Stable Limits for Partial Sums of Dependent Random Variables

Richard A. Davis

Stable URL:
http://links.jstor.org/sici?sici=0091-1798%28198305%2911%3A2%3C262%3ASLFPSO%3E2.0.CO%3B2-A

The Annals of Probability is currently published by Institute of Mathematical Statistics.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/ims.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.
STABLE LIMITS FOR PARTIAL SUMS OF DEPENDENT RANDOM VARIABLES

BY RICHARD A. DAVIS

COLORADO STATE UNIVERSITY

Let \(\{X_n\} \) be a stationary sequence of random variables whose marginal distribution \(F \) belongs to a stable domain of attraction with index \(\alpha, 0 < \alpha < 2 \). Under the mixing and dependence conditions commonly used in extreme value theory for stationary sequences, nonnormal stable limits are established for the normalized partial sums. The method of proof relies heavily on a recent paper by LePage, Woodroofe, and Zinn which makes the relationship between the asymptotic behavior of extreme values and partial sums exceedingly clear. Also, an example of a process which is an instantaneous function of a stationary Gaussian process with covariance function \(r_n \) behaving like \(r_n \log n \to 0 \) as \(n \to \infty \) is shown to satisfy these conditions.

1. Introduction. There is a vast literature on central limit theorems for stationary mixing sequences (see Ibragimov and Linnik, 1971, for a convenient reference). Typically, three ingredients are needed in proving such results: the variance of the partial sums must approach \(\infty \), a moment condition (usually the existence of a \((2+\delta)\)th moment) is required and the sequence should satisfy a suitable mixing condition with a sufficiently fast rate of mixing. Many useful results and insights into the dependence structure of stationary sequences have evolved from studying problems of this type. However, not much is known for obtaining nonnormal stable limits. Clearly, not only will the hypotheses needed for obtaining stable limits with index less than 2 be different, but many of the highly developed techniques used for normal limits will not be amenable to this case. If the common distribution function of an iid sequence belongs to a nonnormal stable domain of attraction, then the asymptotic behavior of the extreme order statistics and partial sums are closely related. This relationship is made exceedingly clear in LePage, Woodroofe, and Zinn (1981) (hereafter LWZ) which suggests that, in extending the iid results for nonnormal stable limits to dependent sequences, the dependence and mixing assumptions commonly used in extreme value theory for stationary sequences may be employed. Using these kinds of hypotheses and exploiting the ideas in LWZ, nonnormal stable limits of the normalized partial sums are established.

Let \(\{X_n\} \) be a stationary sequence of random variables with marginal distribution function (df) \(F(x) \). Much of the notation and formulations used in LWZ will be retained in this paper. Let \(1 - G(x) \) be the distribution function of \(|X_1|\). We shall assume \(F \) belongs to the stable domain of attraction with index \(\alpha, 0 < \alpha < 2 \). This translates into the following assumptions on \(F \) and \(G \):

1. \(G(x) = P(|X_1| > x) = x^{-\alpha}L(x) \) where \(L(x) \) is a slowly varying function at \(\infty \),

and

2. \(\frac{1 - F(y)}{G(y)} \to p \quad \text{and} \quad \frac{F(-y)}{G(y)} \to q \quad \text{as} \quad y \to \infty \),

where \(0 \leq p \leq 1 \) and \(q = 1 - p \). Then the normalizing constants, \(a_n > 0 \) and \(b_n \), for the
partial sums $S_n = X_1 + \cdots + X_n$, will be determined by
\begin{equation}
ng(a_n, x) \to x^{-\alpha} \text{ as } n \to \infty, \quad x > 0,
\end{equation}
and
\begin{equation}
b_n = \int_{-a_n}^{a_n} x \, dF(x).
\end{equation}

Define M_h and W_h to be, respectively, the kth largest and kth smallest among $\{X_1, \cdots, X_n\}$ and let $Y_{nh} = k$th largest among $\{|X_1|, \cdots, |X_n|\}$ for $k = 1, \cdots, n$. Also, let $\{\hat{X}_n\}$ be the associated independent sequence of $\{X_n\}$ (i.e. $\{\hat{X}_n\}$ is an iid sequence and $\hat{X}_1 = \hat{X}_1^1$).

