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We present a new extended phase space method for constant temperature (canoni-
cal ensemble) molecular dynamics. Our starting point is the Hamiltonian introduced
by Nos to generate trajectories corresponding to configurations in the canonical
ensemble. Using a Poin@time-transformation, we construct a Hamiltonian sys-
tem with the correct intrinsic timescale and show that it generates trajectories in
the canonical ensemble. Our approach corrects a serious deficiency of the standard
change of variables (NesHoover dynamics), which yields a time-reversible system
but simultaneously destroys the Hamiltonian structure. A symplectic discretization
method is presented for solving the Me$oincae’equations. The method is explicit
and preserves the time-reversal symmetry. In numerical experiments, it is shown
that the new method exhibits enhanced stability when the temperature fluctuation
is large. Extensions are presented for &lokains, holonomic constraints, and rigid
bodies. (© 1999 Academic Press

. INTRODUCTION

Molecular dynamics computer simulation [1, 2] has become a standard tool in con
tational biophysics and chemistry. Traditional molecular dynamics samples configurat
from a constant energy or microcanonical distribution. This is often inappropriate bece
experiments are usually performed at constant temperature (canonical ensemble). Alth
Monte Carlo methods can be used for the canonical ensemble, these methods cani
used to recover dynamical quantities and time-correlated functions. Hybrid methods u
stochastics with molecular dynamics [3] can be used to generate the correct distribut
but they fail to provide correct dynamical quantities due to the discontinuous, stoche
changes in the flow. Methods usiad hocnonreversible temperature controls [4] and isoki
netic constraints [5—7] have also been proposed in the literature. These methods succ
producing smooth trajectories, but they fail to yield the correct canonical fluctuations in
kinetic energy [1]. This paper will focus on the newer dynamical methods derived from

114

0021-9991/99 $30.00
Copyright© 1999 by Academic Press
All rights of reproduction in any form reserved.



NOSE-POINCARE METHOD 115

extended Hamiltonian proposed by NdS;, 9]:

2
Hioss = Zz 52+V(q)+—Q+nglns @)

Hered = N¢ + 1, whereN¢ is the number of degrees of freedom of the real system. T
constantsT andk are temperature and Boltzmann’'s constant, respectively. An exten
position variables, is introduced along with its canonical momenta, The constant
represents an artificial “mass” associated vgittone should note thdi is the canonical
momenta assosciated with the position variafleThe tilde is used to distinguish it from
the from the real momenta given lpy= p/s.

Nos8 proved that this system generates configurations from the canonical ensemble
vided that the dynamics is ergodic. He also showed that the intrinsic time variable n
be rescaled to provide trajectories at evenly spaced points in real time. Using data a
evenly spaced points in time does not cause any difficulties in the computation of ense
averages, but it does significantly affect the computation of correlation functions. This
ficulty is traditionally resolved using a real-variable formulation of the equations call
Noss—Hoover [9, 10]. In this approach, the equations of motion are reformulated usir
noncanonical change of variables. (Note that, in this paper, the word canonical has twc
ferent meanings depending on context. With respect to statistical mechanical distribut
canonical refers to constant temperature, whereas a canonical change of variables is ol
leaves the form of Hamilton's equations invariant.) Although theéNé®over equations
produce canonically distributed configurations, and the dynamics evolve with respe:
real time, the resulting system is not Hamiltonian. It does have a conserved quantity w
is similar to energy, but the equations of motion do not arise from a corresponding Poi:
bracket (see [11, p. 320]). Although the flow is time-reversible, it does not have a canor
symplectic structure

The importance of time reversibility and symplecticness in numerical integrators

recently become a popular topic of discussion [12, 13]. A Hamiltonian system is tir
reversible if it is an even function of the momenta, which is the case in classical molec
dynamics. One says the flow of a canonical Hamiltonian system is symplectic becaus
solution operator preserves the wedge product of differentlgsy dg= > dp A dg.
In other words, the sum of oriented areas formed by projections of a 2-surface in pl
space onto th@; g, coordinate planes is a first integral of the flow [14]. Recently a volum
preserving generalization of the NmdHoover method has been proposed [15]. Althoug
this was a significant achievement, one should note that symplecticness is a stronger prc
than the (phase space) volume preservation provided by Liouville’s theorem. It is onl
the special case of one degree of freedom systems that symplecticness is equivalent t
or volume conservation.

For a numerical integrator the symplectic property has important consequences. A
merical method is a discrete map (actually a family of maps parameterized by a stey
At) which can be viewed as a transformation of phase space. If one step of the me
maps the poin(q", p") to (g"**, p"*1), then the method is symplectic dfp" A dq" =
dp™*t A dg™*t. One can apply backward error analysis to symplectic methods designe
approximate the dynamics of Hamiltonian systems [16, 17]. In this case it can be sh
that the numerical solution is tlexact solutionof a “nearby” Hamiltonian system, up to an
exponentially small error. The Hamiltonian corresponding to the nearby system is obta
in the form of an asymptotic expansion.
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Time-reversal symmetry and symplecticness are both strong geometric properties c
flow of a dynamical system. However, time-reversal symmetry of a numerical method ¢
not, in general, provide an approximate conserved energy integral obtainable throug
asymptotic expansion, as is available for symplectic methods [17]. Near conservatio
energy over long time intervals is a direct result of this approximately conserved quan
Although time-reversible methods will show the same type of stability near the symr
try plane (p=0), there is no guarantee that this will be the case far from the symn
try plane (at high temperatures) [18]. In addition to stability issues, the use of algoritt
which are volume-preservingnd time-reversible is required for hybrid Monte Carlo
methods [19].

