
1

Comparative Genomics

Lecture 7:
Phylogenetics II

Statistical Phylogenetics

• Maximum Likelihood
• Bayesian Inference

Maximum Likelihood

The best tree is the one with the highest 
probability of producing the observed data.

How can we calculate the probability that a 
tree generated some observed data? v
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How can we calculate the probability that one 
sequence evolves into another?
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Assume that sites evolve independently.
Calculate each site separately and 
multiply all sites together.
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Substitution Model: JC

The Jukes-Cantor model
A simple discrete-state continuous time Markov model

Substitutions follow a Poisson process
Q is the instantaneous rate matrix
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Substitution Probabilities: JC

Substitution probabilities for the Jukes-Cantor model
Calculated by matrix exponentiation

v is branch length measured in expected substitutions per site
Probabilities drive system to stationarity
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The probability for this site is: 3/4
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Assume that sites evolve independently.
Calculate each site separately and 
multiply all sites together.

Now we can calculate the probability that 
a particular tree with a particular set of 
branch lengths generated some set of 
aligned sequences
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Data

X The data
Taxon Characters

A ACG TTA TTA AAT TGT CCT CTT TTC AGA

B ACG TGT TTC GAT CGT CCT CTT TTC AGA

C ACG TGT TTA GAC CGA CCT CGG TTA AGG

D ACA GGA TTA GAT CGT CCG CTT TTC AGA

Model: tree and branch lengths

θ Parameters

topology )(τ

branch lengths )( iv
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(expected amount of change)

),( vτθ =

Model: molecular evolution

θ Parameters

instantaneous rate matrix
(Jukes-Cantor)
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Maximum likelihood analysis

)|( θXl Likelihood function

The probability (likelihood) of the 
data given the parameters (topology, 
branch lengths, substitution 
parameters,...) tree 1 tree 2 tree 3 θ

)|( θXl

Maximum Likelihood Analysis

Parameter space
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Hill climbing

Maximum likelihood estimate

Initial estimate

Heuristic Search

Start at the tree 
found by stepwise 
addition, random 
addition, or at a 
random tree. Climb 
uphill using branch 
swapping (tree 
rearrangements).

Higher is better (better likelihood)

Stepwise Addition

At each level (A, B, 
C, etc), all trees are 
examined and only 
the best tree (or the 
n best trees) are 
kept as seed(s) in 
the next step of the 
algorithm.

Tree Rearrangements

• NNI: Nearest Neighbor Interchanges. 
Fastest but only modest tree changes

• SPR: Subtree Pruning and Regrafting: 
Slower but more substantial 
rearrangements

• TBR: Tree Bisection and Reconnection. 
Slowest but most comprehensive 
rearrangements

NNI

Delete one branch and 
try the two other 
alternative 
arrangements of the 
four subtrees
surrounding that branch

Nearest Neighbor Interchange
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SPR

Subtree Pruning and Regrafting

TBR
Tree Bisection Reconnection

Advantages of ML

• ML corrects for multiple hits. If this is not 
done, long branches can mislead a 
phylogenetic analysis (“long-branch 
attraction”)

• ML can estimate evolutionary parameters 
of interest like substitution rates and 
stationary state frequencies

Saturation Plot

The longer the branch, the larger the discrepancy between the 
observed number of differences (parsimony length) and the true 
branch length (true number of changes)
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Maximum likelihood optimizes branch length by 
taking the overall difference between the 
sequences into account
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Where m is the number of the matching sites and 
N is total sequence length

Long-Branch Attraction

True tree Parsimony gives you this tree

Parsimony gives you the wrong tree if you do not weight branches
according to their length.
Such weighting is difficult to do within the parsimony framework.
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Evolutionary Models

Different substitutions occur at different 
rates
Different sites in a sequence evolve at 
different rates

Substitution Model: JC

The Jukes-Cantor model
All substitutions occur with the same rate
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Substitution Model: K2P

The Kimura 2-parameter model
κ is the transition/transversion rate ratio
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Substitution Model: HKY

The Hasegawa-Kishino-Yano model
κ is the transition/transversion rate ratio

πi is the stationary base frequency of nucleotide i
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Substitution Model: GTR

The General Time Reversible model
rij is the rate of substitution between nucleotides i and j

πi is the stationary base frequency of nucleotide i
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Rate Variation Across Sites

Gamma distribution
The shape of the 
distribution is determined 
by a single parameter, 
the shape parameter α
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Statistical Phylogenetics

• Maximum Likelihood
• Bayesian Inference

Max. Likelihood - Bayesian
Both are parametric statistical 
approaches to phylogenetic inference
Both are based on the same stochastic 
models of molecular evolution
Both address the problem of long-
branch attraction
Both share model sensitivity

Max. Likelihood - Bayesian
Max. Likelihood

Hill climbing is slow 
when there are many 
parameters
Nuisance parameters 
cause problems

Model testing is difficult
Accepted philosophy

Bayesian MCMC
Sampling of parameter 
values much faster

No distinction between 
model and nuisance 
parameters
Model testing easy
Controversial philosophy

Bayesian Inference
You first specify some prior belief about the 
relative probability of the trees (and other 
parameters).