Correspondingly, the analogues of M_h, W_h, and Y_{nh} for the associated iid sequence will be denoted by \hat{M}_h, \hat{W}_h, and \hat{Y}_{nh}. We will use throughout the convention that a "hat" over a random variable refers to a random quantity related to the associated independent sequence.

The mixing condition D which will be required is a somewhat stronger condition than originally formulated by Leadbetter (1974) (also see Davis, 1979). Let B be a finite union of disjoint intervals (possibly infinite) with nonzero endpoints of the form $(a, b]$ and set $U_\text{fin} = I_{(X(a), X(b)) \in B}$. Observe that $EU_\text{fin} \to 0$ or 1 as $n \to \infty$. Then condition D is said to hold if for any choice of integers $1 \leq i_1 < \cdots < i_p < j_1 < \cdots < j_q \leq n$, $j_1 - i_p > \ell$, where $\alpha_{n, \ell}$ is non-increasing in ℓ and $\alpha_{n, \ell} \to 0$ as $n \to \infty$ for some sequence $\ell_n \to \infty$ with $\ell_n = o(n)$. Also $\alpha_{n, \ell}$ may depend on B. This condition is substantially weaker than the usual mixing conditions associated with central limit theorems (see the second example in Section 3).

In addition to the mixing hypothesis D, a local dependence assumption is also needed in extreme value theory. The condition D' is said to hold if for all $x > 0$
\begin{equation}
\lim \sup_{n \to \infty} S_h(x) = o(1) \text{ as } k \to \infty \text{ where }
S_h(x) = n \sum_{i=2}^{\lfloor n/k \rfloor} \{P(X_i > a_n x, X_i^1 > a_n x) + P(X_i > a_n x, X_i^1 \leq -a_n x) + P(X_i \leq -a_n x, X_i^1 > a_n x) + P(X_i \leq -a_n x, X_i^1 \leq -a_n x)\}.
\end{equation}

If $0 < p < 1$, then, under the D and D' assumptions, $P(M_h \leq a_n x) \to e^{-\alpha x}$ and $P(W_h > a_n x) \to e^{-\alpha x}$ for $x > 0$ by Theorem 2.6 in Leadbetter, Lindgren and Rootzen (1979). Moreover, conditions D and D' are the same as those defined in Section 4 of Davis (1983) specialized to the present setting, and upon applying Theorem 4.2 and Remarks 1 and 2 from the same paper, we have the following result.

Theorem 1. If $0 < p < 1$, the joint limiting distribution of the two vectors
\begin{align*}
a_n^{-1}(M_h, \cdots, M_h) \quad \text{and} \quad a_n^{-1}(W_h, \cdots, W_h)
\end{align*}
is the same as the limit of
\begin{align*}
a_n^{-1}(\hat{M}_h, \cdots, \hat{M}_h) \quad \text{and} \quad a_n^{-1}(\hat{W}_h, \cdots, \hat{W}_h)
\end{align*}
for all positive integers h.

This is the key observation in establishing the convergence of the partial sums to a stable limit. This result is proved in Section 2 provided $0 < \alpha < 1$. For the case $1 \leq \alpha < 2$, a rather mild assumption is also needed in order to obtain the same result.

In Section 3, two examples are presented. The first is an instantaneous function of a stationary Gaussian sequence chosen in such a way that the marginal distribution function of this new sequence satisfies (1) and (2). If the covariance function r_n of the Gaussian process behaves like $r_n \log n \to 0$, then conditions D and D' are fulfilled by the instantaneous function process and hence the partial sums have a stable limit. The second example also satisfies D and D' yet does not satisfy any of the common mixing conditions.
2. The main result. Let \(\{X_n\} \) be a stationary sequence satisfying conditions \(D \) and \(D' \) and suppose \(F \) satisfies (1) and (2).