In this paper we will show that it is possible to derive a time-reversible, real-time f
mulation without sacrificing the symplectic structure. This approach uses a new exter
Hamiltonian which we calNo£—-Poincag,

/"2 2
_ i T _
H= < i 2misz+v(q)+2Q+nglnS Ho>s. (2)

Now the constang= N¢, the number of degrees of freedom of the real system. Tt
Hamiltonian system is related to the Mosystem through a Poineatfansformation of
time [20-22]. The value of the constaht is chosen such thét is zero when evaluated
at the initial conditions. We will also show that the dynamics of theeN@&sjincag’system
can be integrated explicitly using a symplectic, time-reversible integrator.

In Section Il we discuss the NesHoover approach to reformulating the MNos
Hamiltonian in real variables. We review two of the numerical methods which have b
previously proposed for solving the NesHoover equations [1, 23-25]. In Section Il we
introduce a new symplectic, time-reversible integrator foréNédincae. We verify that it
generates configurations from the correct distribution and formulate an appropriate nu
ical method for propagating the dynamics. Using numerical experiments in Section IV,
compare the Nas“Poincae’method with two popular methods for Ned1oover. These
experiments indicate that the NmdPoincae'method has better stability properties in sim
ulations with large fluctuations of the thermostat variabld his situation arises when the
extended “massQ, is made small to increase sampling speed or when the initial conditic
are not properly equilibrated to the simulation temperature. In the appendices we dis
the extensions of the NesPoincag approach to N@sthains, holonomic constraints, anc
rigid bodies.

Il. THE NOS E HAMILTONIAN AND NOS E-HOOVER METHOD

Although the Noe'Hamiltonian generates configurations from the canonical distributic
it also introduces an unnatural scaling of the intrinsic time. This introduces computatic
difficulties, because the configurations are not available at equally spaced pointsin real
A real-variable reformulation of the equations of motion was proposed bg 9] to
remedy this problem. Simplifications to the real-variable system, resulting in the traditic
treatment of the NasHamiltonian called Nas“Hoover, were proposed by Hoover [10].
In this section we review the NesHoover system of equations and discuss some of t
common numerical methods [1, 23—-25] proposed for solving them.
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We begin with the equations of motion derived from the &lb&imiltonian (1),

dg o] ds =«

- _ —~_ 3
dr m;s2’ dr Q° (3)
dp; 0 dr f)iz gkT

B %y TN B 4
dr 00 @: dr : m; s3 S “)

Nos [9] has shown that the dynamics associated with this system generate canon
distributed configurationsf)/s andq. To convert to real configurations, a noncanonice
change of variables is used:

p . T
L} 7 =71, 5
S S )

This is followed by a Sundman time transformation [20] applied to the vector field,

dz

— =35, 6

dt (6)
resulting in a new system of non-Hamiltonian equations for the dynamics in the |
variables:

S D
4= P = 2 V(@) — pi Q (7)
. 7 s 1 p? si?

Hoover [10] noted that the equations could be simplified considerably becaase s
always appear together. By making another change of variablesr#ram§ = s7/Q and
from Ins to n, one not only eliminates the variabte but also decouples the varialde
from the system. This results in the Negd1oover equations for the dynamics in reduce
real-variable formulation:

Pi

. , 9
G = m P = _a_qu(Q) - pig, 9

=g E= L[ gir (10)
=5 S Q\ 4 m '

In the reduced system the constant N (the number of degrees of freedom of the rec
system) as opposed = N; + 1 in the Nog formulation. This reduction in the degrees
of freedom is needed to recover configurations at the correct temperature [9]. Althc
this system is not Hamiltonian, it does have a conserved quantity, which we call the 1
extended energy:
P Q&2
Eoxi = —+V —_— KTn. 11
ext i 2mi+ @ + 2 +9gkKln (11)

The application of a Sundman time transformation necessarily destroys the canonical
plectic structure [26]. Itis for this reason that the Mekloover system in (9)—(10) does nof
have such a structure.
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This system is time-reversible, and it is advisable to solve the equations of mo
with a reversible integrator. We will now explore two of the more commonly used 1
versible methods, both of which are based on variants of the generalized leapfrog algor

[25].

The firstis animplicit method [1] based on a modification of the velocity Verlet algorith
It consists of alternating explicit and implicit half-steps with the momenta variables, w
explicit whole-steps in the position variables. The method is given below in a whole-s

formulation, i.e., as a mapping from timeto tn, 1 = t, + At:

At/ 9
n+1/2 _ n n n N
=p'— — | —V )
pi i 2<8qi @’ +é p,),
At (pM)?
n+1/2 _ gn 20 i
£ '+ 55 (Z - :
pn+1/2
qn—&-l q| + At |m i
i
nn+1 — nn + At§n+l/2,

p|n — p|n+l/2 At< 8 ( n+l)+én+1 n+1)
90 ’

2

A1y 2
gL gnl/2 At (Z (pi +1) _ ng>.

Equations (12e) and (12f) are implicitly coupled and must be solved together. Tr:
tionally, this step is solved with 8N + 1)-dimensional Newton iteration [1]. This can be

2Q

m;

(12a)

(12b)

(12¢)
(12d)

(12e)

(12f)

simplified considerably by substitution, eliminatipg*! from the iteration. This results

in a scalar—cubic equation in terms&¥f! which can be solved either directly or using &

simple iterative method.

