Comparative Genomics

Lecture 7: Phylogenetics II

Statistical Phylogenetics

- Maximum Likelihood
- Bayesian Inference

Maximum Likelihood

The best tree is the one with the highest probability of producing the observed data.

How can we calculate the probability that a tree generated some observed data?

Advantages of ML ML corrects for multiple hits. If this is not

- ML corrects for multiple hits. If this is not done, long branches can mislead a phylogenetic analysis ("long-branch attraction")
- ML can estimate evolutionary parameters of interest like substitution rates and stationary state frequencies

Statistical Phylogenetics

- Maximum Likelihood
- Bayesian Inference

Bayesian Inference

You first specify some prior belief about the relative probability of the trees (and other parameters).

You then use some data and a stochastic model to update the prior to a posterior probability distribution on trees.

The posterior probability of a tree is the probability that it is correct given the prior and the model.

$r_{\rm AC}$	1.35 (0.98, 1.82)	Mean and 95% credibility interval for model parameters
$r_{\rm AG}$	3.24 (2.55, 4.06)	
$r_{\rm AT}$	1.64 (1.24, 2.11)	
$r_{\rm CG}$	1.18 (0.89, 1.56)	
$r_{\rm CT}$	5.93 (4.63, 7.54)	
$r_{\rm GT}$	1	
α	0.32 (0.29, 0.35)	
π_A	0.28 (0.26, 0.30)	
π_{C}	0.20 (0.18, 0.22)	
π_{G}	0.24 (0.22, 0.27)	
π_{T}	0.28 (0.26, 0.30)	

- Look at the change in probability of the data given the parameters over MCMC generations
- Compare windows within the same run
- Compare independent runs starting from different randomly chosen topologies

