln sn)+H0

)
,

(B3)

sn+1 = sn + 1t

2
(sn+1+ sn)

πn+1/2

Q
, (B4)

qn+1
i = qn

i +
1t

2

(
1

sn+1
+ 1

sn

)
pn+1/2

i

mi
, (B5)

pn+1
i = pn+1/2

i − 1t

2
sn+1

(
∂

∂qi
V(qn+1)+ λn+1 ∂

∂qi
ψ(qn+1)

)
, (B6)

πn+1 = πn+1/2+ 1t

2

(∑
i

(
pn+1/2

i

)2

2mi (sn+1)2
− V(qn+1)− (π

n+1/2)2

2Q

− gkT(1+ ln sn+1)+H0

)
, (B7)

subject to the constraint

ψ(qn+1) = 0. (B8)

The equations can be efficiently solved using an iterative Newton algorithm. Extending the
method to a vector of constraints is straightforward.

1. Rigid Bodies

We next consider the case of a system of rigid bodies subject to a Nos´e-type thermostat.
In particular, we are interested in applications such as typical molecular liquids where the
rigid bodies are coupled only through the potential energy functionV .

Often one sees this problem treated with separate thermostats for the translational and
rotational motion [38]. We consider for simplicity the case of a system of rigid bodies on fixed
centers, so there is only the rotational kinetic term and a single thermostat. Extensions to the
case of multiple thermostats and translational motion can be derived in a straightforward
manner [39].

We can easily describe the Hamiltonian in rotation matrix formulation, withRi = Ri (t) ∈
SO(3) an orthogonal matrix with unit determinant representing the orientation of thei th
body. This results in a Hamiltonian description subject to the constraintsRT

i Ri = E, where
E is the identity matrix. As described in [39–41], this is a more appropriate foundation than
alternatives such as quaternions [38] or Euler angles for developing a geometric discretiza-
tion of rigid body motion.

Denote byT rot
i the rotational kinetic energy of thei th rigid body; then the Nos´e Hamiltonian

becomes

H = 1

s2

N∑
i=1

T rot
i + V + 1

2Q
π2

s + gkT ln s+
N∑

i=1

tr
((

RT
i Ri − E

)
3i
)
, (B9)
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where the3i are symmetric 3×3 matrix multipliers that are chosen to enforce the constraint
relationships.T can be expressed in terms of the canonical momentaP, associated in the
usual way toR (i.e., through partial derivatives of a Lagrangian with respect toṘ). The
kinetic term can also be described in terms of the angular momenta5i = (5x

i ,5
y
i ,5

z
i ) and

the inertial tensorI = diag(Ix, I y, Iz) by

T rot
i =

1

2

((
5x

i

)2

Ix
+
(
5

y
i

)2

I y
+
(
5z

i

)2

Iz

)
. (B10)

The angular momenta then evolve, in the absence of the potentialV , according to the Euler
equations:

d

dt
5 = 5× I −15. (B11)

One method of treating this system is by applying the SHAKE discretization directly
to the Hamiltonian in (B9) [42, 43]. Another approach is based on a splitting of the
Hamiltonian. As described in [39–41], the unthermostatted system can be treated with
a splitting method which solves alternately the kinetic term (in the angular momenta), then
the potential term (in the rotation matrix formulation), with the different sets of variables
coupled by appropriate linear transformations. The rotational terms can be reduced by a
further splitting to several planar rotations. The resulting method is explicit, efficient, and
easy to implement, and has been shown to behave very well in simulations of liquid water
[39].

For the Nos´e Hamiltonian, we must introduce the mechanism of a fictive time so that
the integration timestep is properly adjusted according to fluctuations in energy. Second,
an additional level of splitting ofH is needed to compute the variables. For this purpose,
we introduce the Poincar´e transformation as before,

H̃s = s(H−H0) (B12)

= 1

s

N∑
i=1

T rot
i + sV+ s

2Q
π2

s + gkT sln s+
N∑

i=1

tr
((

RT
i Ri − E

)
3̂i
)−H0s, (B13)

where we have rescaled the multiplier (3̂i = s3i ).
There are many ways to split̃Hs. We use the natural three-way splitting intõH=
H1+H2+H3, where

H1 = s

2Q
π2

s + gkT sln s, (B14)

H2 = 1

s

N∑
i=1

T rot
i +

1

2

N∑
i=1

tr
((

RT
i Ri − E

)
3̂i , (B15)

and

H3 = +sV−H0s+ 1

2

N∑
i=1

tr
((

RT
i Ri − E

)
3̂i . (B16)

The HamiltonianH1 is a one degree of freedom system that is integrated using standard
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methods.H2 can be reduced to the Euler equations for the free rigid bodies:

d

dt
5i = 1

s
5i × I −15i . (B17)

π̇s = − 1

s2

N∑
i=1

T rot
i . (B18)

We follow the approach introduced in [40, 41], treating this as a Hamiltonian system with
Hamiltonian Ĥ = 1

2s(5
2
1/I1 + 52

2/I2 + 52
3/I3) and the noncanonical Poisson structure

defined byĴ= skew(5). Noting that the Poisson bracket ofs with Ĥ is zero, we see that an
explicit Hamiltonian splitting method can be applied to give a symplectic integrator for5.
Note that this step must also include a trivial update ofπs. Finally, underH3, the momenta
5 drift linearly in the direction of the tangent space projection of the gradient ofV , and
againπs is subject to a simple update.

A symmetric splitting gives a second-order method. For example, we may solve succes-
sively each of the Hamiltonians12H1, 1

2H2,H3, 1
2H2, and1

2H1 for a step in time of length
1t . For additional details regarding the use of splitting, the reader is referred to [39–41]
and the references therein.
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