Several explicit time-reversible methods have been proposed for the—-Nosver
equations [23-25]. The second method which we consider in this paper [23, 25] is

which is explicit and is based on thedBtier—\Verlet method. We write it in its leapfrog
form for comparison purposes:

n+1/2 _ n

i =B

qn+l — q| + At - ,

$n+l — gn +

nn+l =7

_ At nprt/2
(aq. @) +&"p )

n+1/2
Y

(5 )

n_i_g(sm—l_l_%.n)’

ol Y2 At( V(qn+1)+§.n+l n+1/2>
1 |

2

(13a)

(13b)

(13c)

(13d)

(13e)
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ll. THE NOS E-POINCARE METHOD

As we illustrated in the previous section, the traditional real-variable formulation
Nost—Hoover destroys the symplectic structure associated with the Nasiiltonian. In
this section we will outline a procedure for scaling time while preserving the Hamilton
structure. The method proposed in this paper is formulated through a Rotremasforma-
tion [20] of the Hamiltoniar{ = H(q, p),

H = f(q, p)(H — Ho), f>o0, (14)

where f is a “time scaling” function, and the constak is the initial value ofH. Along
the energy slicé{ =Hy, the dynamics of the transformed system will be equivalent
those of the original system, up to a transformation of time. To see this, write the Hami
equations of motion

3 3

= f—H+ (H—Ho) — T, 15
i o ( 0) o (15)
v——hiH—m—H)34~ (16)

then observe that whel = H,, the equations are the same as the original equations
pressed in the real-time variabterelated tor by

dr

— = f. 17

at 17)
Now we consider the Poinaartransformation,f =s, applied to a slightly modified

version of the Nos‘extended Hamiltonian in (1):

H = (Hnoz — Ho) S, (18)
H= bt +V()+n—2+ kTIns—"Ho |s (19)
“\Zamg TP T Y o)

The modification comes in that we are using the constgatN; (as opposed tdj =
Nt + 1). We will see later that this small change is necessary for the correct distributiol
configurations. The constahty is chosen to be the initial value of the NoBlamiltonian,
Hnos- We will show that this transformed Hamiltonian in (2) and (19), which we ce
Noss—Poincag, generates configurations from the canonical distribution in the varigble
andp/s.

THEOREM. The Nog—Poincaé system generates canonically distributed averages, giv
the usual statistical mechanics assumptions of equal a priori probabilities and ergodic

The proof will involve derivation of the probability distribution, and partition functio
for the No€—Poincag’"Hamiltonian.

Proof. Consider the probability of finding a particular configuration in the phase sps
described by the real variablés, p):

dqdpFa. p) = /dn/deidq Fo(Q B. 8. 7). (20)
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For the Nos—Poincae’Hamiltonian;{, we can write the probability of finding a particular
configuration of energy{y as a microcanonical distribution in the extended phase spe

(g, P, s, )

dr ds & dqs[H — Ho)
[dr [ds[ dp [dqs[H — Ho]
In the above expression the usual statistical mechanical assumptions ofaeptati

probabilities and ergodic (or quasi-ergodic) dynamics are made [27]. We now subsiti
(21) in the expression (20), resulting in

dr ds P dqFx(g, p,s, ) =

(21)

1 L.
dqdPR@. P) = 3, [ A7 [ ds bdaslL - 7l 22

where the Nos-Poincae’partition function is given by

Z:ﬁ/dn/ds/dﬁ/dw[ﬁ—ﬁd. (23)

Using’Ho = 0, and expanding{, we get
1
dqdPRQ. P) = 3y [ 7 [ dspdaslstos — Mol (24)
If we let H(p, q) =Y, p?/2mi + V(q), this reduces to
dqdpHQ, p) = = /d /dscf)d s(H(p/s. @+ 2o + gkTins—
q p q»p_leth T q p 7q 2Q g 0 .
(25)
Becausss is strictly positive, we can make the change of variales p/s, yielding
dgdpK )—#/d /dsd dq8s|s( H( )+n—2+ kTIns—H
qap q’p_ZN!th 74 pdq p.q 20 g o]|-
(26)
Whenever a smooth function(s), has a single simple root at=%, one can write the

relations[r (s)] = §[s — so]/Ir’(so)|- This relation can be directly applied to (26), resulting
in

2
S[S(H(p, q) + ;_Q +ngIns—Ho>}

1 -1 n?
“ [t eelga(reatigm))) @

These substitutions transform (26) into

dgdp Kq, p)

1 SN -1 n?
- m/dyr/dsdpdqgk_l_(s S—exp kT H(p,q)+ﬁ—Ho . (28)
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Integrating oves, and substituting for the roa, results in

1 Ny 2
dq dpFQ. p) = 5 thngexp( T )/dndq dpexp(g <H(p D+ 2Q)>
(29)

Finally, letg = N¢, and integrate over to reduce the equation to

C 1
dqdpFRQ. p) = =y dd dpexp(—kTH(p, q)>, (30)

whereC is a positive constant. The above procedure can also be appli&dwbich can
be then substituted along with (30) into (22). After canceling the prefatoN! hNt) we
have shown that

dg dpexp(—(1/kT)H(p, q))
[dq [dpexp(—(1/kT)H(p, )

dgdpHa, p) = (31)

Because the right-hand side of the expression is the probability of finding a configura
in the canonical ensemble, this completes the proof. If, as is the usual case in mole
dynamics, total linear momentum is conserved, then an additional restrictieraibtal
linear momentum is required [9, 10, 28, 29

The disadvantage of the general Poimctiénsformation in (14) is that it mixes the
variables so that an explicit symplectic treatment of the extended Hamiltonian is no
general, possible and one is compelled to use implicit symplectic methods (see [21,
However, this is not always the case for transformation functibnghich depend only on
a reduced number of the phase-space variables {ig),or f (s)). In these special cases,
the variables are sufficiently decoupled, and we can easily formulate explicit symple
methods [16, 30].