Lemma 1. Theorem 1 remains valid for the additional cases \(p = 0 \) and \(p = 1 \).

Proof. We only handle the case \(p = 0 \) for the argument when \(p = 1 \) is similar. First, note that \(n (1 - F(a_n x)) \to 0 \) for all \(x > 0 \) and since \(1 - n (1 - F(a_n x)) \leq P(M_n \leq a_n x) \), \(P(M_n \leq a_n x) \to 1 \) for all \(x > 0 \). Now \(M_n \to x_0 \) a.s. where \(x_0 = \sup \{ x : F(x) < 1 \} \). If \(x_0 = \infty \), then \(P(M_n/a_n \leq 0) \to 0 \) which, together with \(P(M_n/a_n < x) \to 1 \) for \(x > 0 \), implies \(M_n/a_n \to 0 \) in probability. On the other hand if \(x_0 < \infty \), then \(X_i/a_n = M_n/a_n \leq x_0/a_n \) and since the outside two terms approach 0 a.s. we have the same result. Finally, for large \(n \), \(X_i/a_n = M_n/a_n \leq M_n/a_n \) so that \(M_n/a_n \to 0 \) in probability for \(j = 1, 2, \ldots \). Thus the vector \(a_n^{-1}(M_1, \ldots, M_n) \) has a degenerate limit while \(a_n^{-1}(W_1, \ldots, W_n) \) has the same limit as \(\bar{a} = (\bar{a}_n, \ldots, \bar{a}_n) \) which completes the proof. \(\square \)

As in LWZ, let \(\{E_n\} \) be a sequence of independent unit exponentials and set \(\Gamma_k = E_1 + \cdots + E_k \). Define \(Z^n = a_n^{-1}(Y_{n1}, Y_{n2}, \ldots, Y_{nn}, 0, 0, \ldots) \) and \(Z = (Z_1, Z_2, \ldots) \) where \(Z_i = \Gamma_i^{-1/n} \).

Lemma 2. \(Z^n \to_d Z \).

Proof. In LWZ it was shown that \(Z_n = a_n^{-1}(\hat{Y}_{n1}, \ldots, \hat{Y}_{nk}, 0, 0, \ldots) \) converges in distribution to \(Z \). The sequence \(\{X_n\} \) satisfies conditions \(D \) and \(D' \) and using the preceding lemma with \(p = 1 \), \(a_1^{-1}(Y_{n1}, \ldots, Y_{nk}) \) has the same limit as \(a_n^{-1}(\hat{Y}_{n1}, \ldots, \hat{Y}_{nk}) \) which is \((\Gamma_1^{-1/n}, \ldots, \Gamma_k^{-1/n}) \). The result is complete since it is enough to establish the convergence of the finite dimensional distributions. \(\square \)

For some random permutation \((\sigma_{n1}, \ldots, \sigma_{nn}) \) of the integers 1, 2, \ldots, \(n \), \(Y_{nk} = |X_{n\sigma_k}| \). Define \(\delta_n = \text{sign}(X_{n\sigma_k}) \). We now state and prove the analogue of Lemma 2 in LWZ.

Lemma 3. \(\delta_n = (\delta_{n1}, \ldots, \delta_{nn}, 1, 1, \ldots) \to_d \delta = (\delta_1, \delta_2, \ldots) \) as \(n \to \infty \), where \(\delta_1, \delta_2, \ldots \) are iid random variables with \(P(\delta_1 = 1) = p \) and \(P(\delta_1 = -1) = q \). Furthermore, \(\delta^n \) and \(Z^n \) are asymptotically independent.

Proof. We first do away with the case \(p = 0 \). The event \(\delta_i = -1, \delta_{i+1} = -1, \ldots, \delta_{nk} = -1 \) is the same as \(M_i + W_i > 0 \) and \(\lim_{n \to \infty} P(M_i + W_i < 0) = \lim_{n \to \infty} P(M_i/a_n + W_i/a_n < 0) = 1 \) since \(M_i/a_n \to 0 \) and \(W_i \to -\infty \) in probability. This proves that the finite dimensional distributions of \(\delta^n \) converge to those of \(\delta \) and so \(\delta^n \to_d \delta \) when \(p = 0 \). The case \(p = 1 \) is the same.