You then use some data and a stochastic model to 
update the prior to a posterior probability 
distribution on trees.

The posterior probability of a tree is the probability 
that it is correct given the prior and the model.
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Prior distribution
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Data (observations)

Bayes’ theorem
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Posterior
distribution

Prior distribution Likelihood function

Authored by Rev. Thomas Bayes; 
published posthumously in 1753
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tree 1 tree 2 tree 3 θ

)|( Xf θ

Posterior probability distribution

Parameter space
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20% 48% 32%

We can focus on any parameter of interest 
(there are no nuisance parameters) by 
marginalizing the posterior over the other 
parameters (integrating out the 
uncertainty in the other parameters)

(Percentages denote marginal probability distribution on trees)

32.048.020.0
38.014.019.005.0
33.006.022.005.0
29.012.007.010.0
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joint probabilities

marginal probabilities

Why is it called marginalizing?
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Estimating the Posterior
Analytical calculation is impossible 
except for very simple examples
Random sampling of parameter space is 
also impossible (huge space, most of it 
with very low probability)
However, we can do dependent 
sampling using the Markov chain Monte 
Carlo (MCMC) technique

Markov chain Monte Carlo
Set up a Markov process such that the 
stationary state is equivalent to the posterior 
probability distribution
Regardless of starting state, if we run this 
simulation long enough, we will end up 
sampling from the posterior probability 
distribution
Much of the difficulty of MCMC sampling is to 
find a process that converges quickly onto the 
stationary state tree 1 tree 2 tree 3

always accept

accept sometimes

1. Start at an arbitrary point 
2. Make a small random move
3. Calculate height ratio (r) of new state to old state:

1. r > 1 -> new state accepted
2. r < 1 -> new state accepted with probability r. If new 

state not accepted, stay in the old state
4. Go to step 2

Markov chain Monte Carlo

The proportion of time the 
MCMC procedure samples 
from a particular parameter 
region is an estimate of that 
region’s posterior 
probability mass

1

3.2

3.1
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Metropolis-Hastings Sampling
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Assume that the current state has 
parameter values θ

Consider a move to a state with 
parameter values θ∗ according to 
proposal density q

Accept the move with probability

(prior ratio x likelihood ratio x proposal ratio)

An Example of a Bayesian MCMC run

burn-in

stationary phase sampled with thinning
(rapid mixing essential)

Majority rule 
consensus tree from 
an MCMC run
(insect 18S data, 
GTR + Γ)

Frequencies 
represent the 
posterior 
probability of the 
clades

Probability of 
clade being true 
given data and 
model

Mean and 95% 
credibility interval 
for model 
parameters
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Assessing Convergence
Look at the change in probability of 
the data given the parameters over 
MCMC generations
Compare windows within the same run
Compare independent runs starting 
from different randomly chosen 
topologies Cl
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Improving Convergence
Change tuning parameters of proposals to 
bring acceptance rate into the range 10 % 
to 70 %
Use different proposal mechanisms
Use Metropolis-coupled MCMC with 
heated chains

MCMCMC
In Metropolis-coupled Markov chain Monte 
Carlo, or MCMCMC, or (MC)3 ‘heated’ chains 
are used to propose new states for the 
normal ‘cold’ chain
The heated chains run in a landscape 
obtained by raising the posterior 
probability with a factor < 1
The smaller the factor, the more heated 
the landscape becomes.
With regular intervals, we try to swap 
states between the hot and the cold chains

cold chain

hot chain
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cold chain

hot chain

cold chain

hot chain

unsuccessful swap

cold chain

hot chain

cold chain

hot chain

cold chain

hot chain

cold chain

hot chain

successful swap
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cold chain

hot chain

cold chain

hot chain

cold chain

hot chain

successful swap

cold chain

hot chain

Summary
Statistical phylogenetics is based on 
evolutionary models (probability models) 
that account for variation in rates among 
types of substitutions and across sites
Maximum likelihood inference, standard 
statistical approach but slow for the 
phylogeny problem
Bayesian MCMC inference, fast but 
technically more complicated and more 
controversial approach