Returning to the Nas“Poincae’Hamiltonian{, we write the equations of motion

. B e Y
G = ms P = Saq.v(q) (32)
§— s%, = Z — gkT — AH(q, P, s, 70), (33)
AH@, Bos. )= er_i V() + ﬁ +gkTIns — Ho. (34)
i j S

The value ofHg is chosen such thatH (qo, Py, S0, o) = 0. A simple method for numeri-
cally solving the Nos~Poincae equations of motion is the generalized leapfrog algorith
[16, 30]. Because we are treating a Hamiltonian system, the resulting method is sympl
and time-reversible [13, 21, 22]:

~ ~n At 0
B = B - 57 VD (352)
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At 1 (/22

At
- 5 AH@", pYE S 7, (35Db)
At n+1/2
gl gy 7(Sn+1 + Sn)n 5 (35¢)
At/ 11\ P
n+l _ ~4n =/ - !
a =a+ (SM + s”) —_— (35d)
At 1 ﬁn+1/2 2
n+1 __ _n+1/2 — - ! —
TR +2<Zmi(sn+l> okT
I
At N+l mnt1/2 ontl _nil/2
— 5 A" BV M), (35e)
At 0
~n+1 ~n+1/2 n+1 n+1
N+l _ g — gtV . 35f
Bi P > 5g @) (35f)

Due to the special structure of the system, the resulting method is also explicit. Note
(35b) requires the solution of a scalar quadratic equatiorn fot/2,

%(nn+1/2)2+n,n+1/2_’_c :07 (36)
where
At (f)_n+1/2)2
=—|gkT@+Ins") — A L v(gh) — — " 7
C 2(9 (1+41Ins") ZZmi(sn)er @) —Ho|—m (37)

In this simplified formulationC is a constant which can be easily computed. This equati
can be solved explicitly using the quadratic formula, but one should be careful to solve
the correct root. To avoid subtractive cancellation in the computation, we use a varial
the quadratic formula to solve (36):

n+1/2 __ —2C

- 1+ JI-CAt/Q’

The remaining steps in the algorithm are completely explicit and can be solved sequent

T

(38)

IV. NUMERICAL EXPERIMENT: LENNARD-JONES FLUID

As anumerical experiment, we compare the two proposedNésdver methods with the
Nost—Poincag'method. As a test problem, we consider 108 particles in cubic periodic b
using the minimum image convention. A truncated, shifted, and smoothed Lennard-J
potential is used. It is important that the potential be smoothly truncated to zero to pre
artificial energy jumps [31]. Our experiments have indicated that the potential funct
should be at leagt?; i.e., it has a continuous second derivative. We find this higher degi
of smoothness to be important in some systems for verifying the order of the numel
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methods. The resulting smoothed pair potential function is

{S(r)(VLJ(r) — V0a(re)) r<re
0

Vi) = for
C

(39)

where

VLa(r) =4e<(‘r’—)12— <§>6> (40)

The smoothing functioi®(r) is defined by

2 4 6
sa)=1—3<i) +3<L)-—<L>. (41)

We give all of the results of our numerical experiments in reduced units. Specifice
we will useo, €, andm as the basic units of length, energy, and mass, respectively.
addition to the basic units, we will be using reduced temperaflite=(k Te 1), density
(0* = po?), and time (* =toe¥?m~/2), All of our simulations are performed with total
linear momenta set to zero; hence we get Ny with Ny =3N — 3 (see [8, 28]). In all
of the numerical experiments, we set the initial conditions of the extended variables t
s? =1 andz® = 0. For this reason, the initial extended energy of the system is the sam
the initial energy of the real system. We define the relative extended energy error at
t as

’am-am 42)

E(0)

where the quantityE is determined byH, Eey, andHnoss When using the Verlet, Nes”
Hoover, and Nos~Poincag'methods, respectively (see Sections Il and IlI for details).
In our first experiment, we start the simulation equilibrated te= 1.5, with p* = 0.95,
and Q=1.0. The timestep is set relatively lowA(* =0.005), to verify the qualitative
behavior of the methods in a numerically stable regime. In Fig. 1 the distribution of

04 a T

~——  Maxwell-Boitzmann I &—=o  Nose~Hoover-Im
+——+  Verlet (NVE) > \ p——b  Nose-Hoover-Ex
o35 e—=a  Nose-Hoover-lm | | 3 \ |9~ Nose-Poincare

p——>  Nose-Hoover-Ex
Nose-Poincare

probabiliy, P(p)
probabilily density, P(T)

-5 -4 -3 -2 -1 momenmg,p 1 2 3 4 5 1 " 12 13 14 |empe1r;sluva,T“s 17 18 1.9 2
FIG.1. Comparison of momenta and temperature distributions for a Lennard—Jonedlflaidi@8,T* = 1.5,
p*=0.95). The squares, triangles, circles, and pluses represent trajectories generated by the imgliEioios,
explicit Nog—Hoover, Nos~Poincag, and traditional Verlet methods, respectively. To the left, the momen
distribution is compared with the Maxwell-Boltzmann distribution (solid line). To the right, the distribution of t

instantaneous temperature is shown. A Gaussian is fit to each curve to highlight the statistical similarities.
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——  Verlet{NVE) =—- Verlet (NVE}
S Nose-Hoover-im . Nose-Hoover-im
- Nose-Hoover-Ex --- Nose-Hoover-Ex
0.8] +='=--  Nose-Poincare 7 —-=+  Nose-Paincara

o
»

normalized velocily autocometation
o o
R x

mean-square displacement, & r{?