Now assume \(0 < p < 1 \). Then \(M_i + \to + \infty \) a.s. and \(W_i \to -\infty \) a.s. for every \(j \). Hence, \(\delta_{nj} = 1 \) implies for large \(n \)

\[
\begin{align*}
Y_{nj} = &
\begin{cases}
M_n^1 & \text{if } -W_n^1 < M_n^1 \leq -W_n^{j-1} \\
M_n^2 & \text{if } -W_n^{j-1} - W_n^{j-2} < M_n^2 \leq -W_n^{j-2} \\
\vdots & \vdots \\
M_n^k & \text{if } -W_n^{k-1} - W_n^{k-2} < M_n^k \leq -W_n^{k-2}
\end{cases}
\end{align*}
\]

Similarly, \(\delta_{nj} = -1 \) implies for \(n \) large,

\[
\begin{align*}
Y_{nj} = &
\begin{cases}
-W_n^1 & \text{if } M_n^1 < -W_n^1 \leq M_n^{k-1} \\
-W_n^2 & \text{if } M_n^{k-1} < -W_n^2 \leq M_n^{k-2} \\
\vdots & \vdots \\
-W_n^k & \text{if } M_n^k < -W_n^k.
\end{cases}
\end{align*}
\]
So the asymptotic properties of \((a_n^{-1} Y_n, \delta_n) \) are completely determined by the asymptotic distribution of \(a_n^{-1}(M_n, \cdots, M_n^\delta, W_n^\delta, \cdots, W_n^\delta) \). Consequently, for a compact subset \(B \) of \((0, \infty)^k \) and \((\epsilon_1, \cdots, \epsilon_k) \in \{-1, +1\}^k \),

\[
\lim_{n \to \infty} P(a_n^{-1}(Y_{n1}, Y_{n2}, \cdots, Y_{nk}) \in B, \delta_{n1} = \epsilon_1, \cdots, \delta_{nk} = \epsilon_k) = \lim_{n \to \infty} P(a_n^{-1}(M_n, \cdots, M_n^\delta, W_n^\delta, \cdots, W_n^\delta) \in \bar{B})
\]

where \(\bar{B} \) is a Borel subset of \((0, \infty)^{2k} \) chosen so that for large \(n \) (\(n \) depends on \(\omega \)), the indicator of the set \(\{a_n^{-1}(Y_{n1}, \cdots, Y_{nk}) \in B, \delta_{n1} = \epsilon_1, \cdots, \delta_{nk} = \epsilon_k\} \) is equal to the indicator of the set \(\{a_n^{-1}(M_n, \cdots, M_n^\delta, W_n^\delta, \cdots, W_n^\delta) \in \bar{B}\} \). Using Lemma 1, the equality in (5) is equal to

\[
\lim_{n \to \infty} P(a_n^{-1}(\hat{M}_n, \cdots, \hat{M}_n^\delta, \hat{W}_n^\delta, \cdots, \hat{W}_n^\delta) \in \bar{B}) = \lim_{n \to \infty} P(a_n^{-1}(\hat{Y}_{n1}, \cdots, \hat{Y}_{nk}) \in B, \delta_{n1} = \epsilon_1, \cdots, \delta_{nk} = \epsilon_k) = P((\Gamma_{1}^{-1/\alpha}, \cdots, \Gamma_{k}^{-1/\alpha}) \in B)\).
\]

The last equality is from Lemma 2 in LWZ. This concludes the proof of the lemma. □

Let \([x : A] = x I_A(x) \) where \(I_A \) is the indicator function of the set \(A \).

Theorem 2. If \(0 < \alpha < 1 \), then \(a_n^{-1} S_n \to_d S \) where \(S = \sum_{j=1}^n \delta_j Z_j \).

Proof. As in LWZ, for \(0 < \epsilon < \lambda \), let \(S_n(\epsilon, \lambda) = \sum_{j=1}^\infty \delta_j \cdot [Z_j(\epsilon, \lambda)] \) where \(\sum_{j=1}^\infty \delta_j = a_n^{-1} Y_n \). Similarly define \(S(\epsilon, \lambda) = \sum_{j=1}^\infty \delta_j \cdot [Z_j(\epsilon, \lambda)] \). Since \(a_n^{-1} S_n = S_n(0, \epsilon) + S_n(\epsilon, \infty) \), it is enough to show (see Theorem 4.2 in Billingsley (1968)),

\[
\lim_{n \to \infty} \limsup_{\epsilon \to 0} E[|S_n(0, \epsilon)|] = 0,
\]

(7)

\[S_n(\epsilon, \infty) \to_d S(\epsilon, \infty) \text{ as } n \to \infty, \]

and

\[S(\epsilon, \infty) \to_d S \text{ as } \epsilon \to 0. \]

For distribution functions with regularly varying tails with index \(\alpha, 0 < \alpha < 1 \), we have from Karamata's Theorem (see de Haan (1970))

\[
\lim_{n \to \infty} \limsup_{\epsilon \to 0} \frac{n}{a_n} \int_{-\epsilon a_n}^{\epsilon a_n} |x| dF(x) = 0.
\]

Thus (6) is established since \(E[S_n(0, \epsilon)] \leq (n/a_n^2) \int_{-\epsilon a_n}^{\epsilon a_n} |x| dF(x) \). Using an identical argument to the one given in LWZ, it may be shown that \(S_n(\epsilon, \infty) \to_d S(\epsilon, \infty) \). Finally to prove (8), first observe that \(Z_j/\Gamma_j^{-1/\alpha} \to 1 \) a.s. Hence for \(0 < \alpha < 1 \), the series \(\sum_{j=1}^\infty \delta_j Z_j \) converges absolutely a.s. in which case it follows that \(S(\epsilon, \infty) \to S \) a.s. as \(\epsilon \to 0 \). □

In addition to the hypotheses D and D', a further dependence assumption is needed when \(1 \leq \alpha < 2 \). Condition D'' is said to hold if

\[
\lim_{n \to \infty} \limsup_{\epsilon \to 0} \frac{n}{a_n} \max(0, \text{ Cov}(X_1: (-\epsilon a_n, \epsilon a_n)), [X_j: (-\epsilon a_n, \epsilon a_n)]) = 0.
\]

Each term in the sum is bounded by \(a_n^{-2} \text{ Var}(X_1: (-\epsilon a_n, \epsilon a_n)) \) which in turn is bounded by \((n/a_n^2) \int_{-\epsilon a_n}^{\epsilon a_n} x^2 dF(x) \). Using properties of regularly varying distributions (de Haan, 1970),
so that each of the summands in (6) has the desired property and, thus, an \(m \)-dependent sequence satisfies (6).

Although it is believed that the following theorem is true without assuming \(D" \), our proof, which follows closely the argument given for Theorem 1 in LWZ, requires it.

THEOREM 3. For \(1 \leq \alpha < 2 \), suppose the stationary sequence \(\{X_n\} \) also satisfies \(D" \). Then \(a_n^{-1}(S_n - nb_n) \to_d S^* \) where

\[
S^* = \sum_{j=1}^{\infty} (\delta_j Z_j - (p - q)E[Z_j; (0, 1)]).
\]

PROOF. Using the notation developed in the proof of Theorem 2, we have

\[
a_n^{-1}(S_n - nb_n) = \alpha_n \{S_n(\epsilon, \infty) - ES_n(\epsilon, 1)\} + S_n(0, \epsilon) - ES_n(0, \epsilon).
\]

It then suffices to show

(11) \[
\lim_{n \to \infty} \limsup_{n \to \infty} Var(S_n(0, \epsilon)) = 0
\]