\/ —

- W ” 9 .
[ A1 0.z 03 04 05 06 07 o8 10 10 10° 10

time, 1 time,

FIG. 2. Comparison of time-correlated quantities for a Lennard—Jones fiuid {08, T* = 1.5, p* = 0.95).
The dotted, dashed, dashed—dotted, and solid lines represent trajectories generated by the ingtdibdNes,
explicit Nog—-Hoover, Noe~Poincae; and traditional Verlet methods, respectively. To the left, the normalize
velocity autocorrelation functio@]}&‘_—;‘,ig’)’) is shown. To the right, the mean-square displacement is shown a:
function of time.

momenta is compared with the Maxwell-Boltzmann distribution for this temperature.
also show the results from the Verlet method (traditional molecular dynamics), which d
not use a temperature control. For this method, the simulation temperature cannot b
termined until the simulation is complete. A tedious trial-and-error process had to be
to find initial conditions which would yield the correct temperature. This is why theeNo
methods are preferred to traditional molecular dynamics for generating configuratior
constant temperature. As expected, all four methods generated Boltzmann distributec
menta, because the system is ergodic. We also show the distribution of the instantar
temperature for the Nesmethods. All three generate Gaussian distributed temperatt
with the same mean and variance.

We now investigate the behavior of the methods with respect to dynamical quant
associated with time-correlated functions. In Fig. 2 we show the velocity autocorrela
function and mean-square displacement as functions of time. All four methods give alr
identical results for both of these functions. This indicates that the dynamics associ
with Nosg—Hoover and Nas“Poincag evolve with the correct scale of time. We use th
mean-square displacement curve to measure the diffusion coefficient and note that al
curves asymptotically approach straight lines of equal slope. Fitting a line to the curve
the asymptotic regime* > 2.0, we calculate the diffusion coefficieBt* ~ 0.03. To check
the reliability of this estimate, we calculated the same value by numerical integratiol
the normalized autocorrelation curve. The two curves are related to eachother throug
Einstein and Green—Kubo relations [32],

1
D=— Ilim
2d tooo m

(v(0) - v(0)) ar 43)
The paramete plays an interesting role in determining the characteristics oeNo
dynamics. Inthe limit a® goes to infinity the extended variatdeemains constant, and we
recover traditional molecular dynamics. Similarly, one can verify that both the-Mtsdver
and Nog-Poincae” methods reduce to Verlet in this same limiting case. A drastica
different situation arises whe@ is small. This case is of practical interest because the rz
at which configurational space is sampled can be increased by decreasing the@ize

Ar3(t) _ kl/“’ (v(®) - v(0))
0
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N=108 p'2095 1, =100 T=15 Q=100 N=108 =095 =100 T=60 Q=100

+——  Veret (NVE) a +——+  Veret (NVE)

10° | |&——=o8  Nose-Hoover-lm 10° b | 5—=&  Nose-Hoover-im
b—=  Nose-Hoover-Ex f b—  Nose-Hoover-Ex
0—o  Nose-Poincare 6—=o  Nose-Poincare

°,
3,

2,

maximum relative energy error
3

maximum relative energy error

10 10
10° 10 10° 10
stepsize, dt stepsize, dt

FIG. 3. Comparison of extended energy conservation as a function of stepsize for a Lennard—Jones
(N =108 andp* = 0.95). The maximum relative error in extended energy conservation is shown as a functio
stepsize. A relatively large value for the “extended mass” is ued 10.0). To the left, the curves are generated
using a temperature @ = 1.5. To the right, a larger valud,* = 6.0, is used.

However, one must be cautious not to mgkmo small because this leads to high-frequenc
oscillations ins. This can lead to sampling problems, in addition to the computatior
difficulties. The best value fo is problem dependent, and many authors have sugges
that Q should be chosen in resonance with the real system to reduce “artificial effe
introduced by the thermostat [8-10, 29, 33, 34].

As a second test, we consider the effects of changes in the extended@nassthe
stability of the algorithms. We start with the case of arelatively large extended @as4,0.
Since the Nos~Hoover and Nas“Poincag ' methods reduce to Verlet becomes large,
we expect similar behavior for all of the methods. Each simulation is started with the sys
properly equilibrated to the simulation temperature. We follow the dynamics for a rang
stepsizes between@2 and 002 while the final time is held fixed at 10 units. In Fig. 3,
the maximum relative error in the extended energy deviation is shown as a functio
stepsize for two different temperaturds,= 1.5 andT* = 6.0. For clarity, only the values
in the stable regime of each method are shown in the diagram. The method was consi
unstable if the simulation temperature deviated by more than 5% from the target valu
T*=1.50rT*=6.0. For this particular case, there is no clear difference in the efficien
of the methods. All four of the methods perform nearly the same for small stepsizes
expected. However, for large stepsizes the implicit éNds6over method shows better
stability properties. However, the magnitude of the error in the energy at the larger step:
is a concern, as it can be an indication of nonphysical behavior in the computed trajec

In Fig. 4, the same efficiency diagrams are shownQet 0.1. Since the Verlet method
does not use the paramef@r its results are the same as in the previous figure. For tt
smaller value ofQ, the Nog—Poincaeg'method is slightly more efficient than the explicit
Noss—Hoover method. Although the implicit NesHoover method shows better stability
at large stepsizes, it is more inefficient than the other methods at smaller stepsizes
results indicate that the NesHoover methods are less efficient when the paran@@ier
small. This could be a result of the more rapid fluctuations in the thermostat.