(12) \[
S_n(\epsilon, \infty) - ES_n(\epsilon, 1) \to_d S(\epsilon, \infty) - ES(\epsilon, 1), \quad \text{as } n \to \infty
\]

and

(13) \[
S(\epsilon, \infty) - ES(\epsilon, 1) \to_d S^* \quad \text{as } \epsilon \to 0.
\]

To prove (11), observe that

\[
Var(S_n(0, \epsilon)) \leq \frac{n}{a_n^2} \int_{-a_n}^{a_n} x^2 dF(x)
\]

\[
+ \frac{2n}{a_n^2} \sum_{j=1}^{\infty} \max(0, \text{Cov}(\{X_i; (-\epsilon a_n, \epsilon a_n)\}, \{X_j; (-\epsilon a_n, \epsilon a_n)\})).
\]

Now, by the \(D" \) assumption and (10), the \(\lim_{n \to \infty} \limsup_{n \to \infty} \) of the bound is zero. In LWZ, (13) and \(ES_n(\epsilon, 1) \to ES(\epsilon, 1) \) were established. Since \(ES_n(\epsilon, 1) = E\tilde{S}_n(\epsilon, 1) \), the argument will be complete once we show \(S_n(\epsilon, \infty) \to_d S(\epsilon, \infty) \). However, as in the proof of Theorem 2, this is established using the same argument as the one provided in LWZ for \(\tilde{S}_n(\epsilon, \infty) \).

The analogues of Theorem 1' and Corollary 1 for self norming sums in LWZ also carries over to the dependent setting. Set

\[
S_{n,r}^\# = a_n^{-1} \{\sum_{j=1}^{\infty} \{X_j\}^{1/r}\}, \quad 1 \leq r \leq \infty
\]

\[
S^\# = \{\sum_{j=1}^{\infty} Z_j\}^{1/r}, \quad \alpha < r < \infty
\]

\[
S_{n,\infty}^\# = a_n^{-1} \max\{|X_1|, \ldots, |X_n|\} \quad \text{and} \quad S^\# = Z_1.
\]

The proof of the following theorem and corollary is immediate from Theorems 2 and 3 and the proof of Theorem 1' and Corollary 1 in LWZ.

THEOREM 4. Under the assumptions of Theorem 2 or Theorem 3, \((Z^n, S_n^\#, S_{n,r}^\#) \to_d (Z, S^\#, S^\#)\) as \(n \to \infty \) for all \(r, \alpha < r \leq \infty \) where \(S_n^\# = a_n^{-1}(S_n - nb_n) \) and \(S^\# \) is defined in Theorem 3.

COROLLARY a) If \(0 < \alpha < 1 \), then \(T_{n,r} \to_d T_r \) for all \(r, \alpha < r \leq \infty \) where

\[
T_{n,r} = \{\sum_{j=1}^{\infty} X_j\}/\{\sum_{j=1}^{\infty} X_j^{1/r}\}^{1/r} \quad \text{and} \quad T_r = \sum_{j=1}^{\infty} \delta_j Z_j/\{\sum_{j=1}^{\infty} Z_j^{1/r}\}^{1/r}.
\]

b) If, in addition to the assumptions of Theorem 3, \(EX_1 = 0 \), then
STABLE LIMITS FOR DEPENDENT RV’S

3. Examples. In this section, two examples illustrating the results of the preceding section are presented. First, let \(\{Y_n\} \) be a stationary Gaussian sequence with zero mean, unit variance, and covariance function \(c_n = \mathbb{E}[Y_n Y_{n+1}] \). Set \(A = \bigcup_{j=0}^{m} (v^{(j)}_n, v^{(j+1)}_n) \) and \(a < r_5 < r \leq \infty \). The proof of the following lemma mimics, with minor modifications, the argument given for Lemma 3.2 in Leadbetter, Lindgren, and Rootzen (1979).

Lemma 4. For any choice of integers \(1 \leq i_1 < i_2 < \cdots < i_s \),

\[
|P(X_{i_1} \in A, \ldots, X_{i_s} \in A) - P(X_1 \in A)| \leq Km^2 \sum_{i_1<s} \mathbb{E}[X_{i_1}] \mathbb{E}[|X_{i_1} - \mathbb{E}[X_{i_1}]|] e^{-w/(1+|r_{ij}|)}
\]

where \(r_{ij} = E(X_j X_i) \) and \(w = \min\{\mathbb{E}[|v^{(0)}_n|], \mathbb{E}[|v^{(1)}_n|], \ldots, \mathbb{E}[|v^{(2m+1)}_n|]\} \) and \(K \) is a constant.

For each \(j = 0, 1, \ldots, 2m + 1 \), let \(v^{(j)}_n \) be a sequence of numbers with \(-\infty \leq v^{(0)}_n < v^{(1)}_n < \cdots < v^{(2m+1)}_n \leq \infty \) and satisfying \(1 - \Phi(|v^{(j)}_n|) \sim \frac{\alpha^{(j)}}{n} \) as \(n \to \infty \) where \(0 \leq \alpha^{(j)} < \infty, j = 0, 1, \ldots, 2m + 1 \), and \(\Phi \) is the standard normal distribution function.

Lemma 5. For any choice of integers \(1 \leq i_1 < i_2 < \cdots < i_p < j_1 < \cdots < j_q \leq n \) with \(j_s - i_s \geq \zeta \), then

\[
|P(Y_{i_1} \in A_{i_1}, \ldots, Y_{i_p} \in A_{i_p}, Y_{j_1} \in A_{j_1}, \ldots, Y_{j_q} \in A_{j_q}) - P(Y_1 \in A) | \leq 3Km^2n \sum_{j=1}^{n} |r_j| e^{-w/(1+|r_{ij}|)}
\]

where \(A_{i_j} \) is the set \(A \) defined above with \(v^{(j)}_n \) replaced by \(v^{(j)}_{i_j} \) and \(u_n = \min\{\mathbb{E}[|v^{(0)}_n|], \ldots, \mathbb{E}[|v^{(2m+1)}_n|]\} \). Moreover, if \(r_n \log n \to 0 \) or \(\sum |r_j| < \infty \), then this bound goes to zero for all \(\zeta > 0 \) and \(n \to \infty \).

The proof follows from Lemma 4 above and Lemmas 3.1 and 3.3 in [8].

Now let \(X_n = H(Y_n) \) be an instantaneous function of the Gaussian process such that the df of \(X_n \) belongs to the stable domain of attraction with index \(\alpha, 0 < \alpha < 1 \).

Lemma 6. The sequence \(\{X_n\} \) satisfies conditions D and D’ and, consequently, \(a_n^{-1} \sum_{j=1}^{n} X_j \to d S = \sum_{j=1}^{\infty} \delta_j Z_j \).

Proof. Let \(B = \bigcup_{j=0}^{m} (x_{2j}, x_{2j+1}) \) where \(-\infty \leq x_0 < x_1 < \cdots < x_{2m+1} \leq \infty \) and \(x_j \neq 0 \) for \(j = 0, \ldots, 2m + 1 \). Then \(\{a_n^{-1} X_j \in B\} = \{Y_j \in A\} \) where \(A_n = \bigcup_{j=0}^{m} (v^{(j)}_n, v^{(j+1)}_n) \) with \(v^{(j)}_n = H^{-1}(a_n x_j) \) for \(j = 0, \ldots, 2m + 1 \). Since

\[
 n(1 - \Phi(|v^{(j)}_n|)) = \begin{cases}
 p x_j^{-\alpha} & \text{if } x_j > 0 \\
 q |x_j|^{-\alpha} & \text{if } x_j < 0,
\end{cases}
\]

by (1)–(3) and in view of Lemma 5, it is an easy task to verify both D and D’. \(\square \)

It is worth remarking that if the instantaneous function of \(Y_n \) was chosen such that \(\text{Var}(H(Y_n)) < \infty \), then the normalized partial sums of \(X_n = H(Y_n) \) may not be asymptot-
ically normal even under the assumption \(r_n \log n \to 0 \). The special case where \(H(Y_n) = Y_n^2 - 1 \) and \(r_n \approx n^{-\gamma}, 0 < \gamma < \frac{1}{2} \), was dealt with by Rosenblatt (1979). This is contrasted with Lemma 6 where \(H \) is chosen to make the df of \(H(Y) \) belong to a stable domain of attraction.