To further investigate the effect of fluctuations in the thermostat, we now consider
same system with a jump in the target temperature. The para@eieiset to 01, and
the simulation is started with the system equilibrated te= 1.5 andp* =0.95. Att*=0
the No< thermostat is turned on, and the temperature is increasedt=t.0. Due to the
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FIG. 4. Comparison of extended energy conservation as a function of stepsize for a Lennard-Jones
(N =108 ando* = 0.95). The maximum relative error in extended energy conservation is shown as a functiol
stepsize. A relatively small value for the “extended mass” is ugee 0.1). To the left, the curves are generated
using a temperature df* = 1.5. To the right, a larger valug,* = 6.0, is used.

change in the system temperature, we are unable to use traditional molecular dyne
algorithms (i.e., Verlet) for this simulation. In Fig. 5, the relative error in extended enel
is shown as a function of stepsize. We also show the relative energy error for a partic
stepsizeAt =0.006, near the stability limit. For all three of the algorithms, there is a lar
initial jump due to the increase in the imposed temperature. However, for large stepsize
Nost—Poincae’method is the most stable during this initial equilibration phase and shc
the smallest jump in energy. For very small stepsizes, the explicie-Nésdver method
appears to be slightly more efficient than lHefoincae.

Over longer time intervals, the difference becomes even more pronounced. In our
experiment, we follow the dynamics for 500,000 steps at a stepsiz¢*of 0.006. The
parameteq is setto 01, and the simulation is started with the initial conditions equilibrate
to the thermostat temperature Df = 6.0. In Fig. 6, the relative energy error is shown a
a function of time. All of the methods show some drift in the energy for this long tin
simulation. However, the extended energy is conserved much better by thenstae”

N=108 p'2085 =100 T=60 Q=01 N=108 =085 T=60 Q=01 i, =100 A&=0006

o—=o  Nose-Hoover-Im 10t
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®
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stepsize, dt time, 1’

FIG.5. Simulation of a temperature jump in a Lennard—Jones fINie(108,T* = 6.0, p* = 0.95,Q =0.1).
The system was first equilibrated 76 = 1.5 before the temperature was increased te= 6.0 att* =0. To the
left, the maximum relative error in the extended energy is shown as a function of stepsize. To the right, the re
error in the extended energy is shown for a large stepgire=€ 0.006).
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FIG.6. Longtime simulation of a Lennard—Jones fludi£ 108, T* =6.0, p* =0.95,Q =0.1). The dynam-
ics was followed for 500,000 steps, at a stepsizatf=0.006, with initial conditions equilibrated t6* = 6.0.
The relative error in the extended energy is shown as a function of stepsize for the various methods.

and Verlet methods. The NesHoover methods, which are not symplectic, are destabiliz
by the large fluctuations in temperature due to the small valu@. of

V. CONCLUSIONS

We have presented a new method for constant temperature (canonical) molecula
namics, called Nas-Poincag. The new method has a wide range of applications, includi
rigid bodies and Naschains, while providing a symplectic framework for a real time fol
mulation of the Nos "Hamiltonian. Although the traditional NesHoover approach also
provides areal-variable system, it does so through a noncanonical change of variables
approaches are time reversible, but only dld36incag’has a canonical symplectic struc-
ture. Both time-reversible symmetry and symplecticness are strong geometric properti
a dynamical flow. The difference is in that the reversible symmetry of a numerical met
does not, in general, provide an approximate integral obtainable through an asymptoti
pansion of a “nearby Hamiltonian.” Near conservation of energy over long time interval
a direct result of this approximately conserved quantity. Although time-reversible meth
will show the same type of stability near the symmetry plagme-Q), there is no guarantee
that this will be the case far from the symmetry plahg| & 0). This is one of the clear
qualitative distinctions between symplectic and reversible methods.

Our numerical experiments have indicated that theeN&®incae formulation provides
improved stability in simulations with large fluctuations in the thermostat variable. This:
uation arises when the initial temperature does not correspond to the simulation tempet
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and when the paramet€) is small. In this case, the NesHoover methods show larger
jumps in the extended energy for moderately large stepsizes. One should also note th
experiments have shown no clear difference between the explic-ftmiver method and
Nost—Poincae for very small stepsizes, and when the system is properly equilibrated.
implicit Nose—Hoover method is more stable at large stepsizes than the explicit form, b
is not as efficient in achieving a given degree of accuracy. Our observation is that for mg
ately large stepsizes the NedPoincag'method can be a substantially better method and
certainly no worse than the NesHoover formulation. Because the Me#oincag'method

is symplectic, as well as time-reversible, we recommend its use for constant temper:
simulations.

APPENDIX A: NOSE CHAINS

It has been shown that the Nolamiltonian generates configurations from the canonic
ensemble if the dynamics is ergodic [9, 10, 29]. The hypothesis of ergodicity can be viol:
in special cases [29, 34] (i.e., small systems and systems with stiff springs). A sin
extension of the NasHoover equations has been developed, calledNdsover chains
[33], which alleviates this ergodicity problem. This method involves introducing a seque
of new thermostats, each one coupled to the previous, resulting in a chain. TéreHdbas/er
chain equations are implicitly coupled, but can be solved explicitly using an even—
splitting [24, 25]. To derive the equations for the chains, one starts with the-fussver
equations as defined in (9)—(10),

N s a _

G = m P = Ty V() p| Q (A1)
. _ P o pt

=g = Ei m gkT. (A2)

Here the variable is equivalent toQ¢ in Egs. (9)—(10). Nowd — 1 new thermostats are
introduced, each one coupled to the previous, resulting in @ Ndés6ver chain:

. Pi .

A o = — —V — A3
ql mla p| 8q| (q) pl Q ’ ( )
in= 2, ¢1=§:32—ng 02, (A4)

Ql m; Q
2

. @j . Yi-1 Qj+1 .

== = —— — kT — ¢; , =2.--J-1, A5
"Tor YT oL T ! -

2

. (5] . Y31

= —, = — kT. A6
7 Qy v Qi1 (A6)

While this system of equations is not Hamiltonian, there is a conserved quantity,

[

J 2

2
Eon= Y o + V(@) + Zﬁjwkm > % (A7)

j=1 j=2
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This system is based on the time-reversible é&dé$0over system and is thus time-
reversible. However, due to the noncanonical change of variables introduced by N
Hoover, the resulting system has no Hamiltonian or symplectic structure. It has been r
ously proved [33] that the Nes'Hoover chain equations generate configurations from t
correct distribution, given that the dynamics is ergodic. This needed ergodicity is provi
by the additional degrees of freedom in the chain of thermostats. The same idea c:
applied directly to the NasHamiltonian, resulting ilNos chains

J-1 2 J

P
Hehain = + V(@) + +gkTIns, + kT Ins;. (A8)
chain IZ 2misf Z QJ Pt 2Q Z ] -

j=1 j=2

It is not obvious whether one can derive the Bleldoover chain equations directly from
the No& chain system. As in the case of a single thermostat, the real and intrinsic sc
of time in the Nog"chain system are related by the scalihgdt=s;. Because we are
interested in capturing the correct timescale for the real variatplasd p/s;, we apply a
Poincag transformation (see Section Ill) of the form

f=s (A9)

to the Nog chain Hamiltonian in (A8). This results in a new Hamiltonian system which v
call the Nog=Poincae chain,

H= (Hchain - HO) S1. (AlO)

The constanf{y is chosen as the initial value G{.nan Since the rescaling variabke

is strictly positive, the quantitf{.nain Will be approximately conserved along the flow of
‘H. To formulate a numerical integrator for the Me$’oincag’chain system, we begin by
writing out the equations of motion:

G = m% b = —sla%van (A11)
8 = % - Z p' _ gkT — AH(Q, P, 3, 7), (A12)
8 = Qj?sjiil’ i = gjj‘llzljs—k:—jsl, j=2...J-1  (A13)

AH(Q, P, S, 7) = Henain@, P, S, 7) — Ho. (A15)

The new thermostats have introduced an implicit coupling to the equations of mot
One could solve this system using the generalized leapfrog algorithm, but in this ca
would be an implicit method. To formulate an explicit method, we use a splitting of t
Hamiltonian and corresponding Liouville operator. Although many choices for this splitt
are possible, we will use an even—odd splitting [25] of the extended variables. For an
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number of thermostatg, this splitting results in three Hamiltonians:

H = Hy+Ha+Hs (A16)
2

Z ZszJrnglnlerkTZInssz s (A17)
2m. 2Qzj S5 14

j=1 j=1

i
2 2
Hs = (V(q)+ZZQ] 2 +2QJ+kT;InSQ,>sl. (A19)

To get a symplectic, time-reversible method, we use a symmetric splitting of the Liouv
operator.

iLy ={.H}={ Ha} +{, Ho} +{. Hg} =iLa+iL2+iLs (A20)

In terms of the solution operator, this splitting introduces an error of axtiéat each step,
resulting in a second-order method:

Wy (At) = elbnab (A21)
— e(lL3At/2)e(|L2At/2)e(lLlAt)e(ILgAt/Z)e(ngAt/Z) + O(Atg). (AZZ)

Solving the dynamics ot{; andH3 for one step is straightforward because eschas
been decoupled from its canonical momemta, On the other hand, the Hamiltoniéiy
requires the solution of a quadratic, scalar differential equationf@wvhich can be solved
analytically). Once this is solved, its solution can be substituted into the equaticasfat
. Alternatively, one could solvé{, using the generalized leapfrog algorithm. Becaus
the composition of symplectic maps is a symplectic map, this modification does not des
the symplectic structure.