The next example is a modification of the one given in Davis (1982). First, let \(\{Z_i, Z'_i\} : n \geq 1 \) be an iid sequence of 2-vectors with marginal distribution defined as follows. The density \(f(x, y) \) of this distribution is supported on the unit square and is given by

\[
f(x, y) = \begin{cases}
0 & \text{if } (x, y) \in (\frac{1}{2}, \frac{1}{2}) \times (\frac{1}{2}, \frac{1}{2}) \cup (\frac{1}{2}, \frac{1}{2}) \times (0, \frac{1}{2}) \\
2 & \text{if } (x, y) \in (\frac{1}{2}, \frac{1}{2}) \times (0, \frac{1}{2}) \cup (\frac{1}{2}, \frac{1}{2}) \times (0, \frac{1}{2}) \\
1 & \text{elsewhere on the unit square.}
\end{cases}
\]

In other words, \(f(x, y) \) is an altered uniform density on \((0, 1) \times (0, 1)\) with twice as much mass on the squares \((\frac{1}{2}, \frac{1}{2}) \times (0, \frac{1}{2})\) and \((\frac{1}{2}, \frac{1}{2}) \times (0, \frac{1}{2})\) and no mass on the adjacent squares \((\frac{1}{2}, \frac{1}{2}) \times (\frac{1}{2}, \frac{1}{2})\) and \((\frac{1}{2}, \frac{1}{2}) \times (0, \frac{1}{2})\).

Suppose \(A \) is a Borel subset of \((0, 1)\) such that

\[
A \cap (\frac{1}{2}, \frac{1}{2}) = \emptyset \quad \text{or} \quad (\frac{1}{2}, \frac{1}{2}) \subseteq A.
\]

Then \(P(Y_i \in A, \ldots, Y_i \in A) = P^*(A) \) for all choices of integers \(1 \leq i_1 < \cdots < i_n \). To complete the construction, define \(X_i = F^{-1}(Y_i) \) where \(F \) is a df satisfying properties (1) and (2). If \(B \) is a finite union of disjoint intervals, then the event \(\{a_n^{-1} X_i \in B \} = \{Y_i \in A_n \} \) where \(A_n = \{x : a_n^{-1} F^{-1}(x) \in B \} \). For large \(n \), \(A_n \) eventually satisfies (14) so that \(P(X_i \in B, \cdots X_i \in B) = P^*(X_i \in B) \). It follows that Conditions D and D’ are fulfilled for this sequence and since \(X_i \) and \(X_i \) are independent for \(j > 2 \), Condition D” is also satisfied by the remark preceding Theorem 3. Thus \(a_n^{-1} \sum_{j=1}^{n} X_j - nb_n \) \(\to_d S^* \), even though this sequence is not mixing.

The results of Section 2 and the above examples suggest that the mixing assumptions required for proving stable limits of partial sums need not be as stringent as those for establishing central limit theorems. However, a price is paid in the form of a local dependence hypothesis (Condition D’) which occasionally is not even satisfied by 1-dependent sequences. Yet, in view of the relationship between extreme values and partial sums, the hypotheses which are commonly used in extreme value theory for dependent sequences appear appropriate for obtaining nonnormal stable limits of partial sums.

Acknowledgement. I would like to thank Professor Resnick for pointing out an error in an earlier version of this paper.

REFERENCES

DEPARTMENT OF STATISTICS
COLORADO STATE UNIVERSITY
FORT COLLINS, COLORADO 80523