APPENDIX B: HOLONOMIC CONSTRAINTS AND RIGID BODIES

The formulation of Nos~Poincae with respect to a set @rbitrary holonomic con-
straints can be treated using an elementary modification of SHAKE discretization. Le
illustrate the treatment with the case of a single constraint, described in compact forr
the Hamiltonian

3 p?
H = ( e +V(@) + —Q +gkTIns+ Ay (q) — H0>S~ (B1)

Herey (q) = 0 represents a constraint, ands the corresponding Lagrange multiplier.
The equations of motion of a general Hamiltonian system subject to constraints ca

discretized using an extension of the SHAKE discretization [35], a natural generaliza

of the Verlet method. This method is second order and symplectic on the extended p
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space (see [36, 37]),

nty2 At ad n n 0 n
= —V Al— B2
P P - - (a- "+ 8qi1/f(q) ; (B2)
At (pn+1/2) (n,n+1/2)2
n+1/2 _ _n - i _ ny _ _ n
P L 5 (.Z e v 20 gkT(L+Ins™)y +Ho|,
(B3)
At n+1/2
SI‘H—l — Sn (Sn+1 + s )jT Q , (B4)
L At/ 1 prt/2
g = o + 2\ gnt1 + gn ImI ’ (B5)
A
et = 12— s “+1<a V@™ w(q““)), (86)
Gi Gi
At (pn+l/2) (7Tn+1/2)2
n+1 _ _n+1/2 , 20 i n+1y
s (Z ez V@) T T5g
—gkT(@+Ins"y 4+ Ho> , (B7)
subject to the constraint
v(@"™ =0. (B8)

The equations can be efficiently solved using an iterative Newton algorithm. Extending
method to a vector of constraints is straightforward.

1. Rigid Bodies

We next consider the case of a system of rigid bodies subject toefypsthermostat.
In particular, we are interested in applications such as typical molecular liquids where
rigid bodies are coupled only through the potential energy fundtion

Often one sees this problem treated with separate thermostats for the translatione
rotational motion [38]. We consider for simplicity the case of a system of rigid bodies on fi»
centers, so there is only the rotational kinetic term and a single thermostat. Extensions
case of multiple thermostats and translational motion can be derived in a straightfon
manner [39].

We can easily describe the Hamiltonian in rotation matrix formulation, Rith R; (t) €
S O(3) an orthogonal matrix with unit determinant representing the orientation atfthe
body. This results in a Hamiltonian description subject to the constr&fni = E, where
E is the identity matrix. As described in [39-41], this is a more appropriate foundation tl
alternatives such as quaternions [38] or Euler angles for developing a geometric discre
tion of rigid body motion.

Denote byZ;"™'the rotational kinetic energy of thth rigid body; then the NasHamiltonian
becomes

N

ZTI’OI-FV-{-EJT +9gkTins+ > tr((RTR —E)A). (B9
i=1
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where theA; are symmetric % 3 matrix multipliers that are chosen to enforce the constrai
relationshipsZ can be expressed in terms of the canonical momBnissociated in the
usual way toR (i.e., through partial derivatives of a Lagrangian with respedR}oThe
kinetic term can also be described in terms of the angular monignta(IT, l‘liy, [17) and
the inertial tensot =diag(ly, ly, 1) by

- 1((“?)2 Ly (nr>2> | 10)

2\ 1y ly I,

The angular momenta then evolve, in the absence of the pot¥ntaicording to the Euler
equations:

E1'1=H>< |71, (B11)
dt

One method of treating this system is by applying the SHAKE discretization direc
to the Hamiltonian in (B9) [42, 43]. Another approach is based on a splitting of t
Hamiltonian. As described in [39-41], the unthermostatted system can be treated
a splitting method which solves alternately the kinetic term (in the angular momenta), t
the potential term (in the rotation matrix formulation), with the different sets of variabl
coupled by appropriate linear transformations. The rotational terms can be reduced
further splitting to several planar rotations. The resulting method is explicit, efficient,
easy to implement, and has been shown to behave very well in simulations of liquid w
[39].

For the Nog"Hamiltonian, we must introduce the mechanism of a fictive time so tt
the integration timestep is properly adjusted according to fluctuations in energy. Sec
an additional level of splitting of is needed to compute the varialsle~or this purpose,
we introduce the Poincaitransformation as before,

Hs = S(H — Ho) (B12)
N

,Z;Trot+sv+2Qn +ngsIns+|z;tr (RTR — E)Ai) — Hos, (B13)

where we have rescaled the multlpl|er. (= sAj).
There are many ways to spﬂfis We use the natural three-way splitting irto=
‘H1+ Ho + Hs, where

= KT sl B14
Hy 2Qﬂ + gkTsins, (B14)
1 18 R
Ho = ST+ §Ztr((RiTRi — E)A,, (B15)
i=1 i=1
and
Hz = +sV — Hos + ZZtr RTR — E)A; (B16)

i=1

The Hamiltoniarn{; is a one degree of freedom system that is integrated using stanc
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methods; can be reduced to the Euler equations for the free rigid bodies:

d 1
gil = S x =15 (B17)
1 N
- t
s =—g 2 T (B18)

We follow the approach introduced in [40, 41], treating this as a Hamiltonian system v
Hamiltonian H=Z(M%/1y + 13/1, + 113/13) and the noncanonical Poisson structur
defined byJ = skew(IT). Noting that the Poisson bracketofvith H is zero, we see that an
explicit Hamiltonian splitting method can be applied to give a symplectic integratdi for
Note that this step must also include a trivial update ofFinally, underHs, the momenta
I1 drift linearly in the direction of the tangent space projection of the gradieit,afnd
againrs is subject to a simple update.

A symmetric splitting gives a second-order method. For example, we may solve suc
sively each of the HamiltoniansH;, 3H,, Has, 3H2, and3H; for a step in time of length
At. For additional details regarding the use of splitting, the reader is referred to [39-
and the references therein.
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